A QCD Facility at the SPS after 2021

Letter of Intent: Instrumentation

Mini Workshop at CERN

June 20, 2018

Caroline Riedl for the LoI team

The mission: exploring hadron structure at ENH2 unique proton and meson structure proton radius beam line proton spin structure ++ upgrades hadron versatile apparatus 3D structure of the proton in transverseanti-matter momentum (TMDs) extensive experience with solid hadron cross and coordinate polarized and liquid unpolarized targets spectroscopy section space (GPDs)

Summary table

Program	Physics Goals	Beam Energy [GeV]	Beam Intensity [s ⁻¹]	Trigger Rate [kHz]	Beam Type	Target	Earliest start time, duration	Hardware Additions
μp elastic scattering	Precision proton-radius measurement	100	4 · 10 ⁶	100	μ^{\pm}	high-pr. H2	2022 1 year	active TPC SciFi trigger silicon veto
Hard exclusive reactions	GPD E	160	2·10 ⁷	10	μ^{\pm}	NH [↑] ₃	2022 2 years	recoil silicon, modified PT magnet
Input for DMS	\overline{p} production cross-section	20-280	5 · 10 ⁵	25	p	LH2, LHe	2022 1 month	LHe target
p -induced Spectroscopy	Heavy quark exotics	12, 20	5 · 10 ⁷	25	p	LH2	2022 2 years	target spectr.: tracking, calorimetry
Drell-Yan	Pion PDFs	190	7 · 10 ⁷	25	π^{\pm}	C/W	2022 1-2 years	
Drell-Yan (RF)	Kaon PDFs Nucleon TMDs	~100	10 ⁸	25-50	K^{\pm}, \overline{p}	NH [↑] ₃ , C/W	2026 2-3 years	"active absorber", vertex det.
Primakoff (RF)	Kaon polarizi- bility & pion life time	~100	5 · 10 ⁶	> 10	K ⁻	Ni	non-exclusive 2026 1 year	
Prompt Photons (RF)	Meson gluon PDFs	≥ 100	5 · 10 ⁶	10-100	$K^{\pm} \over \pi^{\pm}$	LH2, Ni	non-exclusive 2026 1-2 years	hodoscope
K-induced Spectroscopy (RF)	High-precision strange-meson spectrum	50-100	5 · 10 ⁶	25	<i>K</i> ⁻	LH2	2026 1 year	recoil TOF forward PID
Vector mesons (RF)	Spin Density Matrix Elements	50-100	5 · 10 ⁶	10-100	K^{\pm}, π^{\pm}	from H to Pb	2026 1 year	

Specific hardware upgrades

Proton radius:

- High-pressure active TPC target or hydrogen tube surrounded by SciFi, 4-8 layers with U/V projections
- SciFi trigger system on scattered muon
- Silicon trackers

Drell-Yan general:

- High-purity and efficiency di-muon trigger
- Dedicated precise luminosity measurement
- Dedicated vertex-detection system
- Beam trackers unpolarized target for future DY

Drell-Yan RF separated beams:

- Due to lower beam energy, need wide aperture, up to \pm 300 mrad
- High-rate and high-multiplicity capability
- "Magnetized spectrometer" ("3-in-1" detector, SM, absorber)

Spectroscopy with K—:

- RICH & CEDAR
- Uniform acceptance, ECals
- Good vertexing
- Recoil TOF detector

COSY nteraction point **Forward Detector** Central Detector

Spectroscopy with low-anergy anti-p:

- RICH & CEDAR, RICH0 for low p?
- Target spectrometer (tracking, barrel calorimeter) similar to WASA

Anti-matter cross section

- LH2 and LHe targets
- RICH0 for lower momentum to ID anti-protons?

WASA detector with target spectrometer Caroline.Riedl@cern.ch, Instrumentation for QCD Facility at the SPS after 2021 4

Existing COMPASS spectrometer

Separation of produced pions & kaons: RICH with multianode-photomultiplier tubes and MWPCs with photosensitive CsI cathodes in the periphery

Energy measurement:

- charged particles: sampling hadron calorimeters (HCAL)
- neutral particles, in particular high-energy photons: electromagnetic calorimeters (ECAL)

Apparatus at QCD Facility: the current vision

- Baseline: upgraded COMPASS spectrometer
- New large-size PixelGEMs as replacement and spares for aging large-area GEMs.
 - Area between 30cm x 30cm and 40cm x 40cm

 New large-area micro-pattern gaseous detectors (MPGD) based on GEMs or Micromegas technology to replace aging MWPCs.

- DIRC

- Large-area photodetectors based on micro-channel

plates. (LAPPDTM by IncomInc)

CEDAR 2018 upgrade

- Modification to withstand higher rate ($\approx 10^8$ particles/s)
- The upgrade includes:
 - PMTs (fast Hamamatsu R11263-203 with pulses width of 2-3ns), gain monitor, read-out (COMPASS)

- Thermal system: improvement of thermal homogeneity (CERN)

- Target temperature: 23°C

Stability: 0.1°C

External temperature range: +15°C / +30°C

- CEDAR: total length: 6000 mm
main diameter: 558 mm
external surface: ~ 10 m²
total mass: 2.3 tons
fill: He, 4 bar

chamber material: Steel (AC 52.3)

- Thermal housing internal diameter: 770 mm
- Insulation thickness: 50 mm
- Air volume inside the thermal housing: ~ 1.6 m³
- Internal heat load: ~ 50 W

lense/vapour-deposit mirror

pressure vessel

alignment table

condenser/diaphragm

corrector

passive voltage divider

quartz windows

photomultiplier

Towards trigger-less readout & unified front-end electronics

Micro pattern detectors Silicon Detectors APV25 - GEM, PGEM, PMM Scintillating Detectors - SciFi, BMS, Hodoscopes F1 - CAMERA **GANDALF** Wire Chambers - DC, Straw, W45 - MWPC, RW, MW1, MW2 DC05 **FPGA TDC**

Calorimeters - HCAL1,2 **MSADC** - ECAL0,1,2 RICH - MAPMT - MWPC, THGEM APV25

https://indico.cern.ch/event/673073 (Prague, Nov 2017)

- learn about future physics programs and requirements for read-out electronics
- review existing read-out and trigger systems
- look at the developments carried out within COMPASS
- learn about developments for future experiments
- define needs and strategy for the further development
- identify interested groups within the collaboration to participate in this R&D
- distribute tasks.

ТШП

Trigger conditions for future programs

Program	Trigger rate (est.) [kHz]	Trigger signature / list of detectors in trigger logic	Trigger challenge factor
Proton radius <= 100		scattered-muon or recoil-proton trigger	
GPD E	10	MT, LT, OT, LAST. (if higher beam intensity: photon or proton trigger?)	
anti-p x-section	25	Beam trigger, hodoscope veto Sandwich veto Beam killer	
Spectroscopy anti-p	25	CEDARs?	
Drell-Yan conventional	25	As 2015: MT+LAST, OT+LAST, LAST 2mu	
Drell-Yan RF- separated	25-50	As above + ? new hodoscopes for SAS-SAS trigger	
Primakoff	>> 10	ECal2 ΔE>threshold	
Prompt photons	10-100	ECal0, ECal1 ΔE>threshold, or "true pT" trigger	
Spectroscopy K-	25	minimum-bias diffractive trigger Trigger on recoil proton for high t, multiplicity trigger for all t	
Vector mesons 10-100		2 charged particles in final state	

Future Task Forces

What is critical? "DAQ & FEE"

- Unified front-end electronics across the entire experiment: FPGA-based TDC with time resolution down to 100ps (iFTDC).
- Upgrade to a modern DAQ with trigger-less readout and trigger rates 90-200 kHz (factor of 2.5-5 higher)

- Deprecated and no longer supported control and data acquisition systems (e.g. WINCC)
- Old and no longer produced equipment like I/O modules (e.g. Embedded Local Monitor Board ELMB)
- Phasing out of client-server architectures (e.g. OPC-DA), rendering certain hardware unusable.
- Certain (CAEN, ISEG, Wiener) modules becoming too old: not controllable, not repairable (at companies), and/ or simply breaking apart.
- It is therefore essential to create future task forces that plan and carry out in a common effort new projects.
 - "DAQ & FEE": task force founded and active, recommended by COMPASS Collaboration Board.
 - o Development stage 2018-2021
 - o Plan pilot run with test proton radius measurement in 2021
 - "DCS & Power Supplies": formation considered and encouraged by COMPASS Technical Board.

- "..."

iFTDC

Time line of COMPASS & future QCD facility (the current best knowledge - very preliminary)

2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	•••
DY NH3 pions	NH3↑	LH2	GPD LH2 muons	NH3↑	LS2	LS2	SIDIS 6LiD	LoI LoI	LoI LoI	(LS3) LoI LoI	LS3	LoI	LoI	LoI	LoI	LS4	•••
COMPASS.	COMPASS	ÇOMPASS.	COMPASS	COMPASS			COMPASS										•••

Readiness of experiments:

						on por mino				
Program	duration	2022	2023	2024	2025	2026	2027	2028	2029	• • •
Proton radius	1 year									
GPD E	2 years									
anti-p x-section	1 month									
anti-p spectroscopy	2 years									
Drell Yan	1-2 years									
Drell Yan (RF)	2-3 years									
Primakoff	1 year					non-excl	non-excl	non-excl	non-excl	
Prompt photons	1-2 years					non-excl	non-excl	non-excl	non-excl	
K- spectroscopy	1 year									
Vector mesons	1 year									

Closing remarks: A QCD Facility at the SPS after 2021

What we offer:

- Versatile apparatus.
- Unique beam line.
- Extensive experience with solid polarized and liquid unpolarized targets.

What lies ahead of us:

- R&D possibilities
- Optimization of future setups
- Total cost: est. 10-20M CHF

Our message to you:

- Many possibilities for involvements of new groups.
- Join our endeavor!

Summary table

Program	Physics Goals	Beam Energy [GeV]	Beam Intensity [s ⁻¹]	Trigger Rate [kHz]	Beam Type	Target	Earliest start time, duration	Hardware Additions
μp elastic scattering	Precision proton-radius measurement	100	4 · 10 ⁶	100	μ^{\pm}	high-pr. H2	2022 1 year	active TPC SciFi trigger silicon veto
Hard exclusive reactions	GPD E	160	2 · 10 ⁷	10	μ^{\pm}	NH [↑] ₃	2022 2 years	recoil silicon, modified PT magnet
Input for DMS	\overline{p} production cross-section	20-280	5 · 10 ⁵	25	p	LH2, LHe	2022 1 month	LHe target
p̄-induced Spectroscopy	Heavy quark exotics	12, 20	5 · 10 ⁷	25	\overline{p}	LH2	2022 2 years	target spectr.: tracking, calorimetry
Drell-Yan	Pion PDFs	190	7 · 10 ⁷	25	π^{\pm}	C/W	2022 1-2 years	
Drell-Yan (RF)	Kaon PDFs Nucleon TMDs	~100	108	25-50	K^{\pm}, \overline{p}	NH [↑] ₃ , C/W	2026 2-3 years	"active absorber", vertex det.
Primakoff (RF)	Kaon polarizi- bility & pion life time	~100	5 · 10 ⁶	> 10	<i>K</i> ⁻	Ni	non-exclusive 2026 1 year	
Prompt Photons (RF)	Meson gluon PDFs	≥ 100	5 · 10 ⁶	10-100	$K^{\pm} \over \pi^{\pm}$	LH2, Ni	non-exclusive 2026 1-2 years	hodoscope
K-induced Spectroscopy (RF)	High-precision strange-meson spectrum	50-100	5 · 10 ⁶	25	<i>K</i> ⁻	LH2	2026 1 year	recoil TOF forward PID
Vector mesons (RF)	Spin Density Matrix Elements	50-100	5 · 10 ⁶	10-100	K^{\pm},π^{\pm}	from H to Pb	2026 1 year	

Limits on beam intensity

- Radio protection provides upper limit for beam intensities.
- Investigate improved shielding options if the new experiment will not be underground.

• FLUKA simulation of COMPASS 2018 run.

COMPASS (muon) trigger system

OT, MT, LAST = target-pointing triggers LT, IT = energy-loss triggers

COMPASS RICH-1

- Built late 1990s, upgraded 2005-06 and 2015-16.
- Large acceptance Cherenkov imaging counter: ±200 mrad in the vertical plane, ±250 mrad in the horizontal plane
- Photon detection
 - central region (25% of surface, higher rate): MAPMTS coupled to individual fused silica lens telescopes
 - peripheral region: gaseous detectors with CsI photoconverters:
 - MWPCs
 - hybrid MPGD-type detector with two THick GEM (THGEM) layers followed by a Micromegas multiplication stage
- Hadron PID 3 to 60 GeV/c (3 GeV/c = effective threshold for pion ID and pions-kaons can be separated at 90% confidence level at 60 GeV/c)