ALEPH results in year 2000 ## F. Cerutti CERN and LNF-INFN on behalf of the ALEPH collaboration - ♦ Data sample and detector performance in year 2000 : ALEPH is still working fine after 12 years running - ♦ SM processes: We still have results in agreement with the SM - ♦ SUSY searches: Low energy SUSY strongly challenged #### The excitement of the year ♦ SM Higgs: WHY is LEP still running? #### General Remarks - Year 2000 has been a special year for LEP experiments: DO not miss any SIGNAL of new physics! - Higgs and SUSY results combined every 1-2 months with very preliminary systematic estimates - ♦ The ALEPH results presented here are very preliminary! - All limits given are at 95% CL (and deviations from SM should be considered as discoveries only if they reach the 5σ significance) #### Data sample #### ♦ Excellent LEP performance in y2k - \diamond Total of 178.3 pb⁻¹ (~9 different E_{CM}) collected - ♦ ALEPH efficiency in y2k has been 95.7%! - \Leftrightarrow 4.3 pb⁻¹ at $E_{LEP}=M_Z$ used for calibration #### Data quality checks 1.2 1.4 Pµ/Ebeam |P| calibration checked on $e^+e^- \rightarrow \mu^+\mu^-$ at \sqrt{s} =206 GeV 0.6 0.8 #### Data quality checks btag performance on udsc and b jets calibrated on Z peak data Residual difference taken into account in systematic error computation # SM processes: 2-fermion processes 2-fermion cross-sections σ_{qq} slightly above SM expectation at high s'/s #### SM processes: 4-fermion processes WW and ZZ crosssections y2k results are the last 2 points Good agreement with SM for all channels ## SM processes: W mass and QCD #### SUSY searches - ♦ 3 different SUSY scenarios searched for - MSSM: missing energy - GMSB: photons, long-lived sleptons - RPV: large jet and/or lepton multiplicities - Large variety of experimental topologies - Statistically independent topologies ~60 - Tested at ~14 different E_{LEP} (at LEP2) - In total (up to now) ~840 statistically independent comparison of SUSY topologies with SM expectations - In spite of that no significant deviations from SM expectations found this year #### **MSSM** | Charnel | Expected blog | Data | |--|---------------|------| | Selectron | 33.2 | 36 | | e _R e _L (sinlge e) | 17.1 | 11 | | Smuon | 29.9 | 32 | | Stau | 24.2 | 27 | | Stop → cx | 8.6 | 11 | | Stop->cx (VL &M) | 0.7 | 0 | | Stop → bℓv | 1.5 | 2 | | Sbottom→bχ | 2.6 | 2 | | Changino (any m _b) | 24.4 | 23 | For heavy sneutrinos Chargino mass limit close to kinematic threshold ~103 GeV #### <u>GMSB</u> | Topology | Expected bkg | Data | Limit(GeV) | |--------------------|--------------|------|--| | χχ 2γ+Emiss | 2.0 | 0 | 99 (Me _R =1.1M _χ) | | Long-lived slepton | 0.3 | 0 | 95 ($c\tau = 10^{-9}$ s) | | Stable slepton | 1.1 | 0 | 97 | | Topology | Expected bkg | Data | Limit(GeV) | | |-----------------|--------------|------|---|--| | Leptons+hadrons | 7.9 | 10 | 103.1 chargino | | | 6 leptons+Emiss | 1.2 | 0 | 96.3 selec. ind.
96.7 smuon ind.
94.6 stau ind. | | | 4 leptons+Emiss | 6.1 | 4 | 98.1 snu e ind.
88.7 snu mu/tau ind. | | | 4 leptons | 10.3 | 9 | 100.0 snu_e dir.
90.2 snu_mu/tau dir. | | | 2 leptons | 170.0 | 156 | 96.3 selec. dir.
86.9 smu/stau dir. | | #### RPV dominant LQD coupling | Topology | Expected bkg | Data | Limit(GeV) | | |--|---------------------|---------------|--|--| | Multi-jets+lept. | 10.0 | 12 | 102.9 chargina | | | 2jets+2tau
2jets+Emiss
4jets+2 lept.
5jets+1lept. | 9.8
20.0
17.2 | 9
23
16 | 85.6 stopL ind
80.1 sbottomL ind
93.1 seles. Ind.
89.6 smu ind. | | | 4jets | 703. | 689 | 76.1 stau ind.
81.0 smu/stau dir.
79.0 snu_mu dir. | | #### SUSY searches #### RPV dominant UDD coupling | Topology | Expected bkg | Data | Limit(GeV) | |---------------------|---------------|----------|----------------| | 4jets+2lept. | 0.6 | 1 | 91 selec. ind. | | Multi-jets+2lept. | 0.3 | 1 | 85 smuon ind. | | 4jetb | 4.2 | 2 | 72 stop1 ind. | | 4jets
multi-jets | 672.2
0.32 | 686
1 | 103.0 chargino | For all 3 RPV scenarios chargino mass limits are close to 103 (assuming heavy sneutrinos) as for MSSM #### Non SM Higgs #### The SM Higgs search - \Leftrightarrow Look for $e^+e^- \rightarrow HZ$ with [H->bb or $\tau\tau]$ and with $[Z->qq,vv,\ell\ell,\tau\tau]$ - ♦ Two streams of analysis used, NN and CUT: 4-jets(NN and CUT) 2-jets + Missing energy hvv (NN and CUT) \odot 2-Jets + 2 leptons (e or μ) ha (CUT) \odot 2-jets + 2 τ qq $\tau\tau$ (NN) - ♦ Main ingredients: btag, E_{LFP} constr., M_Z constr. - NN analysis has a slightly better sensitivity but CUT is a valid alternative: different sensitivity to systematic effects - Analyses and statistical estimator (LR) frozen before data taking started: statistically unbiased results - ♦ Analyses updated ON LINE: BEHOLD! #### The SM Higgs results #### 178.2 pb⁻¹ collected in y2k | Channel | Nbkg | Nsig M _h =114 | N data | Exp.
Sens.
(M _H =114) | |--------------|--------------|--------------------------|----------|--| | 4-jet NN* | 38.6 (5.7) | 3.6 (2.3) | 41 (11) | 1.45 | | 4-jet CUT | 26.0 (2.0) | 2.5 (1.5) | 37 (6) | 1.15 | | hvv NN* | 31.2 (2.9) | 1.1 (0.6) | 32 (3) | 0.75 | | hvv CUT | 16.2 (0.8) | 1.0 (0.5) | 15 (0) | 0.60 | | Hee * | 24.5 (1.6) | 0.53 (0.51) | 24 (4) | 0.69 | | 99 ττ | 11.2 (0.7) | 0.30 (0.23) | 13 (3) | 0.38 | | Tot NN | 105.5 (10.9) | 5.5 (3.6) | 110 (21) | 1.88 | | Tot CUT | 78.0 (5.1) | 4.4 (2.7) | 87 (13) | 1.59 | ^{*} In addition to $\rm M_H$ one other discriminating variable (btag driven) used in the $c_{\rm b}$ and $c_{\rm s+b}$ determination - () Numbers in parenthesis refer to reconstructed $\rm M_{H}\mbox{>}109~GeV$ - ♦ Slight excess of events at M_H>109 GeV - \diamond Following results include 98 and 99 data (414 pb⁻¹ at E_{LFP} ~189-202 GeV) #### The updated results Good agreement with b expectation in the ZZ region Slight excess of candidates in the high-M_H region seen by both streams Only partial information contained in M_H plot Some channels use btag information as second discriminating variable in the test statistics Deviation from SM bkg only hypothesis quantified with $(1-c_b)$ # Compatibility with bkg only hypothesis - \Leftrightarrow Test statistics used is LR(M_H|m_Hⁱ,xⁱ)=L_{s+b}/L_b - \Leftrightarrow Deviation from bkg only hypothesis quantified in $(1-c_b)$ = Prob(LR \geq LR_{observed}) for bkg experim. probability (as a function of M_H) that observed data are as or more signal like than the expected background \Leftrightarrow Minimum in $(1-c_b)\sim4\times10^{-4}$ observed at M_H ~115 GeV in both streams #### Compatibility with bkg hypothesis Significance $(1-c_b)$ converted in number of Gaussian (one sided) σ : Significance $3.3 (3.4) \sigma$ Significance for NN (CUT) stream @ M_H~115 GeV #### A closer look to the excess \diamond Origin of the excess investigated in NN stream by selecting "sensitive" events: cut at sig/bkg=2 for $M_H>109$ - 4-jet candidates (1 in the bbqq branch, 2 in the bbbb branch) - Collected at at E_{LEP}~206.5 GeV - Selected also by CUT stream #### A closer look to the excess - \Leftrightarrow In CUT stream the minimum in (1- c_b) is driven by 6 high mass 4-jet candidates (3 are the "sensitive" NN ones) - ♦ Their masses are: 114.6, 114.5, 114.3, 112.9, 110.0, 109.9 - \diamond 5 are collected at E_{LFP}~206.5 and 1 at 204 GeV - \Leftrightarrow Since btag is not used as additional discriminating variable their weight in (1-c_b) depends only on the reconstructed M_H: higher for 3 events clustered ~114.5 GeV - \Leftrightarrow The origin of the minimum in (1-c_b) in the two streams is partially but not completely correlated - Some systematic uncertainties would have different impacts on the two results #### Compatibility sig+bkg Fluctuation scenario: derive limits NN stream limit exp. M_H >113.8 GeV observ. M_H >110.5 GeV Signal scenario: determine M_H SM o_H included in LR: M_H~114GeV 55 # Compatibility with sig+bkg hypothesis \diamond Observed -2ln(LR) minimum at M_H~114 GeV about 1 σ below (probability~17%) than what expected for a SM Higgs of that mass ## Comparison with 5 September LEPC results - \Leftrightarrow The (1-c_b) significance showed at the 5 September LEPC was 3.9 (3.8) σ for NN (CUT) stream at M_-~115 GeV - ♦ Change w.r.t. these results: - \odot Correction of background shapes of 4-jet NN stream -> -0.3 σ (does not affect CUT results) - \odot Correction in the g->bb and g->cc expected rates in CUT stream -> -0.16 σ (already corrected in NN) - \odot Additional ~19 (5) pb⁻¹ collected at E_{LEP}~206.5 (205) GeV - NO new "significant" candidates found in any of the 2 streams (less than 0.3 expected events for sig+bkg hypothesis in NN 4-jet stream) - \Leftrightarrow The Significance of the excess went down by ~0.6 (0.4) σ in NN (CUT) stream #### systematic checks: btag btag calibrated with y2k Zpeak data MC IPs smeared until ϵ_{udsc} and ϵ_{b} agree with Data agreement cross-checked with HE data Half of the correction taken as systematic error # Effect on expected bkg All M_H ZZ =1% qq=1% WW=10% Tot=3% $M_H > 109 \text{ GeV}$ ZZ=4% qq=4% WW=10% Tot=5% #### M_H bias cross-checks ### Is there a (E_{LEP} independent) mass bias toward threshold in 4-jet channel? #### Systematic checks - ♦ Systematic evaluation in progress (be patient ALEPH is still in the data taking period)! - ♦ Sources of systematic uncertainties studied up to now in the 4-jet channel: - btag on b and udsc jets - NN variables - gluon splitting into heavy flavors - Preliminary systematics on expected bkg in the 4jet channel - 5% on ZZ (btag uncertainty + MC stat) - ~20% on qq (error on g->bb g->cc + MC stat) - ~20% on WW (btag uncertainty + MC stat) - \diamondsuit If bkg is increased by these quantities the impact on (1-c_b) significance is small ~0.2 σ - No large effect found up to now but the work is still continuing #### The competitor If LEP doesn't reach the discovery significance the main competitor is TEVATRON RUNII Plot taken from Physics at Run II Workshop http://fnth37.fnal.gov/higgs/higgs.html - ♦ Fluctuation scenario: ~2fb⁻¹ needed to exclude MH~115 GeV - ♦ Signal scenario: ~20 fb⁻¹ needed for discovery (and CDF/D0 combination)! #### Conclusions for the SM Higgs - ♦ Interesting excess of events observed in y2k ALEPH data in both streams of analyses - \Leftrightarrow Deviation from SM bkg only hypothesis is at $\sim 3.3\sigma$ (statistical only) level - \Leftrightarrow Compatible with a sig+bkg hypothesis with $M_{H}{\sim}114$ GeV (with a cross-section ${\sim}1\sigma$ above SM exp.) - ♦ No new "sensitive" candidates in the additional ~25pb⁻¹ of data collected since the last LEPC - Systematic studies are in progress - ♦ LEP combination should increase the sensitivity (LEPHiggs talk Tom Junk) - ♦ Additional ~50pb⁻¹ expected until the end of LEP run (November the 2nd): not enough to reach 5σ at 114 GeV (even LEP combined) - ♦ Stay tuned for the next 20 days.....and then be patient for the next 5-10 years or make a wish