
Using valgrind
with gdb
Thomas Oulevey

ITLT-8

https://bugzilla.redhat.com/show_bug.cgi?id=1281802
https://bugzilla.redhat.com/show_bug.cgi?id=1281802

Tools
 Valgrind is an instrumentation framework for building dynamic analysis
tools. There are Valgrind tools that can automatically detect many memory
management and threading bugs, and profile your programs in detail.
It runs on many platforms:
X86/Linux, AMD64/Linux, ARM/Linux, ARM64/Linux, PPC32/Linux, PPC64/Linux,
PPC64LE/Linux, S390X/Linux, MIPS32/Linux, MIPS64/Linux, TILEGX/Linux, X86/Solaris, AMD64/Solaris, ARM/Android (2.3.x and later),
ARM64/Android, X86/Android (4.0 and later), MIPS32/Android, X86/Darwin and AMD64/Darwin (Mac OS X 10.10, with initial support for 10.11)

 GDB, the GNU Project debugger, allows you to see what is going on `inside'
another program while it executes -- or what another program was doing at
the moment it crashed.
It supports C, C++, D, Go, Objective-C, Fortran, Java, OpenCL C, Pascal,
assembly, Modula-2, and Ada.

Valgrind Output
$ valgrind --leak-check=full ./t
==9612== HEAP SUMMARY:
==9612== in use at exit: 28 bytes in 2 blocks
==9612== total heap usage: 2 allocs, 0 frees, 28 bytes allocated
==9612==
==9612== 7 bytes in 1 blocks are definitely lost in loss record 1 of 2
==9612== at 0x4C29BFD: malloc (in /usr/lib64/valgrind/vgpreload_memcheck-amd64-linux.so)
==9612== by 0x4EBB529: strdup (in /usr/lib64/libc-2.17.so)
==9612== by 0x40055E: main (toto.c:7)
==9612==
==9612== 21 bytes in 1 blocks are definitely lost in loss record 2 of 2
==9612== at 0x4C29BFD: malloc (in /usr/lib64/valgrind/vgpreload_memcheck-amd64-linux.so)
==9612== by 0x4EBB529: strdup (in /usr/lib64/libc-2.17.so)
==9612== by 0x400548: main (toto.c:5)
==9612==
==9612== LEAK SUMMARY:
==9612== definitely lost: 28 bytes in 2 blocks
==9612== indirectly lost: 0 bytes in 0 blocks
==9612== possibly lost: 0 bytes in 0 blocks
==9612== still reachable: 0 bytes in 0 blocks
==9612== suppressed: 0 bytes in 0 blocks
==9612==

GDB
$ gdb ./araignee

Reading symbols from ./araignee...done.
>>> run -t
>>> break myfunc
>>> print myvar

Cheat sheet :

https://www.sthu.org/code/codesnippets/files/gdb_cheatsheet.pdf

http://users.ece.utexas.edu/~adnan/gdb-refcard.pdf

https://www.sthu.org/code/codesnippets/files/gdb_cheatsheet.pdf
https://www.sthu.org/code/codesnippets/files/gdb_cheatsheet.pdf
http://users.ece.utexas.edu/~adnan/gdb-refcard.pdf
http://users.ece.utexas.edu/~adnan/gdb-refcard.pdf

Mixing the tools together
--vgdb=<no|yes|full> [default: yes]
 Valgrind will provide "gdbserver" functionality

when --vgdb=yes or --vgdb=full is specified.
 This allows an external GNU GDB debugger to control

and debug your program when it runs on

--vgdb-error=<number> [default: 999999999]
 Tools that report errors will wait for "number" errors

to be reported before freezing the program
 and waiting for you to connect with GDB.

buggy C code : araignee.c
Memory leak ;
Variable malloced but not freed (10 bytes)

$ gcc -g -O1 -o araignee araignee.c
$ valgrind --leak-check=full \
 --vgdb=yes --vgdb-error=0 ./araignee

==13245== TO DEBUG THIS PROCESS USING GDB: start GDB like this
==13245== /path/to/gdb ./araignee
==13245== and then give GDB the following command
==13245== target remote | /usr/lib64/valgrind/../../bin/vgdb --pid=13245
==13245== --pid is optional if only one valgrind process is running

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 int main(void)
5 {
6 char *p = malloc(10);
7 *p = 'a';
8 int i =42;
9 char c = *p;
10
11 printf("\n [%i][%c]\n", i, c);
12
13 return 0;
14 }

 $ gcc -c -Q -O1 --help=optimizers

Workflow

1 . Run your program under GDB and
Valgrind

2 . Put a break at where you think the
memory is lost

break 7
break main

3. Continue there
continue

4. Check for memory leak
monitor leak_check

5. reiterate until you find the leak
next / step / continue / print
monitor leak_check

$ gdb ./araignee
Reading symbols from ./araignee...done.
>>> target remote | vgdb
Remote debugging using | vgdb
relaying data between gdb and process 13850
>>> break 7
>>> break 14
Breakpoint 1 at 0x400596: file araignee.c, line 7.
Undefined command: "". Try "help".
>>> continue
>>> monitor leak_check
==13850== All heap blocks were freed -- no leaks are possible
>>> continue
>>> monitor leak_check
==13850== LEAK SUMMARY:
==13850== definitely lost: 10 bytes in 1 blocks
==13850== indirectly lost: 0 bytes in 0 blocks
==13850== possibly lost: 0 bytes in 0 blocks
==13850== still reachable: 0 bytes in 0 blocks
==13850== suppressed: 0 bytes in 0 blocks

 >>> break araignee.c:8 if i == 42

Cool gdb tuning

gdb-dashboard

https://github.com/cyrus-and/gdb-dashboard

https://github.com/cyrus-and/gdb-dashboard
https://github.com/cyrus-and/gdb-dashboard

Thank you !

SSSD bug : https://fedorahosted.org/sssd/ticket/2803

Thanks, Sebastien Ponce for the debug session

https://fedorahosted.org/sssd/ticket/2803

