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(@) Type la supernova

* The spectrum has no hydrogen or helium
lines, but does have a strong absorption line
of ionized silicon (Si
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+ Produced by runaway carbon fusion in a white
dwarfin a close binary system (the ionized
silicon is a by-product of carbon fusion). 0
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(b) Type Ib supernova

+ The spectrum has no hydrogen lines, but does
have a strong absorption line of un-ionized
helium (He ).

+ Produced by core collapse in a massive star L L L f
that lost the hydrogen from its outer layers. o
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* The spectrum has no hydrogen lines or
helium lines.

+ Produced by core collapse in a massive
star that lost the hydrogen and the helium 0
from its outer layers.

intensity

SN 1987M (Type Ic)
I I I )

Relative

O SN 1992H (Type Il)

intensit
=

(d) Type Il supernova
+ The sp has prominent hydrogen lines
such as Hy.

* Produced by core collapse in a
whose outer layers were largely intact.
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@ Star has an onion like structure.

@ lron is the final product of the
different burning processes.

@ As the mass of the iron core
grows it becomes unstable and
collapses when it reaches
around 1.4 M.
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Gravitational instability
of stellar core
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Shock revival Explosion

Proto-neutron star Proto-neutron star

H.-Th. Janka, et al, PTEP 01A309 (2012)

driven “wind"|

Explosion and
nucleosynthesis
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@ The core is made of heavy nuclei (iron-mass range A = 45-65) and
electrons. Composition given by Nuclear Statistical Equilibrium.
There are Y, electrons per nucleon.

@ The mass of the core M, is determined by the nucleons
(M, = nmy).

@ There is no nuclear energy generation which adds to the pressure.
Thus, the pressure is mainly due to the degenerate electrons, with a
small correction from the electrostatic interaction between
electrons and nuclei.

o Aslongas M, < M., = 1.44(2Y,)* M, (plus slight corrections for
finite temperature), the core can be stabilized by the degeneracy
pressure of the electrons.
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There are two processes that make the situation unstable:

@ Silicon burning is continuing in a shell around the iron core. This
adds mass to the iron core increasing M..

@ Electrons can be captured by protons (free or in nuclei):
e +AZ,N)->AZ-1,N+ 1) +v,..

This reduces the pressure and keep the core cold, as the neutrinos
leave. The net effect is a reduction of Y, and consequently of the
Chandrasekhar mass (M)
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The dominant contribution to the pressure comes from the electrons.
They are degenerate and relativistic:

P = nepe = negr
Ue is the chemical potential, fermi energy, of the electrons:

Y
e ~ 11107 )3 Mev, 22 = g,

u

Forp7 = 1 (p = 107 g cm™3) the chemical potential is 1 MeV, reaching
the nuclear energy scale. At this point is energetically favorable to
capture electrons by nuclei.
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o T =0.1-0.8 MeV,
p=10"-10""g cm™.
Composition of iron group nuclei.

R [km] Initial Phase of Collapse
t~0)

Re,~ 3000
@ Important processes:

o electron capture:

e +(N,Z) = (N+1,Z=1)+v,
o [~ decay:

(N,Z) > (N=-1,Z+1)+e +7,

@ Dominated by allowed transitions
- MC\M(’) Md (Fermi and Gamow-Teller)

Si—burnil hell .
mouming she @ Evolution decreases number of

electrons (Y,) and Chandrasekar
mass (Mg, = 1.4(2Y,)* M)
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o f(Q) phase space function.
@ B(F) Fermi matrix element.
@ B(GT) Gamow-Teller matrix element.

In2
= ~=f(Q)B(F) + BGT)],
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E Laboratory

Low-lying
Strength

(Z-1.A)

Capture of K-shell electrons to
tail of GT strength distribution.
Parent nucleus in the ground
state

Supernova

Gamow-Teller
Resonance

electron
distribution

Z-1.A)

A

Capture of electrons from the high energy tail of
the FD distribution. Capture to states with large
GT matrix elements (GT resonance). Thermal
ensemble of initial states.
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A.L. Coleetal, PRC 86,015809 (2012)
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@ Rates for iron-group nuclei are under control

@ With increasing density, less sophisticated models like QRPA may
suffice.
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R [km]

Fe

~ 100 |-+ __

Neutrino Trapping Important processes:

(t~0.1s, Q;~10% g/em?) @ Neutrino transport

(Boltzmann equation):
v+ A 2 v+ A (trapping)
v+e 2 v+ e (thermalization)

cross sections ~ E2

@ electron capture on protons:
e +pa2n+v,

‘\ M(r) [Md]

@ electron capture on nuclei:
e +AZ,N) 2 AZ-1,N+1)+v,

heavy nuclei
Si-burning shell
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Independent particle treatment
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The structure of %Se (Z = 34, N = 42) has been the subject of several studies
due to its important for the double beta decay of 7°Ge

Measured occupation numbers in transfer reactions

Schiffer et al, PRL 100, 112501 (2008)

Kay et al, PRC 79, 021301(R) (2009)
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Occupation of gg/, orbital is larger than naive IPM estimates.
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Gamow-Teller strength measured in charge-exchange reactions:
(d,*He): Grewe et al,, PRC 78, 044301 (2008)
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@ Slow convergence of cross-shell correlations.

@ Thermofield dynamics or finite temperature QRPA models, which consider only
2p-2h (T=2) correlations, do not suffice.

@ What is the role of the N = 40 (Z < 26) island of inversion on electron capture
rates?

Zhi, Langanke, GMP, Nowacki, Sieja, NPA 859, 172 (2011)
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Raduta, et al, PRC 93, 025803 (2016) Sullivan et al, Ap) 816, 44 (2015).
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R [km] Bounce and Shock Formation
R (t~0.11s, QcF2Q0)
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Collapse continues until central density
becomes around twice nuclear matter
density.

Sudden increase in nuclear pressure stops
the collapse and a shock wave is launched
at the sonic point. The energy of the
shock depends on the Equation of State.

The passage of the shock dissociates
nuclei into free nucleons which costs

~ 8 MeV/nucleon. Additional energy is
lost by neutrino emission produced by
electron capture (v, burst).

Shock stalls at a distance of several
100 km.
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@ Burst occurs when shock wave reaches regions with densities low enough

to be transparent to neutrinos. It is produced by electron captures on free
protons from the dissociation.

@ Burst structure does not depend on the progenitor star.

@ Future observation by a supernova neutrino detector may test our basic
understanding of supernova explosions. Standard neutrino candles.
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Y (Electron Fraction)
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Shock Stagnation and v Heating,
Explosion (t~ 0.2s)

Main processes:

Ve+nap+e
Vve+pa2n+et

Concept of gain radius due to Bethe.
Corresponds to the region where cooling
(electron positron capture) and heating
(neutrino antineutrino absorption) are equal.

kT \°
ling: 143 —— ] MeV,
Cooling: 143 (2 MeV) eV/s

L,, 526 7e.52€2
Heating:llO( ey, 4 "Y,,) MeV/s
r7 r7

Gravitational energy of a nucleon at 100 km: 14 MeV
Energy transfer induces convection and requires
multidimensional simulations.



SWASI : Shallow Water Analogue of a Shock Instability

Kitchen sink hydraulic jump

acoustic waves surface wave
shock wave <«— ¢ hydraulic jump
pressure depth

Jérdme Guilet — Ringberg 30/03/2012 Foglizzo et al, PRL 108 051103 (2012) 12118



Core-collapse supernova

0000000000000 000000000e0

@ Multidymensional (3D) simulations of core-collapse supernova are
very challenging.

@ There may be several mechanism operating

@ Important role of microphysics (neutrino reactions consistent with
the equation of state) and hydrodynamical instabilities.

@ Current exploding 3D models suggest very low explosion energies.
A factor ten smaller than 10°! ergs.

@ Explosion very sensitive to small variations, e.g. neutrino
interactions.

@ It may suggest that supernova explosions are rare phenomena.

o If explosions are a common outcome of massive star evolution we
will need to develop a robust explosion mechanism.
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Winteller et al, Ap) 750, L22 (2012)

entropy
12

Ejected Mass [107° M)

@ Rotation and magnetic fields may play
an important role in some supernova
explosions (relation GRBs?).

Ejected Mass [Mg)]

@ Origin highly magnetized neutron
stars (magnetars) 10-7 s L e T
60 80 100 120 140 160 180 200 220 240

Mass Number

@ Site r-process nucleosynthesis.
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