

The RF-separated beams for the M2 beamline : update

Eva MONTBARBON, Johannes BERNHARD 20/06/2018

Outline

- What is an RF-separated beam?
- Our strategy
- Optics design
- RF requirements
- 3D integration
- Outlook

RF-separated Beams

Reminder: Panofsky-Schnell-System with two cavities (CERN 68-29)

- Particle species: same momenta but different velocities
- Time-dependent transverse kick by RF cavities in dipole mode
- RF1 kick compensated or amplified by RF2
- Selection of particle species by selection of phase difference $\Delta \Phi = 2\pi (L f / c) (\beta_1^{-1} - \beta_2^{-1})$
- For large momenta: $\beta_1^{-1} \beta_2^{-1} = (m_1^2 m_2^2)/2p^2$

RF-separated Beams - Phases

For K[±] beams: $\Delta \Phi_{\pi p} = 360^{\circ}$ and Φ_{RF_2} such that both π and p go straight
i.e. dumped $\Delta \Phi_{pK} = 94^{\circ}$, i.e. a good fraction of K outside the dump,
depending on phase at 1st cavityFor pbar beams: $\Delta \Phi_{\pi p} = 180^{\circ}$ and then $\Delta \Phi_{pe} = 184^{\circ}$, $\Delta \Phi_{pK} = 133^{\circ}$ with
phase of RF2 such that pions go straight,
Antiprotons get reasonable deflection, electrons are
dumped effectively and K reduced.

Requirements from the existing M2 beam line:

- All elements until Bend1 cannot move because of high radiative doses.
- The bending angles cannot change because of the shape of the tunnel.

Optics design (1)

First work: M2 design with a more flexible software

Starting point: 2 RF cavities to separate particles

Optics design (2)

Optics design (3)

- Focus
- Beam size sufficiently small
- But, no large dispersion

Add a new quadrupole before

Q7 to increase the dispersion

A) Rely on the **user requirements** and the **former studies**:

- Momentum of the wanted particles
- Phase difference (selection of particles)
- Frequency
 - Distance between cavities

B) Discussion with the RF group

RF equipment requirements (1)

For example: f = 5 GHz

Beam spot requirements:

- RF wavelength $\lambda = c/f = 3 10^{10} \text{ cm s}^{-1} / 3.9 10^9 \text{ s}^{-1} = 6 \text{ cm}$
- Coherence length ("phase is sufficiently preserved", $\Delta \phi \approx \pi/10$)

 $L_{coh} \approx \lambda \cdot (\pi/10) / (2\pi) \approx 3 \text{ mm}$

Beam spot has to remain within **±1 mm** throughout the cavity.

Requirements on divergence:

- p_t-kick 15 MeV/c (see CKM system), i.e. 0.15 mrad at 100 GeV
- Beam divergence must be smaller than this in the bending plane
- Non-bending plane: sufficiently small divergence, e.g. **± 0.5 mrad**

RF system limits transverse emittance.

RF equipment requirements (2)

Requirements on the momentum dispersion in the RF cavities: $\Delta \Phi_{\text{final}} = \Delta \Phi_{\text{initial}} (1 - 2 \Delta p/p)$ It limits $\Delta p/p$ to about 1%.

If the phase difference $\Delta \phi_{\text{final}}$ is too high, then the momentum dispersion

Crab cavities example

Currently available technology at CERN: Crab Cavities for LIU SPS upgrade

Assume availability of L=800m:

RF frequency	Limit p(K)	Limit p(pbar)
400 MHz	20 GeV/c	зо GeV/c
1.3 GHz	37 GeV/c	55 GeV/c
5 GHz	72 GeV/c	102 GeV/c

Conclusion: crab cavity design so far not compatible with user requirements, new developments necessary

3D integration of the tunnel

• Add 3D drawing of the future experiment?

Outlook

- There is a strong correlation between RF requirements and optics design.
- In order to address the requirements, some **optimisations** in the optics design have to be done: add quadrupoles, move the location of collimators, maybe add an achromat for better momentum selection.
- These changes have to be taken into account in the **cost** estimate and scheduling as well as the R&D of the RF system.
- The next round of **discussions with the RF** group is expected soon.
- The **3D integration** of the EHN₂ tunnel will be done during the next month.
- A dedicated study for the required **beam instrumentation** will start end of this year.

Thanks!