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Nuclear astrophysics
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Strong connexions with:

Stellar hydrodymanics
Astronomy, geocosmochemistry
Galactic chemical evolution



Log (relative abundance)

Abundance curve of the elements in solar sytem

Nucleosynthesis
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Decreasing trend / reduced fusion cross section
Fe peak -> stronger binding energy per nucleon
Flat component afterwards -> neutron captures

Double peaks -> (at least) 2 classes of processes
connected to closed shells

Decomposition of the 2 processes (r,s)

Abundance in SS may come from many successive
enrichments of different elemental patterns

Search for ‘young’ stars:
-> |ess mixing
-> Hopefully disentangle between s and r processes

Do young stars still exist ?

Where / how to find them ? Which composition ?



Neutron capture processes: classical picture

Solar abundance
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Elemental breakdown in r and s components
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g ce of the Universe 13 800 x10° yr

lifetime of the stars

luminosity ~oc M - from binary stars
guantity of fuel o< M o,
=» More a star is massive more its lifetime is short... > . -
lifetime >
0.8 Mg 15000 x10°yr "M <8 M, 5§57
1 M@ 10 000 x10° yr core becomes degenerate after
6 M 113 x106 yr He burning phase = white dwarfs -
@ = ]
10 My, 31x106yr M>8Mg | 1
. succession of burnings (H, He, C, Ne, O, SI:L L
30 M@ 2 x10°yr an iron core is formed. 0 10 20 30
60 M@ 0.4 x10° yr The core collapse = SNI Mass

tys (Y7S) = 1010 (M/Mg)28

¢ If in the first Gyr, stars were formed with M < 0.9 M, they are still shining today
(main sequence stars or giants)

¢ In this first Gyr only massive stars ‘M > 5 ‘M, had time to enrich the matter



How to measure elemental abundances In stars

100%
L
@
£8
g g 50% -
£0
&
<
0% r
0.1 nm 100nm 1 m 10um 100pm 1mm m 10cm 10m 100m 1
Wavelength
i Most of the
Visible Light Infrared s Long-wavelength
pectrum Radio Waves observable i
Gamma Rays, X-Rays and Ultraviolet °b“';“::‘° absorbed by oen Eam:. b4 bRI'd': :Vaves
Light blocked by the upper atmosphere hol:h“ arth, — atmospheric DGHBC.
(best observed from space). OO gasses (best
atmospheric observed
distortion. from space).
/ - ‘

KUEYEN/

UVES:
5000 — 6000 A

solar spectrum

hw{!‘r‘-wn,rnfrvwvv'—mrrwr’ i r-v"""r"'r"l'r"*rr r V(n"\'l""" ST 1‘4

;n

E’W‘vﬁwwm"rnr'm’m -rrwmm,\.r*'v*\mrrrmi

MO S0 b0 Sisa ame

E’TT()"F“YYF‘M"Y’Y“’WP’"WW V r‘*wr-r*ﬂ"wi

S
3 E’T"“T"""’"\"""Y‘Y‘H,W‘Y' 1*Tr'v'r*r("7—'"""‘rw‘r~n r—'ﬂ-r'r*r'w'«wv‘rrg
BT
i v WT*'\*“"‘\"—T“P”“"‘\T—"W AL “'—'r“—wvri
2 o u.u e
E Eﬁ *T"‘V**":—'—'W“ﬂﬁ”‘“rﬁ"“ﬂ"ﬂ'ﬂ'hﬁ_v—l"'”r"\mwvﬁdi
— e s o
| e e |
o L we -y Lo
brd L . . .4
L L) Lo L 5300
s T v L A Y
* \;N > ;‘J e 3 G0
!ﬂ"ﬁwr_"llrv-}*‘ﬂv#—er e e e x-vY-i
e - ] : - T




Absorption Spectra

Absorption spectra occur when electromagnetic radiation from a background
star passes through a relatively cold gas. Long lived stars (“fossils”) mostly

belong to this case, and have Teff up to ~6500K.

Radiation at specific wavelengths from the star interacts with (is absorbed by)
atoms in the cold gas, causing their electrons to gain energy and enter excited

states.

These electrons quickly de-excite and emit photons at the same wavelengths.
However, the direction of the emitted light is random and this leads to the

appearance of dark lines (or missing light) in the resulting spectra,
corresponding to the wavelengths that were absorbed by the gas. These lines

are known as absorption lines.
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What part of the star do we “see”?

Fhotosphere

convection zone

Chromosphere
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Stellar light emitted at the solar photosphere radiates through the stellar atmosphere
where absorption lines are formed. Hence, observation probe the composition at the
surface of the star

In low-mass stars (about 1 solar mass) , the convective zone does not reach the very
center of the star where nuclear reaction take place -> the surface contain the initial
composition at the birth of the star or that of the initial gas in which it formed

In giant stars, mixing episodes can occur when the star leaves the main sequence. It
implies that some internally products isotopes can be dredged up to the surface (*3C,
14N), while some more fragile ones can be depleted at the surface (Li).
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s-process n-captures ongoing in stars

1952 Merrill find Tc linesin Sstars  (AGB stars)
Tc is a short period radioactive element not observed

on earth
In the meteorites
in the Sun
e iueauy F
4854 |ines of Te 4297 4267 4238

1955 Cameron shows that neutron captures on iron seeds are able
to explain the presence of Tc in S stars

It was indicated previously that the neutron-capture processes should quickly bring
T'¢™ into local abundance equilibrium with its neighbors along the main neutron-capture
path. The half-life of 7¢* of 210,000 years may be comparable to the time required for

-> s process nucleosynthesis
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Enrichment in elements over time ?
> Galactic chemical evolution

Formation of the Galaxy
(primordial material)

stars are formed, they explode,

and enrich the matter with their New stars are formed,
products (stellar winds, explode, little by little the
supernovae) matter becomes richer in

A lot of Fe, possibly heavy elements as well elements formed inside the

stars...

Little by little, the Galactic matter is enriched In
elements formed inside the stars

The Fe content is a good tracer of the enrichment of stars from earlier exploded ones



EMP stars

Extremely Metal Poor stars

The chemical composition of the atmosphere of the old stars,
born at the very beginning of the Galaxy, is the witness of the
chemical composition of the gas in the early matter.

How to find them ?

Since at their birth the matter was enriched by a very small
number of supernovae, they are very metal-poor.

Metallicity is taken as a criterion of primevality

Definitions: [Fe/H] = log (Fe/H), - log (Fe/H),
( [X/H] = log (X/H), - log (X/H), ...)
ex: [Fe/H]=-2 =100 times less iron than the Sun




Observations in the Galaxy

Carbon-Enhanced Metal-Poor stars

Metallicity Distribution Function

Metallicity distribution show a sharp decline and then a drop at [Fe/H]<-4

Most of the stars with [Fe/H]<-4 are C rich
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Heavy n-captures in metal-poor stars
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Heavy neutron capture elements in metal-poor stars

Adding more observations leads to a large scatter
of [Eu/Fe] ratio: r rich and r poor.
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A universal r-process?
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Average abundance offsets with respect to Arlandini et al. (1999) “stellar model” —
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CS 22892-052: Sneden et al. (2003)
HD 115444: Westin et al. (2000)
BD+17°324817: Cowan et al. (2002)
CS 31082-001: Hill et al. (2002)

HD 22117Q: Ivans et al. (2006)

HE 1523-0901: Frebel et al. (2007)
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Very robust pattern

Top & bottom galactic halo
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Outside the galaxy
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Less robust pattern
Another process ?

Correlations between them ?
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Correlations betwen light and heavy elements ?
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r-process in stars: where ?

One of the biggest remaining question ...

Matter ejection and r-process
nucleosynthesis from dynamic ejecta
and eutron driven wind

| :
| ultra-relativistic
[ outflow, I" > 100

| interaction region
/ jet-wind, ' ~ few (7)

neutrino-driven winds

(v)=0.l¢

=» dynamic ejecta
(v)=0.1c

S. Rosswog 2012

N. Nishimura 2017

Expected to produce and eject a lot of Only highly magnetized CCSNe may
r elements. They are however have suitable conditions to develop
rather rare events. r process nucleosynthesis

Deduce the stellar site(s) of the r-process from observations of poorly-mixed stars



[Eu/Fe]

R process in NS-NS: timescale problem
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To make binary star mergers (BNS, NS-NS) as a contributor to the early galactic
evolution, one needs to assume their very fast occurrence (much faster than
commonly thought) and add some CCSNe contribution on top as BNS cannot produce
modest enhancements in Eu.



Clues from outside the galaxy

Dark energy Survey / Fermilab, ret Il dwarf galaxy : Ji, Frebel et al.

Relative
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Clues from outside the galaxy
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Ji et al. Nature 2016

Given the amplitude and constancy in r-process enrichment, a single event is
the most likely. This implies a single large-mass r process, likely to originate from
NS-NS binary (CCSNe gives much smaller mass rate).
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Carbon-enhanced metal-poor stars: an indermediate i-process

One of the 20 CEMP stars | pg25-44 I-process progenitors
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Several CEMP stars of the galactic halo dispaly enrichments associated with both s and r process
(e.g. Ba and Eu, resp). This is puzzling as s and r process differ by 10 orders of magnitude in
neutron densities and occur in very different sites. (e.g. Roederer et al. ApJ. 2016, Denissenkov
et al. Ap.J. L 2017 Mishenina et al. MNRAS 2015).

It is been proposed that an intermediate process (10> cm3), found in explosive He shells, could
account for these observations. (e.g. Hampel 2017, Pignatari 2016).

Neutron capture rates on unstable nuclei relatively close to stability are needed.



Information from stardusts collected on earth

Ejected material from a precusor star
Travel throughout the galaxy, embedded in host material
Incorporated into the solar system

Collected on earth
Expected to keep fingerprints of of their formation site

CaAl-rich inclusions:

High T condensates

First solids formed into solar system
Moderate isotopic anomalies/solar
Embedded in a host solid rock

Si-C grains presolar grains:

Formed prior to the solar nebular

Huge isotopic anomalies/solar

Formed in supernovae (extinct 2°Al, 44Ti)

SiC- type X

1535 SKU  X7.,508 - 1ve WD 8

Fragment Allende meteorite




48Ca overabundance in EK 1-4-1 inclusion of meteorite

| heard a big
‘BOUM’ |

©1996 DB
Allende meteorite: 48Ca/%Ca ~ 250 (SOlar :53)
fell in 1969 5
weight 2t . ALLENDE INCLUSION }
chondraneous carbide 2 EK-1-4-1

several CaAl-rich inclusions

EK1-4-1 inclusion :

spherical shape, white colour
diametre 1cm

Fusion temperature 1500-1900K
Correlated over-abundances 4Ca-"9Ti->*Cr->8Fe-%4Ni

Underabundance of °6Zn, r process Nd, Sm (A~150)
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Categories of Si-C grains

= Mainstream ~93%
o A+Bgrains4-5% =
a X grains ~1% B

Y grains ~1%
Z grains ~1%
MNova grains
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Isotopic compositions of mainstream grains differ
significantly from solar ones (depleted in p and r)
-> their origin is clearly extra solar. Their isotopic

composition is typical of an s process.

X grains likely come from supernovae explosions
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End of Lecture I.

Take away messages:

Elements heavier than Fe are produced by neutron capture processes
There exists two major categories of processes with low and high densities
s-process nucleosynthesis is observed and ongoing in AGB stars

r-process site(s) is so far unknown: supernova, neutron star mergers...
Observation in EMP display similar pattern above Z=56 -> robust r

Below Z=56, many more fluctutaions -> weak r process

Other signature of weak r process exist in CEMP-i stars and in meteorites



