Electromagnetic Theory

G. Franchetti, GSI CERN Accelerator – School Budapest, 2-14 / 10 / 2016

2 **Mathematics of EM** 1 Fields are 3 dimensional vectors dependent of their spatial position (and depending on time) クク 2 -34 Т y L V 1 r лı G. Franchetti

Products

The gradient operator

$$\vec{\nabla} = (\partial_x, \partial_y, \partial_z)$$

Is an operator that transform space dependent scalar in vector

Example: given
$$\,f(x,y,z)\,$$

$$\vec{\nabla}f(x,y,z) = (\partial_x f, \partial_y f, \partial_z f)$$

Divergence / Curl of a vector field

Divergence of vector field

$$\vec{\nabla} \cdot \vec{A}(x, y, z) = \\ \partial_x A_x + \partial_y A_y + \partial_z A_z$$

Curl of vector field

$$\vec{\nabla} \times \vec{A}(x, y, z) = (\partial_y A_z - \partial_z A_y)\hat{x} + (\partial_z A_x - \partial_x A_z)\hat{y} + (\partial_x A_y - \partial_y A_x)\hat{z}$$

 $\vec{A}(x, y, z)$

 $\vec{A}(x, y, z)$

Relations

$\vec{A} \times (\vec{B} \times \vec{C}) = -(\vec{A} \cdot \vec{B})\vec{C} + \vec{B}(\vec{A} \cdot \vec{C})$

$\vec{\nabla} \times (\vec{\nabla} \times \vec{C}) = -(\vec{\nabla} \cdot \vec{\nabla})\vec{C} + \vec{\nabla}(\vec{\nabla} \cdot \vec{C})$ $\vec{\nabla} \times \vec{\nabla}f = 0 \qquad \qquad \vec{\nabla} \times \vec{\nabla} \times \vec{F} = 0$

Flux Concept

Example with water

Volume per second

or

Flux through a surface

 $\Phi(\vec{E}) = \int_{S} \vec{E} \cdot d\vec{A}$

Flux through a closed surface: Gauss theorem

Any volume can be decomposed in small cubes

$$\int_{S} \vec{E} \cdot d\vec{A} = \int_{V} \nabla \cdot \vec{E} \quad dV$$

Flux through a closed surface

Stokes theorem

for an arbitrary surface

How it works

Electric Charges and Forces

Coulomb law

Units

System SI

$$\vec{F} = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2} \hat{r}$$

$$ec{F}$$
 Newton $\epsilon_0=8.8541 imes10^{-12}$
 q_1 Coulomb ${
m C^2~N^{-1}~m^{-2}}$

permettivity of free space

By knowing the electric field the force on a charge is completely known

7

7

 \mathcal{A}

24 2 Ľ 1 2 $\overline{7}$ ビ $\overline{\mathcal{A}}$ 1 7 ₽ ¥ Л V 7 V 4 $\overline{7}$ 7 シ 1 J 7 Y 4 ~ ŧ Y \mathbf{v} -> 3/10/16 G. Franchetti Ľ

Work done along a path Ś work done by the charge ₹ $= q \ \left| \vec{E} \cdot d\vec{l} \right|^{\epsilon}$ V 1 ŧ ranchetti

Electric potential

$$V(P) = -\int_{\infty}^{P} \vec{E} \cdot d\vec{l}$$

For conservative field V(P) does not depend on the path !

Central forces are conservative

UNITS: Joule / Coulomb = Volt

Work done along a path B J, work done by the charge L $W = q(V_A - V_B)$ V 1 t ranchetti

Electric Field $\leftarrow \rightarrow$ Electric Potential

$$E_x = -\frac{\partial}{\partial x}V(x, y, z)$$

$$E_y = -\frac{\partial}{\partial y}V(x, y, z)$$

In vectorial notation

$$\vec{E} = -\vec{\nabla}V$$

$$E_z = -\frac{\partial}{\partial z} V(x, y, z)$$

Electric potential by one charge

Take one particle located at the origin, then

$$V(\vec{r}) = -\int_{\infty}^{\vec{r}} \frac{1}{4\pi\epsilon_0} \frac{q}{(r_1 - r_0)^3} (\vec{r}_1 - \vec{r}_0) \cdot d\vec{l}$$
$$V(\vec{r}) = \frac{1}{4\pi\epsilon_0} \frac{q}{r}$$

Electric Potential of an arbitrary distribution

Electric potential of a continuous distribution

Split the continuous distribution in a grid

Energy of a charge distribution

it is the work necessary to bring the charge distribution from infinity

$$U = \sum_{j} q_{j} \sum_{i=1,j} V_{i}(\vec{r}_{j})$$
More simply
$$U = \sum_{j} q_{j} \sum_{i=1,j} \frac{1}{4\pi\epsilon_{0}} \frac{q_{i}}{|\vec{r}_{j} - \vec{r}_{i}|}$$
More simply
$$U = \frac{1}{2} \sum_{i \neq j} \frac{1}{4\pi\epsilon_{0}} \frac{q_{i}q_{j}}{|\vec{r}_{j} - \vec{r}_{i}|}$$

In integral form

$$U = \frac{1}{2} \sum_{i} q_i V(\vec{r_i}) = \frac{1}{2} \int \rho V dx^3$$

Using $\vec{E} = -\vec{\nabla}V$ and the "divergence theorem" it can be proved that

$$U = \int \epsilon_0 \frac{E^2}{2} dx^3 \quad \blacksquare$$

$$\epsilon_0 \frac{E^2}{2}$$

is the density of energy of the electric field

Flux of the electric field

Flux of electric field through a surface

 $\Phi(\vec{E}) = \int_{S} \vec{E} \cdot d\vec{A}$

Application to Coulomb law

On a sphere

$$\int_{S} \vec{E} \cdot d\vec{A} = \frac{q}{\epsilon_0}$$

This result is general and applies to any closed surface

(how?)

On an arbitrary closed curve

First Maxwell Law

integral form

$$\int_{S} \vec{E} \cdot d\vec{A} = \frac{Q}{\epsilon_0}$$

for a infinitesimal small volume

$$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\epsilon_0}$$

differential form

(try to derive it. Hint: used Gauss theorem)

Physical meaning

If there is a charge in one place, the electric flux is different than zero

One charge create an electric flux.

$$\Phi(\vec{E}) = \frac{q}{\epsilon_0}$$
Poisson and Laplace Equations

Magnetic Field

There exist not a magnetic charge! (Find a magnetic monopole and you get the Nobel Prize)

Ampere's experiment

Ampere's Law

Units

From
$$ec{F}=dlec{I_2} imesec{B}$$
 $rac{N}{Am}=T$ [Tesla]

From
$$ec{B}=rac{\mu_0}{2\pi}rac{I}{r}\hat{v}$$
 follows

$$\mu_0 = 4\pi \times 10^{-7} \,\mathrm{N} \,\mathrm{A}^{-2}$$

To have 1T at 10 cm with one cable

Biot-Savart Law

Lorentz force

 $\vec{F} = q\vec{v} \times \vec{B}$

A charge not in motion does not experience a force !

No acceleration using magnetic field !

Flux of magnetic field

There exist not a magnetic charge ! No matter what you do..

The magnetic flux is always zero!

$$\int_{S} \vec{B} \cdot d\vec{A} = 0$$

Second Maxwell Law

Integral form

 $\int_{S} \vec{B} \cdot d\vec{A} = 0$

Differential from

 $\nabla \cdot \vec{B} = 0$

Changing the magnetic Flux...

$$\vec{E} = \vec{v} \times \vec{B}$$

Magnetic flux $\Phi(\vec{B}) = hLB$ $E = \frac{1}{h} \frac{d\Phi(\vec{B})}{dt}$

Following the path

$$\int_{\Gamma} \vec{E} \cdot d\vec{l} = -\frac{d\Phi(\vec{B})}{dt}$$

Faraday's Law

integral form

(Really not obvious !!)

for an arbitrary surface

Faraday's Law in differential form

$$\int_{S} (\vec{\nabla} \times \vec{E}) \cdot d\vec{A} = -\frac{d}{dt} \int_{S} \vec{B} \cdot d\vec{A}$$

Summary Faraday's Law

Integral form

$$\oint_{\Gamma} \vec{E} \cdot d\vec{l} = -\frac{d\Phi(\vec{B})}{dt}$$

differential form

$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

Important consequence

A current creates magnetic field

magnetic field create magnetic flux

 $\Phi(B) = LI$

L = inductance [Henry]

Changing the magnetic flux creates an induced emf

 $\oint_{\Gamma} \vec{E} \cdot d\vec{l} = -\frac{d\Phi(\vec{B})}{dt}$

$$\epsilon_{emf} = -\frac{d\Phi(B)}{dt} \qquad dU = \epsilon_{emf}Idt = -\frac{d\Phi(B)}{dt}Idt$$

energy necessary to create the magnetic field
$$U = \frac{1}{2}LI^2$$

Field inside the solenoid $B=\mu_0 NI$ Magnetic flux $\Phi(B)=\pi r^2 BNh$

$$U = \frac{1}{2}LI^2 = Volume \frac{B^2}{2\mu_0}$$

Therefore

Energy density of the magnetic field ${B^2\over 2\mu_0}$

Ampere's Law

Displacement Current

Displacement Current

Displacement Current

Stationary current I \rightarrow electric field changes with time

$$I = \epsilon_0 \frac{\partial}{\partial t} \int_S \vec{E} \cdot d\vec{A}$$

This displacement current has to be added in the Ampere law

Final form of the Ampere law

integral form

$$\oint_{\Gamma} \vec{B} \cdot d\vec{l} = \mu_0 \left(I + \epsilon_0 \frac{\partial}{\partial t} \int_S \vec{E} \cdot d\vec{A} \right)$$

differential form

$$\vec{\nabla} \times \vec{B} = \mu_0 \left(\vec{j} + \epsilon_0 \frac{\partial}{\partial t} \vec{E} \right)$$

Maxwell Equations in vacuum

Integral form

Differential form

$$\int_{S} \vec{E} \cdot d\vec{A} = \frac{Q}{\epsilon_{0}} \qquad \nabla \cdot \vec{E} = \frac{\rho}{\epsilon_{0}}$$
$$\int_{S} \vec{B} \cdot d\vec{A} = 0 \qquad \nabla \cdot \vec{B} = 0$$
$$\oint_{\Gamma} \vec{E} \cdot d\vec{l} = -\frac{d\Phi(\vec{B})}{dt} \qquad \vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$
$$\oint_{\Gamma} \vec{B} \cdot d\vec{l} = \mu_{0} \left(I + \epsilon_{0} \frac{\partial}{\partial t} \int_{S} \vec{E} \cdot d\vec{A} \right) \qquad \vec{\nabla} \times \vec{B} = \mu_{0} \left(\vec{j} + \epsilon_{0} \frac{\partial}{\partial t} \vec{E} \right)$$

Magnetic potential ?

Can we find a "potential" such that

$$ec{B}=-ec{
abla}V$$
 ?

$$\vec{\nabla} \cdot \vec{B} = -\nabla^2 V$$

Maxwell equation $\vec{\nabla} \cdot \vec{B} = 0$

But $\vec{\nabla} \times \vec{B} = \vec{\nabla} \times \vec{\nabla} V = 0$ it means that we cannot include currents !!

Example: 2D multipoles

For 2D static magnetic field in vacuum (only B_x , B_y)

n

$$\vec{B} = -\vec{\nabla}V$$

$$\vec{B} = \vec{\nabla} \times \vec{A}$$

$$\vec{B} = (-\partial_x V, -\partial_y V, 0)$$

$$\vec{B} = (\partial_y A_z, -\partial_x A_z, 0)$$

$$\vec{B} = (\partial_y A_z, -\partial_x A_z, 0)$$

$$-\partial_x V = \partial_y A_z$$

$$\partial_y V = \partial_x A_z$$

$$\partial_y V = \partial_x A_z$$

These are the Cauchy-Reimann
That makes the function

$$\vec{A} \pm iV$$

$$A + iV$$

analytic

Vector Potential

In general we require

$$\vec{B} = \vec{\nabla} \times \vec{A}$$
$$\vec{\nabla} \cdot \vec{A} = 0$$

(this choice is always possible)

Automatically

ically
$$\vec{\nabla} \cdot \vec{B} = 0$$

 $\vec{\nabla} \times \vec{B} = \mu_0 \vec{J} \implies \nabla^2 \vec{A} = -\mu_0 \vec{J}$

Solution

Electric potential

Magnetic potential

Effect of matter

Electric field

Magnetic field

Conductors Dielectric

Diamagnetism Paramagnetism Ferrimagnetism Maxwell equation in vacuum are always valid, even when we consider the effect of matter

Microscopic field

That is the field is "local" between atoms and moving charges

Averaged field

this is a field averaged over a volume that contain many atoms or molecules

Conductors

bounded to be inside the conductor

Conductors and electric field \vec{E}_{ext} bounded to be inside the conductor $\vec{E} = 0$ on the surface the electric field is

surface distribution of electrons

always perpendicular

Applying Gauss theorem

$$\sigma = \epsilon_0 E$$

Boundary condition

The surfaces of metals are always equipotential

Ohm's Law

 $R = \frac{l}{A}\rho$ [Ω] [Ωm] resistivity $\sigma =$ conductivity ρ $\vec{E} = \rho \vec{J}$ or $\vec{J} = \sigma \vec{E}$

Who is who?

