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Abstract

Any device that is to detect a particle must interact with it in some way. If the particle is
to pass through the detection system essentially undeviated, this interaction must be a soft
electromagnetic one. There is another type of detector system that will measure the energy
and the position of the particle by total absorption in these devices.

1 Introduction

This write-up of the Detector lectures which was given in the context of the CERN Summer Stu-
dent lecture series, will give a general, although somewhat compressed, introduction to particle
interaction with matter and magnetic fields. Tracking detectors and calorimeters will also be
covered as well as particle identification systems. This write-up does not aim to be a complete
stand-alone discussion of particle interactions nor to give an exhaustive coverage of experimental
techniques in physics. This can be found in a number of excellent text books. Some of them
are listed in reference [1]. The mathematical formalism that is used in this write-up is based on
reference [2] and it is assumed that the reader is familiar with the formalism of electrodynamics.

The note will start out with a short review of particle interaction with fields and then we
will discuss particle detection. At the end some common composite detection systems will be
described.

2 Particle Interaction with Fields

2.1 From Rutherford to Bethe-Bloch

The angular deflection of a particle with mass m1, charge eZ1 and velocity v0 on a target particle
of mass m2 and charge eZ2 can be written in the centre of mass coordinate system
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and b is the impact parameter as defined in figure 1. This is the classic nonrelativistic represen-
tation of Rutherford scattering. By integrating over the impact parameter b
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where

N0 number of beam particles
n target material in atoms/volume
t target thickness

As there is a screening by the electric field of the atom, there is a minimum scattering angle
Θmin which is approximately inversely proportional to the momentum of the particle. For a
single scattering, the mean scattering angle is thereby given as

Θ2 ≈ 2Θ2
min ln

Θmax

Θmin
or for N multiple scatterings Θ2

MS ≈ N0ρdx
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The slowly varying logarithmic term will be ignored. Multiple Coulomb scattering can be treated
as classic Rutherford scattering. If the energy of the particle is above the ionisation energy, I,
of the material, an electron escapes the atom. If the energy is below I, no energy is transferred.
The mean excitation energy is plotted in figure 2 where I/Z = 10 ± 1 eV for Z > 18. The
nonrelativistic energy loss for a particle in matter can thereby be written as
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If we ignore the slowly varying logarithmic term, the range, R, of a particle in matter would be
proportional to the squared of the ratio of the kinetic energy divided by the Z of the material.
We can compare this to the current wisdom of the Bethe-Bloch formula [3] plotted in figure 3
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By comparing the relativistic and the nonrelativistic computation of the range, figure 4, we see
that the range is approximately proportional to the energy square at low energy and proportional
to the energy where dE/dx is about constant, on the Fermi plateaux. Further discussion can be
found in [4].

2.2 Bremsstrahlung, photon pair production and radiation length

The Feynman diagrams for Bremsstrahlung and photon pair production are given in figure 5.
Let us first consider Bremsstrahlung as a nonrelativistic radiative process. Let b be the impact
parameter. The peak electric field is proportional to e/b2 and the characteristic frequency
ωc ∝ ∆t−1 ∝ v

2b . This process is described by
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The differential cross section for Bremsstrahlung can be written as

dσB

dω
≈ Z2 dNγ

dω
σT Nγ : photon density σT : Thomson cross section

⇓ dNγ(ω)
dω

≈ 2α
π

1
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[ln()] σT =
8π
3
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σB ∼ 0.58 mb · Z2

By comparing the Feynman diagrams in figure 5, we would assume that the cross section for
pair production would be very similar to that of Bremsstrahlung, σpair = 7

9σB ≈ 0.45 mb · Z2

The radiative energy loss by Bremsstrahlung can be written as

dE ≈
∫ E

0
h̄ω

N0ρdx
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Radiation length as function of Z is plotted in figure 6. The multiple scattering angle, Θ2
MS,

can be expressed as function of the radiation length√
Θ2

MS =
ES

pβ

√
dx

X0
=
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√
t, t is the thickness of the material expressed in radiation lengths.

We have here introduced the characteristic energy, ES ≡ mec
2
√

4π
α = 21.205 MeV.

When we later will discuss calorimeters as particle detectors, we will expand the initiating
particle in ionisation. The classic way to do this is by using the Rossi II approximation to
electromagnetic shower development [5].

1. Electrons lose a constant amount of energy, ε, for each radiation length, X0.

2. Radiation and pair production at all energies are described by the asymptotic formulae.

We will define the critical energy, EC , as the energy where Bremsstrahlung is equal to Ionisation.
A high energy electron can lose energy by emitting gamma radiation if it is deflected. Below
this critical energy of the material, the electron no longer loses energy in this way; it simply
ionises atoms or is scattered. The fractional energy loss is plotted in figure 7 together with the
critical energy as a function of Z. The photon total cross section is plotted in figure 8.

2.3 Nuclear interaction length

The mean free path of a particle in a medium is a measure of its probability to undergo interac-
tions of a given kind. It is related to the cross section corresponding to this type of interaction
by the formula

σλ =
Ω
N

=
A

NAρ

Where σ is the cross section [cm2], λ the mean free path [cm], Ω the volume of interaction, N
the number of target particles in Ω, A the atomic weight [g/mol], NA is Avogadro’s number and
ρ is the density [g/cm3]. The relevant cross section is σtotal − σelastic − σdiffractive. For hadronic
interactions, the interesting quantity is the nuclear interaction length, λI . It is nearly energy
independent and approximately proportional to A1/3 as shown in figure 9.
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2.4 Cherenkov radiation

The density effect in the energy loss, figure 3, is intimately connected to the coherent response
of a medium to the passage of a relativistic particle. This causes the emission of Cherenkov
radiation. Let us consider charged particle interaction with matter as described in figure 10. If
ω � γm and k � βγm, then

cos ΘC =
1

β
√

ε
⇐=

{
ω = �β · �k from conservation of energy and momentum
ω2 − k2

ε = 0 from dispersion relation

We have here considered the electric permeability, ε, as a real number. ε for argon is plotted in
figure 11. The refractive index of argon at NTP, can in the Sellmeier approximation be written
as (n− 1)106 = 0.05139 · [16.882 −E2]−1, where E is the photon energy in eV. We observe that
the refractive index is undefined at the value where the electric permeability goes from above 1
to below 1 and where the imaginary part becomes important. This is at the plasma frequency,
ω0, for the material. The square of the plasma frequency is approximately proportional to the
electron density in the material. By calculating the electromagnetic energy flow in a cylinder of
radius a around the track of the particle [2], we get after some steps
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where a is in the order of atomic dimension, b is the impact parameter and
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v2
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c2
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]
If λ has a positive real part, the integrand will vanish rapidly and all energy is deposited near the
track. If λ is purely imaginary, the integrand is independent of a and some energy will escape
as radiation. For λ to be purely imaginary, β2ε > 1, which is the Cherenkov condition. We also
see that dE

dx ∝ sin2 ΘC . We will come back to detectors for Cherenkov radiation in chapter 4.1.

2.5 Transition radiation

There is another type of radiation, transition radiation [8], that is emitted when a charged
particle passes suddenly from one medium to another. If ε < 1 no real photon can be emitted
for an infinitely long radiator. Due to diffraction broadening, there is a sub-threshold emission
of real photons in thin radiators.

If ω � ωi0
d2S0

dΘdω
=

2αh̄Θ3

πω

[
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− 1
a2

]2

where ai =
1
γ2

+ Θ2 +
ω2

0i

ω2

If ω2 � ω1 then the angle of maximum radiation, Θmax ≈ γ−1, and the total radiated power
S(eV) ≈ 10−2 · γ. The classic way to increase the number of produced photons from transition
radiation is to construct a periodic radiator as in figure 12. Further discussion can be found
in [8]. We will come back to detectors for transition radiation in chapter 4.1.

2.6 Magnetic fields and momentum measurements

The classic Lorentz force equation, �F = q · �E + q · �v × �B, describes the force experienced by a
charge q in an environment with an electric field strength, �E, and a magnetic flux density, �B.
Magnet elements may be represented to a good approximation by a linear transformation matrix
M operating on the displacement-divergence vectors (x, x′) and (y, y′). The particle motion is
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along z and the prime denotes d/dz and |M | = 1. Figure 13 gives a representation of ideal
dipole and quadrupole magnets. By using the Lorentz force equation and the nomenclature
from figure 13, a rectangular bending magnet can then be represented by[

x2

x′
2

]
=

[
cos β
cos α R sin(α + β)
0 cos α

cos β

] [
x1

x′
1

]
−→

α=β= φ
2

[
x2

x′
2

]
=
[
1 R sin(φ)
0 1

] [
x1

x′
1

]

and φ ∼= 0.03BL/p with B in kG, L in m and p in GeV/c. With the same considerations, we can
now write the transformation matrix for an ideal quadrupole magnet as described in figure 13.
Different matrices will apply in the focusing and the defocusing plane.

Mfocusing =
[

cos ωd ω−1 sin ωd
−ω sinωd cos ωd

]
Mdefocusing =

[
cosh ωd ω−1 sinhωd

ω sinhωd cosh ωd

]

where d is the length of the element in m, ω2 ∼= 3k
p for k in kG/cm and p in GeV/c. In the same

way as in optics, we can rewrite these matrices in a thin lens analogy. The effect of a thin lens
is to change the divergence instantaneously without effecting the displacement. Each plane in a
quadrupole corresponds to a thin lens of focal length f and a drift length s.[

1 s
0 1

] [
1 0

f−1 1

] [
1 s
0 1

]
=
[
1 + sf−1 s(2 + sf−1)

f−1 1 + sf−1

]

The situation normally considered when using thin lens approximation is when ωd → 0. We
then get f−1 → ±ω2d and s → 0.5d. It can be verified that a quadrupole doublet can have a
net focusing/defocusing effect on a particle beam. Further reading can be found in [9].

The momentum of the charged particle is usually calculated from the curvature in a magnetic
field. Consider a particle trajectory in a magnetic field as described in figure 14. The momentum
of the particle is given by [10]

p ∼= q

3
BR sin α p ∼= q

3
BRT

sin α
p ∼= q

3
B

[
C2 sin α

2S
+

S

2 sin α

]
︸ ︷︷ ︸

B uniform along trajectory

p ∼= q

3

∫
BT dl

Θ

where B is the magnetic induction, R is the radius of curvature in trajectory space, α is the
angle between the tangent to the trajectory and �B, C is the length of the chord and S the related
sagitta. Θ is the bending angle. Subscript T indicates the projection onto a plane perpendicular
to �B. A beam with momentum-analysed particles may consist of particles of different mass. A
standard device for velocity separation is generally a parallel plate capacitor of length L along
z. Consider a vertical, y, E field. The deflection and the divergence difference between two
particles with mass m1 and m2 can be written like

∆y = −1
2
kEL2 and ∆y′ = −kEL for k =

e

pc

β1 − β2

β1β2

At high momenta, k ∼ (
m2

2 − m2
1

)
/2 (pc)3.

2.7 Synchrotron radiation

It is well known that accelerated charges emit electromagnetic radiation. Deflection of ultra
relativistic particles in magnetic fields leads to emission of radiation called synchrotron radiation.
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Following reference [2], and after some manipulation of the 4-vector potential caused by a charge
in motion, it can be shown that

�B =
[
�n × �E

]
ret

�E (�x, t) = e

⎡
⎢⎣ �n − �β

γ2
(
1 − �β · �n

)3
R2

⎤
⎥⎦

ret︸ ︷︷ ︸
Velocity field

+
e

c

⎡
⎣�n ×

[(
�n − �β

)
× �β′

]
[
1 − �β · �n

]
R

⎤
⎦

ret︸ ︷︷ ︸
Acceleration field

where dτ = dt/γ, �n is the unit vector in the direction of �x − �r(τ), �β = �v/c, �β′ = d�β/dt and
R = x0 − r0(τ0) as defined in figure 15. The subscript ret means that the quantity is to be
evaluated at the retarded time τ0. The velocity field is essentially a static field that falls off as
R2, whereas the acceleration field depends linearly on �β′ and is inversely proportional to R. The
total energy loss is given by

dW

dt
=

2c
3

e2β4γ4 1
r2

and the root mean square of the emission angle is
[
Θ2
] 1

2 ∼= 1
γ

and is independent of the vector relationship between �β and �β′. r is the bending radius of
the charged particle. As βγ = p/m, synchrotron radiation is mainly observed with low-mass
particles.

3 Particle Detection

3.1 Gaseous Detectors

Consider the simple detector geometry given in figure 16a. Let the metallic anode wire have a
radius r0 and the metallic cathode cylinder a radius R, r0 � R. A minimum ionising particle
will leave along the track in the gas, Ntotal ion pairs and free electrons. Ntotal ≈ 5 · Z/cm at
NTP, where Z is the atomic number of the filling gas as given in figure 16b. The electric field
next to the anode can be written as E0 = V0/

[
r0 ln R

r0

]
. V0 is the voltage difference between the

anode and the cathode. Let α−1 be the mean free path between each ionisation induced by the
free electrons on the gas atoms as the electrons fall towards the anode. α = α(E) and E = E(r).
α is generally known as the First Townsend coefficient. The total amount of electrons reaching
the anode, the gas amplification constant, can then be written as

M = e
∫ r

r0
α(r)dr Korff approximation: α = Ape−Bp/E → M = exp

[
A

B

V0

ln R
r0

e
Bpr0 ln R

r0
V0

]

where p is the gas pressure and A and B are gas dependent constants, see table 1. Figure 17a
shows an example of the characteristic energy for an electron as function of the electric field.
Clearly the field has to be very high for the energy to be above the ionisation potential. A
dramatic change can be observed in a gas mixture, figure 17b. This is the Penning effect. The
metastable states are responsible for this effect. It allows to convert a greater fraction of the
energy which was initially lost in excitation, into ion pairs, if the admixed gas component has a
lower ionisation potential than the available energy of the excited state. The excited atoms of
the principal gas are then able to transfer this energy in ionising collisions with molecules of the
admixed component. It is thereby possible to have α � 0 for reasonable electric fields and to
begin the gas amplification process and to start the electron avalanche towards the anode. The
main bulk of the electrons will be produced within a few anode diameters from the anode.

At the same time as the electrons are created, positively charged ions are created. The
de-excitation of these ions will normally involve the emission of a photon. If the photon energy
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is above the ionisation threshold for other molecules in the set-up, new free electrons will be
created and thereby permanent discharges. Poly-atomic gases are therefore added to noble gases
as quenchers. An example is shown in figure 18. The different operating regions for a chamber
are shown in figure 19 for a heavily ionising α particle and for a β particle which is near minimum
ionising.

There will also be effects due to the way the electrons are collected at the anode. The
electric field of the chamber will be screened by the positive ions. The gas amplification will
therefore change as the angle between the electric field and the ionising particle changes. The
drift velocity and the diffusion of the electrons will change with the gases that are used in the
chamber. A magnetic field will change the drift path of the electrons as well as the diffusion.

The schematics of a classic multiwire proportional chamber is shown in figure 20 together
with the electric field configuration. The relationship between the voltage, the charge and the
magnitude of the electric field can be written as

Vs(z) ≈
d→0

2πl

s
− ln

[
4 sin2

(πx

s

)
+ 4 sinh2

(πy

s

)]
which gives Q =

V0

2πl
s − 2 ln πd

s

and E0 =
sV0

πd
2

[
l − s

π ln πd
s

]
The positive pulses that are induced by the positive ions onto the neighbouring anode wires
are much greater than the negative pulses induced electrostatically. The net effect is therefore
positive. The signal induced is mainly by the positive ions moving in the high electric field.
Following reference [11] and assuming that all charges are created a distance λ from the anode,
we can write

Velectron = − Q

lCV0

∫ r0+λ

r0

dV

dr
dr = − Q

2πε0l
ln

r0 + λ

r0

Vion = +
Q

lCV0

∫ R

r0+λ

dV

dr
dr = +

Q

2πε0l
ln

R

r0 + λ

where lC is the total capacitance. As λ is in the order of a few µm, Velectron ∼ Vion/100.
The simple detector configurations that we have discussed above, can be readily understood.

For a more complicated geometry, computer aided calculations will be necessary [13]. All deriva-
tive devices like the Drift Chamber (DC), the Time Projection Chamber (TPC), the MicroStrip
Gas Chamber (MSGC), the Gas Electron Multiplier (GEM) or similar detectors, will adhere to
the same principles as we have discussed above. Further reading can be found in [11] and [14].
Reference [12] gives a thorough discussion of electrons and ions in gases.

In the discussion of the Bethe-Bloch formula in page 2 and plotted in figure 3, the energy
loss of a charged particle in matter is a function of the βγ of the particle. We normally define
it into four regions: the 1/β2 region, the minimum ionising region, the relativistic rise and
the Fermi plateau region. As the total number of ions created in the gas is proportional to
the energy lost by the charged particle, we can use the charge collected in the proportional
chamber together with a measurement of the momentum of the particle as a measure for the
energy of the particle. Thereby we can make a mass hypothesis for the particle. The measured
charge has unfortunately large statistical fluctuations due to the primary ionisation process
and the gas amplification process. In addition, there is the creation of δ electrons, knock-on
energetic electrons which will travel far in a gas volume, that will add to the uncertainty of
the measurement. The charge collected in a thin gas gap is well described by a Landau-like
function [15]. It can be approximated to

Ψ(λ) =

√
e−(λ+e−λ)

2π
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where λ = R(E−Ep). Ep is the most probable energy loss and R is a detector specific constant.
A histogram of the charge collected in a proportional chamber is given in figure 21a. To suppress
large fluctuations, it is normal to take many samples along the track and to make a truncated
mean measurement. That is, to ignore the x % highest and y % lowest measurements and take
the mean of the remainder. This estimate will be near Gaussian distributed. An example of the
result is shown in figure 21b.

3.2 Solid State Detectors

The resistivity of a material falls into one of three classes. The insulator with a volume resistivity
between 109 and 1020 Ωcm, the semiconductor between 10−2 and 101 Ωcm and the conductor
between 10−6 and 10−3 Ωcm. Each electron in a solid has a certain total energy which is
made up from kinetic and potential energy. The complete energy axis can be divided into the
forbidden bands, no electron can have these energies, and the allowed bands where there may
be electrons. The band structure is shown in figure 22a. The distinction between an insulator
and a semiconductor is one of degree rather than kind. The insulator has a band gap between
the valence band and the conduction band of ≥ 3 eV, whereas this band gap is between 0.1 and
2.5 eV in a semiconductor. The density of states, S(W ), as function of the energy, W , is of
course zero in the band gaps. For the lower edge of the conduction band

S(W ) =
4π
h3

(2me)
3
2 (W − Wc)

1
2

and for the upper edge of the valence band

S(W ) =
4π
h3

(2mh)
3
2 (Wv − W )

1
2

where Wi is the energy at the edge of the band and mi denotes the effective masses of carriers,
holes or electrons, at the two band edges. The curves for S(W ) are to a first approximation
parabolic. Let P (W ) describe the probability that a state at an energy W is occupied by
an electron. These states will follow the Fermi-Dirac statistics and for a system in thermal
equilibrium, we get

P (W ) =
1

1 + e
W−WF

κT

−→
exp

[
W−WF

κT

]
�1

P (W ) = e−
W−WF

κT

WF is the Fermi level. It is defined as the energy where P (W ) = 1/2. The number of electrons
occupying states at different energies, is then given by S(W ) · P (W ). See figure 22b. By
integrating this function from Wc, the lower edge of the conductance band, to Wt, the upper
edge of the band, we get the number of electrons, n, in the conduction band. Wt is set equal
to ∞ for ease of computation. The number of holes, p, in the valence band can be found in the
same way by using 1−P (W ) instead of P (W ) and integrating from Wv at the top of the valence
band. We then get for the Fermi level for a thermal equilibrium situation

WF =
Wc + Wv

2
− κT

2
ln

p

n
− 3

4
κT ln

me

mh

When p �= n, then the Fermi level shifts towards the band with the majority carrier. In the case
when p and n are controlled by an external device, the system may be far from equilibrium and
pn �= n2.

One way to move the Fermi level is to dope the semiconductor. There are two kinds of
dopant, donors and acceptors. A list is given in table 2. Assume a n-type doped Si. There are
5 electrons in the M-shell of the dopant. One electron, the conduction electron, has a binding
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energy of 10 to 50 meV. The Fermi level is very near the conduction band. For a p-type doped
Si, the configuration is different. There are 3 electrons in the M-shell. One electron is missing,
i.e. a hole. The Fermi level is very near to the valence band. Let us examine a p-n junction.
From the considerations above, we can see that the net current of electrons and holes across the
junction must be zero and that pn = n2 at all points. From the cancellation of the current

−n(x)eµe
dV (x)

dx
+ eDe

dn(x)
dx

= 0 or µe
dV (x)

dx
= De

1
n

dn(x)
dx

where V (x) is the potential, n(x) is the electron density at a distance x from the junction, µe

is the electron mobility and De is the electron coefficient of diffusion, D = D0 exp(−∆W/κT )
and ∆W is the energy barrier. By integrating the current equation from well inside the n-side
to well inside the p-side, we get

Vb = Vn − Vp =
De

µe
ln

nn

np

This potential difference is called the barrier potential. The barrier potential is generally lower
than the band gap. In a state of equilibrium, the Fermi level is constant throughout the system
as shown in figure 23. From an inspection of the voltage across the junction and integrating
over the full length, X, of the depletion length, we see that

X =
√

2εV
eNd

and the capacitance C(V ) = ε
A

X

where Nd is the number of donors and A is the area of the junction. If an external voltage is
applied across the junction, the system is no longer in equilibrium and the Fermi level is no
longer constant throughout the system. With a forward bias, V is reduced and thereby X is
reduced as the bias voltage is subtracted from the barrier potential. A reverse bias adds to the
barrier potential and the result is therefore a wider depletion layer.

The mobility and conductivity in a semiconductor is shown in figure 24. The volume resis-
tivity for Ge is ≤ 0.49 Ωm at 300K whereas it is of the order of 100 Ωm in Si due to impurities.
This will correspond for a Si crystal of 100 × 100 × 0.3 mm3 to ∼ 4 − 5 108 free carriers. A
minimum ionising particle would, in comparison, create ∼ 3 − 4 104 e-h pairs. To reduce the
number of free carriers, one can either deplete the crystal or do a freeze-out as shown in fig-
ure 24. Depletion by applying a forward bias is the most commonly used technique for particle
detection. A possible lay-out is shown in figure 25. Depending of the detector configuration and
the electronics that are used, space resolution of some 10 µm can be achieved. An introduction
to semiconductors can be found in references [16] and [17].

3.3 Scintillators

A charged particle traversing matter leaves behind it a wake of ionisation, excited molecules
and molecules in metastable states. Certain types of molecules will release a small fraction (∼
3%) of the absorbed energy as optical photons. Scintillating materials fall into one of two
classes, organic or inorganic. An excited molecule can lose energy by vibration, dissociation
or a resonance transfer to another molecule. It can also lose by emitting a photon. This is
the scintillation or fluorescence. Fluorescence is prompt emission of photons as a result of an
absorption of energy. The decay time of this photon emission is in the range from ns to µs.
Let us first consider a perfect crystal structure as shown in figure 22c. The lifetime of a free
hole is in the range of 10−12 s. This recombination may lead to photon emission, but it is too
fast to be observed. The free electron might be trapped to the hole. This system is called
an exciton. It is free to move through the crystal. The exciton can emit light when hitting
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an activator center and transferring their binding energy to the activator levels, which will
subsequently de-excite. Impurities or activators like Thallium, are therefore generally added
to the crystal. In an imperfect crystal, there are lattice defects and impurities as shown in
figure 26a. The excitation energy can here be dissipated not only by luminescence, but also by
thermal dissipation, quenching, and by metastable levels, traps. The metastable systems will
lose the energy either via thermal or vibrational dissipation or via a radiationless transition.
The photon emission by luminescence can be written like

dL

dx
=

A

1 + B dE
dx

dE

dx
or for small dE/dx

dL

dx
∝ dE

dx

Table 3 gives selected physical properties of some inorganic crystalline scintillators. Note the
fairly strong dependence on the light output as function of the temperature. Also the decay
time is effected by the temperature. The light intensity as function of the wavelength is plotted
in figure 26b.

The behaviour of organic scintillators are about the same as for inorganic. They are mainly
based on benzene, C6H6. The p-electrons1 forms the basis for the scintillation mechanism.
They are quantised in series of singlets, Sij, and triplets, Tij, as in figure 27. A practical
organic scintillator uses a solvent for the primary scintillation and then large concentration of a
primary Fluor and smaller amount of secondary Fluor to shift down the final photon spectrum
as indicated in figure 28a. The difference in wavelength between absorbed and emitted quanta,
the Stokes shift, is shown in figure 28b. This shifting of the primary photon spectrum from a
decay time of ≤ 10−9 s and a peak wave length of ∼ 300 nm, is essential for an efficient photon
detection as is discussed in chapter 3.4. Theory and application are well covered in reference [19].

3.4 Photon Detection

Photon detection around the visible spectrum is generally built around two processes, the
photon to electron conversion, i.e. the photocathode, and the electron multiplication to generate
a readable output signal. The operation of a photocathode is based on the photoelectric effect.
For a semiconductor this may be considered as a three step process. In the first step, the
photoelectron is excited from the valence band to the vacuum level by the absorption of the
light quanta. The second step is to transport the excited electron through the semiconductor
film to the semiconductor/vacuum interface. The third step is an escape over the surface barrier
into the vacuum. The efficiency of the photoelectric emission is determined by the efficiency in
each step. At the surface of a semiconductor there is always some bending of the energy bands
due to the presence of donors and acceptors with energy levels in the forbidden zone. See 3.2 for
discussion of the energy bands. p-type materials are therefore the most efficient photoemitters.
These are semiconductors like (Na2KSb)Cs, Cs3Sb and GaAs:Cs·O. The emission energy for the
photoelectron excited by a monochromatic light, will range from zero to a maximum given by
Elight − [Eelectron affinity + Egap width]. In addition to photoemission, the photocathodes will also
produce thermionic emission. This will present itself as an unwanted background. A summary
of photocathode characteristics is given in table 4. These photocathodes are very sensitive to air
and will easily oxidise. They must therefore be deposited and operated in ultra high vacuum.
There is another type of photocathodes that can be operated in an inert gas. They are mainly

1Some bonds in benzene [18]: Benzene is a planar molecule with six C-C bond distances of equal length. The
observed bond distance (1.40 angstroms) is midway between the sp2-sp2 single-bond distance (1.46 angstroms)
and sp2-sp2 double-bond distance (1.34 angstroms) seen in conjugated dienes and is consistent with the bond
order of 1.5 predicted by resonance theory. (Bond order is an index of bond strength. A bond order of 1 indicates
that a single s bond exists between two atoms, and a bond order of 2 indicates the presence of one s and one p
bond between two atoms. Fractional bond orders are possible for resonance structures, as in the case of benzene.)
Benzene is a regular hexagon; all bond angles are 120◦.
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used as an additive to the gaseous detectors. Some properties of these components are listed in
table 5. CsI, an alkali halide crystal, which falls into the first category, is used successfully as
a solid photon converter in gaseous detectors. Quantum efficiency for some photocathodes are
plotted in figure 29.

The electron amplification process in a gaseous detector is described in 3.1. In a vacuum tube,
the secondary-electron process is used. The process of secondary-electron emission is similar to
photoemission. It is different for metals than for insulators or semiconductors. When a clean
metal surface is exposed to an energetic primary electron, the secondary-electron emission takes
place by raising the energy level in the conduction band to the one of the vacuum level. One
primary electron may have sufficient energy to excite one or more secondary electrons. Clean
metals are poor secondary-electron emitters whereas insulators and semiconductors are efficient.
Clearly the electron affinity plays a crucial role and an efficient secondary-electron emitter should
have an EA zero or negative.

From the discussion above, a photon detector is therefore either a gaseous detector where
a photosensitive vapour has been added to the gas or a vacuum tube with a photocathode
and electron multiplication based on secondary-electron emission. The microchannel plate is
an example of the latter. A microchannel plate is a two dimensional array of microchannels
as shown in figure 30a. The microchannel itself has an internal diameter of 8 to 45 µm and is
lined by a resistive secondary emission film. The schematics of a photoelectron multiplier tube
is shown in figure 30b. Dynodes of secondary-electron emitters are placed in the voltage chain
between the photocathode and the anode. The total current gain is equal to the product of the
current gain at each dynode. The production of secondary electrons is Poissonian distributed.
The fluctuations on the final number is therefore mainly induced at the first dynodes where the
number of primary electrons are small.

The novel hybrid photo diodes [22] is a vacuum tube with a semitransparent photocathode,
a focusing accelerating field and a silicon sensor at the anode, see figure 30c. The primary
photoelectron will have a kinetic energy of 10 to 20 keV when it impinges onto the sensor and
will produce in the order of 4 to 5000 electron-hole pairs. This ensures a very good signal
resolution. For further reading on photon detectors, references [20] and [21] are recommended.

4 Detection Systems

Charged particle detection is already covered in sections 3.1, 3.2 and 3.3. We will in this section
look into some composite systems and also include detection of uncharged particles.

4.1 Particle Identification

The condition for Cherenkov radiation was given on page 4. The Cherenkov photons of wave-
length λ are emitted under an angle ΘC , where ΘC is given by cos ΘC = 1/ [βn(λ)] and the
number of photons emitted by

dN

dλ
= 2πα

( q

λ

)2
L sin2 ΘC

L is the length, n(λ) is the refractive index of the radiator and α = 1/137 is the fine-structure
constant. The total number of photons emitted between λ1 and λ2 by a singly charged particle
is then given like

N [λ1 → λ2] = 4.6 106

[
1

λ2(Å)
− 1

λ1(Å)

]
L(cm) sin2 ΘC
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The number of detected photons is equal to the total number of emitted photons multiplied by
the quantum efficiency of the detection system. If the momentum p of the particle is determined
as discussed on page 5, the mass, m, of the particle is given by m = p/βγ. The uncertainty of
the mass measurement is given by

∆m

m
=

√(
∆p

p

)2

+ (γ2 tan ΘC ∆ΘC)2

We can therefore use the measurement of the Cherenkov angle and the knowledge on the mo-
mentum of the particle to make mass hypothesis for the charged particle.

Cherenkov detectors consist of a radiator with a refractive index n and a photon detector.
They are frequently categorised into two classes, the threshold detector and the ring imaging
detector. The threshold detector will discriminate between particles where βn > 1 and particles
below this threshold. They are mainly used in monochromatic beams to discriminate between
particles of different masses. The ring imaging detector [23] exploits simultaneously more or less
all the properties of Cherenkov radiation. That is, the existence of a threshold, the dependence
of the number of photons, the dependence on the charge of the particle and the dependence
of the Cherenkov angle. A practical detector will need to have a high efficiency for single
photon detection and have a high space resolution. Cherenkov detectors are sketched in figure 31.

In the same way as we have done for the Cherenkov radiation, we can construct a detection
system for transition radiation. Transition radiation is discussed on page 4. We recall that the
total radiated power in eV is about 1 % of γ of the particle and that the angle of maximum
radiation is very forward peaked as it is inversely proportional to γ. The energy of the emitted
radiation has to be much larger than the plasma frequency of the radiator material and will in
general be between 1 and 10 keV. A practical transition radiation detector will therefore consist
of a radiator with many interfaces or foils and a detector for soft x-rays. The foils will be of
low Z-material in order to limit the scattering and the detector could be proportional chamber
based on Xenon for a maximum conversion efficiency. The number of foils is a trade-off between
production of x-rays and the absorption of them. The detection of electrons from the converted
x-ray is also made difficult by the fact that they are very near to the trajectory of the particle
and therefore the ionisation caused by the particle in the gas of the detector. A high energy
particle will create ∼ 200 electron-ion pairs per cm in Xe gas at NTP. The conversion of a 5 keV
x-ray will create ∼ 400 electron-ion pairs. The detector is therefore usually thin in order to
enhance the discrimination power of the detector. One finds in general [25] that

ionisation + detected transition radiation
ionisation

∼ Z− 7
2

Transition radiation detectors are used for e to π separation.
Particle identification by measuring the energy loss by the charged particle in matter, is

discussed in chapter 3.1. We will here only recall that this technique generally calls for a rather
thick gas volume where many samples of the energy loss are taken along the track. As for the
other identification methods, it is assumed that the momentum of the particle is determined by
other means.

Particle identification can also be done by measuring the time difference between detection
points along the particle track. This is the Time-of-Flight, TOF, technique. It is similar to the
Cherenkov detection as it is a pure measurement of the β of the particle. A TOF measurement
can in principle be used for any value of β. A TOF system will typically be a large hodoscope
of scintillators coupled to a photomultiplier read-out system for a measurement of the impact
time, T1, at this distance from the vertex, together with a knowledge of the time T0. T0 is
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the creation time of the event or the bunch crossing of the particle beams in the experiment.
It could also be a smaller hodoscope placed very near to the vertex of the event. For certain
applications, it is also possible to forego the T0 by assuming that one of the particles detected
in the far hodoscope has a velocity β � 1. With the measurement of the time difference and
the track length, β of the particle is known. A small uncertainty on the time measurement is
required in order to keep the track length inside reasonable limits and thereby limit the size of
the hodoscope. Other fast detectors can be used. Some of them are discussed in [26] and [27].
A summary on particle identification is given in table 6.

4.2 Calorimeters

A class of detectors measures the energy and the position of particles through total absorption in
these detectors. In the process of absorption, secondary particles are generated. These secondary
particles will as well react inside the detector. The process gives rise to a shower. The growth
and decay of a shower is a tremendously complex statistical process where several physical
mechanisms participate. The net result is however that the initiating particle is expanded in
ionisation and ultimately in heat. The temperature gradient and the shock wave accompanying
can be measurable. We will discuss the atomic excitation and ionisation which is created in
the shower process and leave the calorimetric2 effect here. There are several reasons why the
calorimeters are attractive. They are the only way to detect and measure neutral particles and
as the absorption of the energy of the particle is a statistic process, the precision of the energy
measurement of the particle should therefore be proportional to 1/

√
E. From the discussion

of the momentum measurement on page 5, we see that σp/p
2 ∝ σRφ/

(
L2B

)
in a spherical

coordinate system. A calorimetric measurement can therefore become more accurate than a
measurement of the curvature of the particle track in a magnetic field.

Calorimeters are normally classified into two main groups. The electromagnetic and the
hadronic calorimeters. They are, as the name indicate, optimised for measuring particles that
interact electromagnetically or has strong interactions with the absorbing material. Subclass of
each are the sampling calorimeters and the homogeneous calorimeters. Figure 32a shows the
development of electromagnetic showers. Figure 32b and c shows sketches of these detectors.

Electron pair production and Bremsstrahlung are the dominant interaction process for high
energy photons and electrons. From figure 7a, we see that Bremsstrahlung is nearly independent
of energy above ∼ 1 GeV. The same is the case for pair production which is plotted in figure 8.
The secondary particles in the electromagnetic shower are electrons, positrons and photons and
they will interact with the matter in the same way as the parent particle. The number of
particles in the shower will therefore increase until the average energy of the particles is below a
threshold to stop further particle creation. The shower will then spend its energy in ionisation or
Compton scattering and will slowly die off. The change of the relative strength of the interaction
processes are characterised by the critical energy, EC , of the material. (See the discussion on
page 3 and figure 7b.) The lateral development of the shower is mainly governed by the electrons
that do not radiate, but have enough energy to travel far away from the axis. From this rather
sketchy discussion of the electromagnetic shower which follows the Rossi II approximation on
page 3, we see that the natural unit to express the shower in, is in units of radiation length, X0.
The shower maximum will be different for electrons and for photons. Experiments have shown

2From [18]: Calorimeters have been designed in great variety. One type in widespread use, called a bomb
calorimeter, basically consists of an enclosure in which the reaction takes place, surrounded by a liquid, such as
water, that absorbs the heat of the reaction and thus increases in temperature. Bomb calorimeters have been
developed to the point that heats of combustion of organic materials can be measured with results reproducible
within 0.01 percent.
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that for an initiating particle of energy E, the shower maximum in units of X0 is

t(X0) = ln
E

EC
− 1.0 for electrons t(X0) = ln

E

EC
− 0.3 for photons

The lateral shower spread is expresses in Molière units. It is defined as

RM =
(Characteristic Energy)(Radiation Length)

Critical Energy
= 21 [ MeV]

X0

EC
∝ A

Z

[ g
cm2

]
∼ 95 % of the shower is contained inside a cone with radius 2RM . The longitudinal track length,
which is proportional to the energy deposit, is well approximated to

T = F(z)
E

EC
X0 where F(z) � ez

[
1 + z ln

z

1.526

]
and z = 4.58

Z

A

Ecut−off

EC

The cut-off energy, Ecut−off , is the minimum energy of a particle that can be detected in the
calorimeter.

For a sampling electromagnetic calorimeter as sketched in figure 32b, let us assume that we
sample N times the energy deposited by the shower. Let x be the distance along the shower axis
between each sample. Let us furthermore assume that each sample is statistically independent.
For large N , the energy resolution can then be written like

σ(E)
E

= 3.2%

√
EC

F
√

x

X0

√
1
E

The development of a hadronic shower is much more complex than the electromagnetic
processes. It is mainly propagated by hadronic interactions. At high energies, these processes are
characterised by multi particle production and particle emissions from nuclear disintegration of
excited nuclei. Due to the relatively frequent generation of π0-s, there is also an electromagnetic
component present in hadronic showers. A sizeable amount of the available energy is converted
into excitation and break-up of nuclei. Only a small fraction of this energy will eventually appear
as detectable signal and with large event-to-event fluctuations. The hadronic multiplication
process is measured by the nuclear interaction length, λI , which is nearly energy independent.
λI is practically proportional to A1/3 as shown in figure 9. Some characteristics for high energy
hadronic showers may be written like
Shower maximum

lmax ≈ [0.6 log(E) − 0.2] λI , with E in GeV

Shower depth for 95 % longitudinal containment:

l95% ≈ lmax + 4E0.15λI , with E in GeV

Contrary to electromagnetic showers, which develop in sub-nanosecond time, the physics of
hadronic showers is characterised by different time scales, the slowest of which, de-excitation of
heavy nuclei, may reach a microsecond. Massive hadron calorimeters are commonly used for the
detection of neutrinos, as the secondaries from weak interactions are mostly hadrons.

In a sampling calorimeter, figure 32b, the particle absorption and shower sampling is sepa-
rated. A fraction of the total energy is sampled in the active detector. The active detector can
be any of the detectors that we have discussed above, like scintillators, ionisation chambers, wire
chambers or solid state detectors. The particle absorbers in an electromagnetic calorimeters will
be of low X0 material like lead. A hadronic calorimeter will use material like iron, with long λI .
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The energy resolution for a large sampling electromagnetic calorimeter will be in the range of
10 % at 1 GeV. For large volume sampling hadronic calorimeters, it will be in the order of 80 %.

The reason for this moderate energy resolution in a hadron calorimeter, is the large fluc-
tuations as a fair fraction of the incident energy is spent in back-scattering, energy leakage by
muons, neutrinos and slow neutrons. In addition, a large fraction is lost by nuclear excitation
and nucleonic evaporation. All these processes do not give an observable signal in the detector.
This can be demonstrated by measuring the ratio of a signal from an electron and a signal
from a hadron. This is the electron-hadron ratio, e/h. If e/h = 1.0, the calorimeter is said to
be compensating. If it differs from unity by more than 5 % or 10 %, detector performance is
compromised because of fluctuations in the π0 content of the cascades. In most cases e/h is
greater than unity, particularly if little hydrogen is present. Energy resolution of 30−40 %/

√
E

has been demonstrated for a well compensated hadronic sampling calorimeter [25] [29] [30].
In a fully active and homogeneous electromagnetic calorimeter as shown in figure 32c, the

energy is typically measured by collecting photons as these detectors are normally made from
low X0 scintillators as in table 3. In other material like lead glass, 55 % PbO and 45 % SiO2, the
light emission is by Cherenkov radiation. The energy resolution is limited by photon statistics.
If we take a scintillating crystal, which is virtually free from intrinsic fluctuations, we get

σ(E)
E

=
1√
Npe

=
1√

E(GeV)
√

Npe/GeV

where Npe/GeV is the observed number of photons per energy unit. To get this number, the
absolute light yield, the number of emitted photons for each energy unit, has to be multiplied
with the light collection efficiency, the geometrical efficiency of the photon detector and the
quantum efficiency integrated over the emission spectrum. In addition, there will be effects from
lateral shower leakage, the punch-through and the material in front of the detector. σ(E)/E
in lead glass will be in the range of ≥ 5%E− 1

2 whereas for NaI(Tl) it will be in the range of
≥ 1.5%E− 1

4 for E in GeV.
For real calorimeters in real experiments, the energy resolution is usually written as

σ(E)
E

=
a√
E

⊕ b ⊕ c

E

where a is the stochastic term. b is a constant term which normally describes the overall
inter-calibration. c is the contribution from the electronics noise. Energy resolution for some
homogeneous electromagnetic calorimeters in large experiments is given in figure 33. We see
that the energy resolution for the BGO calorimeter in this experiment is well described by the
parameters: a � 1.9 10−2, b � 5 10−3 and c ≤ 10−4. About 5400 crystals constituted the
calorimeter. The final overall resolution compares well to the test beam result, which was given
as σ(E)/E =

[
1.54/

√
E + 0.38

]
%.

The complex computation of shower development is well described in simulation programs
like [31]. Reference [30] discuss the physics of electromagnetic and hadronic calorimeters.
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5 Conclusion

We have in this write-up looked into the more general
considerations of particle detection and left out many as-
pects that make a detector a success or a failure. Electron-
ics [33], Trigger/DAQ and Data Analysis are taken care
of in separate lectures. We have, though, left out all the
magic, the witchcraft and we will not even mentioned the
Hopi Snake dance which has proven most useful in cases
of high voltage break-down. The Ouija board becomes
handy when the answer can not be found on the Web and
no trace of the book listed in the references can be found
in the library. At no point was all the hard work which is
the essential component to a working detector discussed.

Obnoxious things like detector ageing has been happily swept under the carpet together with
the most valuable detector control systems. It can nonetheless be a useful precaution to check
the detector performance against Ohm’s law if the fuses keeps popping and against Newton’s
laws of motion if the detector keeps falling down.

Disclaimer
The numbers, formulae, figures and references are believed to be correct, but are not guaranteed
to be so.
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A B
Gas cm−1Torr Vcm−1Torr
He 3 34
Ne 4 100
Ar 14 180
Xe 26 350
CO2 20 466

Table 1: Parameters for the Korff approximation for the first Townsend coefficient α [11].

Type of dopant Donor Acceptor
Semiconductor type n-type p-type
Majority carrier electrons holes
They occur in the conduction band valence band
Minority carrier are holes electrons
Possible dopant in Si or Ge P, As, Sb B, Al, Ga
Dopant in group 5 3
Charge in ionised dopant is +ve -ve
Fermi level is nearer conduction band valence band

Table 2: A list of a number of pairs of terms that go with donors or acceptors [16].

Crystal BGO CsI:Tl CsI PWO NaI:Tl
Density g/cm3 7.13 4.53 4.53 8.26 3.67
Radiation length cm 1.12 1.85 1.85 0.89 2.59
Wave length nm 480 565 310 420 410
Light yield (L) % of NaI 10 85 7 0.2 100
Decay time ns 300 1000 6+35 5+15+100 250
dL/dT %/◦C at 18◦C -1.6 0.3 -0.6 -1.9 0
Refractive index 2.15 1.8 1.8 2.29 1.85

Table 3: Physical properties of some inorganic scintillators. BGO is bismuth germanate and PWO is
lead tungstate.

Maximum Typical
Quantum λ0 (Å) Thermionic

Peak Yield at [at 1 % Maximum Emission Eg EA

Cathode λ (Å) peak (%) of peak] (µA/lm) (A/cm2) (eV) (eV)
Ag-O-Cs 8000 0.5 � 12000 60 10−12

Cs3Sb on MnO 4000 20 6500 80 10−15 1.6 0.45
(Cs)Na2KSb 4000 30 9500 550 10−15 1.0 0.35
K2CsSb 4000 30 6600 100 < 10−17 1.0 0.90
Na2KSb 4000 30 6600 130 < 10−17 1.0 0.75
GaAs:Cs·O 7800 > 20 9500 > 1000 < 10−14 1.4 < 0

Table 4: Summary of photocathode characteristics [20]. Eg is the energy gap between valence and
conduction band. EA is the electron affinity or the energy gap between the conduction band and the
vacuum level.

19



Ionisation p0 at
Molecule energy (eV) 300K (Torr)
Ethanol C2H5OH 10.4 47
Acetone CH3(CO)CH3 9.69 250.7
Benzene C6H6 9.24 101.8
TEA (C2H5)3N 7.5 73.2
TMAE C2[(CH3)2N]4 5.36 0.50

Table 5: Physical properties of some possible gaseous photon converters [21]. TEA is Triethyl amine
and TMAE is Tetrakis(dimethylamino)ethylen. See also figure 29b.

Technique γ range Comments
Multiple ionisation measure- As dE/dx

∼∝ 1/β2 for γ ≤ 6, powerful
ments in homogeneous γ < 6 discrimination obtainable with modest
medium resolution in the dE/dx measurement. [4]

σ ≤ 300 ns has been achieved with large
Time-of-Flight γ ≤ 6 scintillator systems. σ ≤ 100 ns with

special spark chambers [27]
Gas threshold Cherenkov γ > 10 Not suitable for storage ring application

where 4π coverage is required. [21]
Multiple ionisation measure- Requires σ(dE/dx) ∼ 2 − 3 %; achieved
ments on relativistic rise in 2 ≤ γ ≤ 50 so far in planar geometry only,
homogeneous medium but not in storage ring application. [4]

Cherenkov photons detected with UV-
sensitised proportional chamber

Imaging Cherenkovs 2 < γ ≤ 200 structures; or special optical systems,
with severely limited phase-space
acceptance for particles. [23]

Transition radiation γ ≥ 1000 Useful as compact threshold detector for
specialised applications. [8]

Table 6: Table from [25]. It was published in 1980, just 10 years after the first publication by G. Charpak
on proportional chambers and 3 years after the first publication of J. Séguinot and T. Ypsilantis on ring
imaging Cherenkov detectors. 1974 was the year of the first publication on drift chambers by G. Charpak
and collaborators. References to updated numbers has been added as a last column to the table.
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Figure 32: a) is a cloud chamber illustration [28] of the longitudinal and the lateral development of
an electromagnetic shower in lead. In the top picture, the shower is initiated by an electron. Note that
the electrons which emerge from the lead plates at large angles to the shower axis do not penetrate the
following plate. These are low energy secondary electrons. This becomes clear in the bottom picture
where the electrons, or positrons, are spread out with a magnetic field of 7500 gauss. b) and c) shows
the working principle of a sampling and a homogenous calorimeter.
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Figure 33: Energy resolution as function of energy for large detector systems. Replotted from [32].
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