Kaon polarisability and neutral pion lifetime

Jan Friedrich, TUM slides prepared by Alexey Guskov, Dubna

Low-energy QCD

Since the coupling of strong interactions reaches $a_s \sim 1$ at low energies, perturbative QCD formalism cannot make predictions there. Effective phenomenological models are used. Chiral theory is one of the most successful of them. What is their applicability range?

For kaon:

Theoretical predictions: $_{\chi}PT$ prediction $O(p^4)$: $\alpha_K + \beta_K = 0$ $\alpha_K = \alpha_\pi \times \frac{m_\pi F_\pi^2}{m_K F_K^2} \approx \frac{\alpha_\pi}{5} \approx 0.6 \times 10^{-4} fm^3$ Quark confinement model: $\alpha_K + \beta_K = 1.0 \times 10^{-4} fm^3$ $\alpha_K = 2.3 \times 10^{-4} fm^3$

Experimental results: α_K<200×10⁻⁴ fm³ (1973) - from kaonic atoms spectra

Kaon polarisability

1 year with 0.3X₀ Ni target and 100 GeV kaon beam

$$R_K \approx \frac{\sigma}{\sigma_{p.l.}} = 1 - \frac{3}{2} \cdot \frac{x_{\gamma}^2}{1 - x_{\gamma}} \cdot \frac{m_K^3}{\alpha} \cdot \alpha_K$$

 $\sigma_{\rm stat} = 0.03 \times 10^{-4} \, {\rm fm}^3$

Pion lifetime: present status

Pion lifetime: direct measurement at CERN (1982)

$Y(d) = N\{A + B[1 - \exp(-d/\lambda)]\} \quad \lambda = \lambda(E)$

 $π^0$ spectrum $S_{π0}(E)$ was not measured directly. It was assumed that $S_{π0}(E)=(S_{π+}(E)+S_{π-}(E))/2$. It was the main contribution to systematics


```
R = [Y(250) - Y(45)] / [Y(250) - Y(0)] = 0.3787 \pm 0.0078.
```

Positron rate as a function of foil separation.

Foil separation (µm)	$\frac{\text{Positrons}}{\text{incident proton}} \times 10^{11} \text{ a})$	Number of positrons detected
d _{min}	19.2346 ± 0.0125	2.49×10^{6}
$d_{\min} + 44.80 \pm 0.25$	20.0738 ± 0.0075	7.79×10^{6}
$d_{\min} + 250 \pm 0.50$	20.5852 ± 0.0091	5.32×10^{6}

Pion lifetime: our possibilities with kaon beam

Strong points:

- We can detect both electrons and positrons from γ conversion in the wide momentum range.
 We can directly measure the spectrum of produced π⁰ via reconstruction of γγ decay;
 - 3) To control systematics we have the known π^0 spectrum from beam kaons decay as a reference.

It would be nice to have the momentum of hadron beam as high as possible

Summary

The COMPASS experiment already performed significant contributions to test low-energy QCD models.

- The first measurement of the kaon polarizability and
- precise determination of the neutral pion lifetime
 represent appealing next important steps to take.