Proton Radius Measurement $\mu - p$ elastic scattering

Sebastian Uhl

Physik Department E18 Technische Universität München

Lol Mini-Workshop 20th June, 2018

proton radius "puzzle"

- discrepancy between scattering and spectroscopy data
 - measuring the same thing?
 - systematic effects for electron scattering, e.g. radiative corrections?
 - new physics? lepton non-universiality?
 - . . .

scattering experiments

$$\frac{d\sigma}{dQ^2} = \frac{\pi \alpha^2}{Q^4 m_p^2 \vec{p_e}^2} \left[\left(G_E^2 + \tau G_M^2 \right) \frac{4E_e^2 m_p^2 - Q^2 (s - m_\mu^2)}{1 + \tau} - G_M^2 \frac{2m_e^2 Q^2 - Q^4}{2} \right]$$

with $\tau = Q^2 / (4m_p^2)$

mean squared charge-radius

$$\langle r_E^2 \rangle = \left. -6\hbar^2 \frac{dG_E(Q^2)}{dQ^2} \right|_{Q^2 \to 0}$$

opportunity for new generation experiment at M2 beam line

- scatter muon beam off proton target
- measure cross-section dependence on Q^2
- obtain combination of electric and magnetic form factor $G_E^2 + au G_M^2$
 - form factors cannot be separated due to high beam energy
- compared to e⁻ beam: smaller radiative corrections
- ullet compared to μ beam at low energies: much smaller Coulomb corrections

requirements for measurement

assuming one year of data taking

- goal: uncertainty on $\sqrt{\langle r_E^2 \rangle} \approx 0.01 \, {\rm fm}$
- systematics: $Q^2 \gtrsim 1 \cdot 10^{-3} \; ({\rm GeV}/c)^2$
- uncertainty on G_M : $Q^2 \lessapprox 0.2 \; ({\rm GeV}/c)^2$

proposed set-up

- hydrogen TPC acting as active target
- silicon telescopes up- and downstream of target

TPC as active target

- high-pressure hydrogen target
- measurement of recoil proton
- wide range of recoil energies: 0.5 MeV to 100 MeV
- required energy resolution: 60 keV

- high luminosity requires long target
 - long drift time might be an issue
- not all protons might be stopped inside TPC

silicon tracking detectors

- measurement of muon scattering angles
- 300 $\mu {\rm rad}$ at $Q^2 \approx 10^{-3}~({\rm GeV}/c)^2$
- $\bullet\,$ required resolution $\sigma\lessapprox100\,\mu{\rm rad}$
- excellent spatial resolution required
- high intensity
 - fast detectors
- strip detectors
 - required performance has been shown for current silicon detectors

proposed set-up

- trigger on recoil proton signal
 - drift time in TPC $\mathcal{O}(100\,\mu s)$
 - trigger-less readout of all detectors
 - · online event reconstruction to correlate proton and muon signals

proposed set-up

- trigger on recoil proton signal
 - drift time in TPC $\mathcal{O}(100\,\mu s)$
 - trigger-less readout of all detectors
 - online event reconstruction to correlate proton and muon signals
- trigger on small kink in muon track

Measurement in a COMPASS-like set-up

11 1 11 11 11 1

- TPC and silicon telescopes in the nominal COMPASS target region
- trigger: two scenarios under investigation
 - SciFi with high segmentation for a "kink trigger"
 - high-rate triggerless readout (requires new readout scheme for the silicon detectors)
- spectrometer in usual (open) configuration for scattered muon momentum measurement
- e.m. calorimetry for control of radiative effects and measurement of muon-electron scattering (similar / competing process)

Competitors and Time Scales

- on-going efforts (at least)
 - at MAMI $(e^- p)$
 - PSI $(\mu p \text{ at low energies})$
 - spectroscopy of further muonic atoms
- the potential to contribute to the field is there now
 - result might not be relevant anymore if measurement shifted beyond LS3

New Collaborators

- interest of groups to join for development of TPC
- decision and agreements must be taken now without further delay for realizing the measurement in 2022