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CWoLa Hunting:
Extending the Bump Hunt with Machine Learning

Based on:
[1805.02664] Jack Collins, Kiel Howe, Ben Nachman
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CWoLa

CWoLa

Classifier trained to optimally discriminate mixed sample 1 from mixed sample 2 is also 
optimal for discriminating S from B, so long as:

– Samples 1 and 2 contain different fractions of S and B
– S in sample 1 is drawn from the same distribution as S in sample 2
– B in sample 1 is drawn from the same distribution as B in sample 2
– Training statistics are sufficiently large

How to use this for a search where S is new physics and B is SM background?

[1708.02949] E. M. Metodiev, B. Nachman, J. Thaler
[1702.00414] L. M. Dery, B. Nachman, F. Rubbo, A Schwartzman
[1801.10158] P. T. Komiske, E. M. Metodiev, B. Nachman, M. D. Schwartz
[1706.09451] T. Cohen, M. Freytsis, B. Ostdiek
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Dijet Resonances

Edited from [1703.01927]

QCD events with very similar 
event characteristics 

(kinematics, substructure)

QCD events with quite different 
event characteristics 

(kinematics, substructure)

– B in sample 1 is 
drawn from the 
same distribution 
as B in sample 2
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Dijet Resonances

Edited from [1703.01927]

– Samples 1 and 2 
contain different 
fractions of S and 
B
– S in sample 1 is 
drawn from the 
same distribution 
as S in sample 2

‘Signal 
region’

Sideband
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Dijet Resonances

Edited from [1703.01927]

– Training 
statistics are 
sufficiently large
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Dijet Resonances

Edited from [1703.01927]

[1506.00962] [1708.04445]

1) Theorist comes up with specific 
model with some specific 
prediction (e.g. W’ → WZ).

2) Choose dedicated substructure 
variables.

3) Simulate signal to optimize cuts

4) Calibrate in some data sample

5) Apply cuts to events and look 
for a bump in the new 
distribution
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1) Theorist comes up with specific 
model with some specific 
prediction (e.g. W’ → WZ).

2) Choose dedicated substructure 
variables.

3) Simulate signal to optimize cuts

4) Calibrate in some data sample

5) Apply cuts to events and look 
for a bump in the new 
distribution

Dijet Resonances

Edited from [1703.01927]

[1506.00962] [1708.04445]
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CwoLa Hunting: Basic Picture
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CwoLa Hunting: Basic Picture

Cut based on
NN output
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Avoiding Overfitting

 Train/Test Split
(and ‘waste’ half of your dataset)

 Cross Validation
(and introduce new complications in 

statistical analysis)
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Nested Cross-Validation
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Application to Bump Hunt

In signal region:
S = 522,
S/B = 0.64%

1.5σ
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Application to Bump Hunt

In signal region:
S = 522,
S/B = 0.64%

1.5σ

2σ
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Application to Bump Hunt

In signal region:
S = 522,
S/B = 0.64%

1.5σ

2σ

3.5σ

7σ
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No Signal → No Bump!
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Mass Scan
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Mass Scan
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Mass Scan
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Mass Scan
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Mass Scan
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Mass Scan
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Mass Scan
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Mass Scan
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Mass Scan
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Mass Scan
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Performance Comparison
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General CWoLa Hunting

1)Need some variable X (e.g. m_JJ) in which bg is smooth 
and signal is localized or has a sharp feature (could also 
be used for kinematic edges!)

2)Need some other variables {Y} (e.g. jet substructure) 
which may provide discriminating power which may be 
a-priori unknown.

3){Y} should not be strongly correlated with X over the X-
width of the signal.

Or alternatively, if correlated, there may be a way to 
decorrelate (e.g. if we can predict or measure the correlation, 
that can be subtracted away to create new uncorrelated 
variables).
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Map of model-agnostic searches
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Vs data
Data vs Data

‘Traditional’ CMS and ATLAS 
model agnostic searches

A few papers this year (not yet 
double checked to make 100% sure 
which ones fit here, but I think:

[1806.02350] R. Tito D’Agnolo, A. Wulzer
[1807.06038] A. De Simone, T. Jacques
[1807.10261] J. Hajer, Y. Li, T. Liu, H. 
Wang

(Please correct me if I made a mistake 
here!)

Train on signal region and bg 
region
[1805.02664] J. H. Collins, K. Howe, B. 
Nachman

Train only on bg region
[1808.08979] T. Heimel, G. Kasieczka, 
T. Plehn, J. M. Thompson
[1808.08992] M. Farina, Y. Nakai, D. 
Shih
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Background-only training vs signal/sideband:

Background-only Signal / Sideband

Tagger performance does not depend on 
signal statistics.

Tagger can never learn the specific peculiar 
features of the signal, and so cannot 
improve with greater signal rate.

Tagger relies on there being sufficient 
signal statistics for training.

Tagger can learn the specific peculiar 
features of the signal, and so improves 
with greater signal rate, and allows for 
signal characterization. 

Stronger in limit of very 
low signal statistics

Stronger in limit of very 
high signal statistics??
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