

ALEPH results in year 2000

F. Cerutti CERN and LNF-INFN on behalf of the ALEPH collaboration

- ♦ Data sample and detector performance in year 2000 : ALEPH is still working fine after 12 years running
- ♦ SM processes: We still have results in agreement with the SM
- ♦ SUSY searches: Low energy SUSY strongly challenged

The excitement of the year

♦ SM Higgs: WHY is LEP still running?

General Remarks

- Year 2000 has been a special year for LEP experiments: DO not miss any SIGNAL of new physics!
 - Higgs and SUSY results combined every 1-2 months
 with very preliminary systematic estimates
- ♦ The ALEPH results presented here are very preliminary!
- All limits given are at 95% CL (and deviations from SM should be considered as discoveries only if they reach the 5σ significance)

Data sample

♦ Excellent LEP performance in y2k

- \diamond Total of 178.3 pb⁻¹ (~9 different E_{CM}) collected
- ♦ ALEPH efficiency in y2k has been 95.7%!
- \Leftrightarrow 4.3 pb⁻¹ at $E_{LEP}=M_Z$ used for calibration

Data quality checks

1.2

1.4 Pµ/Ebeam

|P| calibration checked on $e^+e^- \rightarrow \mu^+\mu^-$ at \sqrt{s} =206 GeV

0.6

0.8

Data quality checks

btag performance on udsc and b jets
calibrated on Z peak data
Residual difference taken into account in systematic
error computation

SM processes: 2-fermion processes

2-fermion cross-sections

 σ_{qq} slightly above SM expectation at high s'/s

SM processes: 4-fermion processes

WW and ZZ crosssections

y2k results are the last 2 points

Good agreement with SM for all channels

SM processes: W mass and QCD

SUSY searches

- ♦ 3 different SUSY scenarios searched for
 - MSSM: missing energy
 - GMSB: photons, long-lived sleptons
 - RPV: large jet and/or lepton multiplicities
- Large variety of experimental topologies
 - Statistically independent topologies ~60
 - Tested at ~14 different E_{LEP} (at LEP2)
 - In total (up to now) ~840 statistically independent comparison of SUSY topologies with SM expectations
- In spite of that no significant deviations from SM expectations found this year

MSSM

Charnel	Expected blog	Data
Selectron	33.2	36
e _R e _L (sinlge e)	17.1	11
Smuon	29.9	32
Stau	24.2	27
Stop → cx	8.6	11
Stop->cx (VL &M)	0.7	0
Stop → bℓv	1.5	2
Sbottom→bχ	2.6	2
Changino (any m _b)	24.4	23

For heavy sneutrinos
Chargino mass limit close to
kinematic threshold
~103 GeV

<u>GMSB</u>

Topology	Expected bkg	Data	Limit(GeV)
χχ 2γ+Emiss	2.0	0	99 (Me _R =1.1M _χ)
Long-lived slepton	0.3	0	95 ($c\tau = 10^{-9}$ s)
Stable slepton	1.1	0	97

Topology	Expected bkg	Data	Limit(GeV)	
Leptons+hadrons	7.9	10	103.1 chargino	
6 leptons+Emiss	1.2	0	96.3 selec. ind. 96.7 smuon ind. 94.6 stau ind.	
4 leptons+Emiss	6.1	4	98.1 snu e ind. 88.7 snu mu/tau ind.	
4 leptons	10.3	9	100.0 snu_e dir. 90.2 snu_mu/tau dir.	
2 leptons	170.0	156	96.3 selec. dir. 86.9 smu/stau dir.	

RPV dominant LQD coupling

Topology	Expected bkg	Data	Limit(GeV)	
Multi-jets+lept.	10.0	12	102.9 chargina	
2jets+2tau 2jets+Emiss 4jets+2 lept. 5jets+1lept.	9.8 20.0 17.2	9 23 16	85.6 stopL ind 80.1 sbottomL ind 93.1 seles. Ind. 89.6 smu ind.	
4jets	703.	689	76.1 stau ind. 81.0 smu/stau dir. 79.0 snu_mu dir.	

SUSY searches

RPV dominant UDD coupling

Topology	Expected bkg	Data	Limit(GeV)
4jets+2lept.	0.6	1	91 selec. ind.
Multi-jets+2lept.	0.3	1	85 smuon ind.
4jetb	4.2	2	72 stop1 ind.
4jets multi-jets	672.2 0.32	686 1	103.0 chargino

For all 3 RPV scenarios chargino mass limits are close to 103 (assuming heavy sneutrinos) as for MSSM

Non SM Higgs

The SM Higgs search

- \Leftrightarrow Look for $e^+e^- \rightarrow HZ$ with [H->bb or $\tau\tau]$ and with $[Z->qq,vv,\ell\ell,\tau\tau]$
- ♦ Two streams of analysis used, NN and CUT:

4-jets(NN and CUT)

2-jets + Missing energy hvv (NN and CUT)

 \odot 2-Jets + 2 leptons (e or μ) ha (CUT)

 \odot 2-jets + 2 τ qq $\tau\tau$ (NN)

- ♦ Main ingredients: btag, E_{LFP} constr., M_Z constr.
- NN analysis has a slightly better sensitivity but CUT is a valid alternative: different sensitivity to systematic effects
- Analyses and statistical estimator (LR) frozen
 before data taking started: statistically unbiased
 results
- ♦ Analyses updated ON LINE: BEHOLD!

The SM Higgs results

178.2 pb⁻¹ collected in y2k

Channel	Nbkg	Nsig M _h =114	N data	Exp. Sens. (M _H =114)
4-jet NN*	38.6 (5.7)	3.6 (2.3)	41 (11)	1.45
4-jet CUT	26.0 (2.0)	2.5 (1.5)	37 (6)	1.15
hvv NN*	31.2 (2.9)	1.1 (0.6)	32 (3)	0.75
hvv CUT	16.2 (0.8)	1.0 (0.5)	15 (0)	0.60
Hee *	24.5 (1.6)	0.53 (0.51)	24 (4)	0.69
99 ττ	11.2 (0.7)	0.30 (0.23)	13 (3)	0.38
Tot NN	105.5 (10.9)	5.5 (3.6)	110 (21)	1.88
Tot CUT	78.0 (5.1)	4.4 (2.7)	87 (13)	1.59

^{*} In addition to $\rm M_H$ one other discriminating variable (btag driven) used in the $c_{\rm b}$ and $c_{\rm s+b}$ determination

- () Numbers in parenthesis refer to reconstructed $\rm M_{H}\mbox{>}109~GeV$
 - ♦ Slight excess of events at M_H>109 GeV
 - \diamond Following results include 98 and 99 data (414 pb⁻¹ at E_{LFP} ~189-202 GeV)

The updated results

Good agreement with b expectation in the ZZ region

Slight excess of candidates in the high-M_H region seen by both streams

Only partial information contained in M_H plot

Some channels use btag information as second discriminating variable in the test statistics

Deviation from SM bkg only hypothesis quantified with $(1-c_b)$

Compatibility with bkg only hypothesis

- \Leftrightarrow Test statistics used is LR(M_H|m_Hⁱ,xⁱ)=L_{s+b}/L_b
- \Leftrightarrow Deviation from bkg only hypothesis quantified in $(1-c_b)$ = Prob(LR \geq LR_{observed}) for bkg experim. probability (as a function of M_H) that observed data are as or more signal like than the expected background

 \Leftrightarrow Minimum in $(1-c_b)\sim4\times10^{-4}$ observed at M_H ~115 GeV in both streams

Compatibility with bkg hypothesis

Significance

 $(1-c_b)$ converted in number of Gaussian (one sided) σ : Significance

 $3.3 (3.4) \sigma$ Significance for NN (CUT) stream @ M_H~115 GeV

A closer look to the excess

 \diamond Origin of the excess investigated in NN stream by selecting "sensitive" events: cut at sig/bkg=2 for $M_H>109$

- 4-jet candidates (1 in the bbqq branch, 2 in the bbbb branch)
- Collected at at E_{LEP}~206.5 GeV
- Selected also by CUT stream

A closer look to the excess

- \Leftrightarrow In CUT stream the minimum in (1- c_b) is driven by 6 high mass 4-jet candidates (3 are the "sensitive" NN ones)
- ♦ Their masses are: 114.6, 114.5, 114.3, 112.9, 110.0, 109.9
- \diamond 5 are collected at E_{LFP}~206.5 and 1 at 204 GeV
- \Leftrightarrow Since btag is not used as additional discriminating variable their weight in (1-c_b) depends only on the reconstructed M_H: higher for 3 events clustered ~114.5 GeV
- \Leftrightarrow The origin of the minimum in (1-c_b) in the two streams is partially but not completely correlated
- Some systematic uncertainties would have different impacts on the two results

Compatibility sig+bkg

Fluctuation scenario: derive limits

NN stream limit exp. M_H >113.8 GeV observ. M_H >110.5 GeV

Signal scenario: determine M_H SM o_H included in LR: M_H~114GeV

55

Compatibility with sig+bkg hypothesis

 \diamond Observed -2ln(LR) minimum at M_H~114 GeV about 1 σ below (probability~17%) than what expected for a SM Higgs of that mass

Comparison with 5 September LEPC results

- \Leftrightarrow The (1-c_b) significance showed at the 5 September LEPC was 3.9 (3.8) σ for NN (CUT) stream at M_-~115 GeV
- ♦ Change w.r.t. these results:
 - \odot Correction of background shapes of 4-jet NN stream -> -0.3 σ (does not affect CUT results)
 - \odot Correction in the g->bb and g->cc expected rates in CUT stream -> -0.16 σ (already corrected in NN)
 - \odot Additional ~19 (5) pb⁻¹ collected at E_{LEP}~206.5 (205) GeV
 - NO new "significant" candidates found in any of the 2 streams (less than 0.3 expected events for sig+bkg hypothesis in NN 4-jet stream)
- \Leftrightarrow The Significance of the excess went down by ~0.6 (0.4) σ in NN (CUT) stream

systematic checks: btag

btag calibrated with y2k Zpeak data

MC IPs smeared until ϵ_{udsc} and ϵ_{b} agree with Data

agreement cross-checked with HE data

Half of the correction taken as systematic error

Effect on expected bkg All M_H ZZ =1% qq=1% WW=10% Tot=3% $M_H > 109 \text{ GeV}$ ZZ=4% qq=4% WW=10% Tot=5%

M_H bias cross-checks

Is there a (E_{LEP} independent) mass bias toward threshold in 4-jet channel?

Systematic checks

- ♦ Systematic evaluation in progress (be patient ALEPH is still in the data taking period)!
- ♦ Sources of systematic uncertainties studied up to now in the 4-jet channel:
 - btag on b and udsc jets
 - NN variables
 - gluon splitting into heavy flavors
- Preliminary systematics on expected bkg in the 4jet channel
 - 5% on ZZ (btag uncertainty + MC stat)
 - ~20% on qq (error on g->bb g->cc + MC stat)
 - ~20% on WW (btag uncertainty + MC stat)
- \diamondsuit If bkg is increased by these quantities the impact on (1-c_b) significance is small ~0.2 σ
- No large effect found up to now but the work is still continuing

The competitor

If LEP doesn't reach the discovery significance the main competitor is TEVATRON RUNII

Plot taken from Physics at Run II Workshop http://fnth37.fnal.gov/higgs/higgs.html

- ♦ Fluctuation scenario: ~2fb⁻¹ needed to exclude MH~115 GeV
- ♦ Signal scenario: ~20 fb⁻¹ needed for discovery (and CDF/D0 combination)!

Conclusions for the SM Higgs

- ♦ Interesting excess of events observed in y2k
 ALEPH data in both streams of analyses
- \Leftrightarrow Deviation from SM bkg only hypothesis is at $\sim 3.3\sigma$ (statistical only) level
- \Leftrightarrow Compatible with a sig+bkg hypothesis with $M_{H}{\sim}114$ GeV (with a cross-section ${\sim}1\sigma$ above SM exp.)
- ♦ No new "sensitive" candidates in the additional ~25pb⁻¹ of data collected since the last LEPC
- Systematic studies are in progress
- ♦ LEP combination should increase the sensitivity (LEPHiggs talk Tom Junk)
- ♦ Additional ~50pb⁻¹ expected until the end of LEP run (November the 2nd): not enough to reach 5σ at 114 GeV (even LEP combined)
- ♦ Stay tuned for the next 20 days.....and then be patient for the next 5-10 years or make a wish

