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Contact details

Email: yg73@cornell.edu

Some “homework” for these lectures:
http://lepp.cornell.edu/∼yuvalg/CERNsummer/

Office while at CERN: 4-2.046
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Yesterday...

What is mechanics: x(t) ⇒ L ⇒ symmetries

Q: the implication of x1 → −3x2 and x2 → −x1/3?

A: q1 = x1 − 3x2, q2 = x2 + 3x1 and we have V (q1)

What is field theory: φ(x, t) are the coordinates. x and t
are parameters

We can get the same axioms to field theories as for
mechanics
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Solving field theory

We also have an E-L equation for field theories

∂µ

(

∂L

∂ (∂µφ)

)

=
∂L

∂φ

We have a way to solve field theory

Just like in Newtonian mechanics, we want to get L
from symmetries!
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Free field theory

The “kinetic term” is promoted

T ∝

(

dx

dt

)2

⇒ T ∝

(

dφ

dt

)2

−

(

dφ

dx

)2

≡ (∂µφ)
2

Free particles fields have only kinetic terms

L = (∂µφ)
2

⇒
∂2φ

∂x2
=
∂2φ

∂t2

An L of a free field gives a wave equation

As in Newtonian mechanics, what used to be the
starting point, here is the final result

Why did we get the field equation as output?
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Harmonic oscillator
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The harmonic oscillator

Why do we care so much about harmonic oscillators?

Because we really care about springs?

Because we really care about pendulums?
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The harmonic oscillator

Why do we care so much about harmonic oscillators?

Because we really care about springs?

Because we really care about pendulums?

Because almost any function around its minimum can be
approximated as a harmonic function!

Indeed, we usually expand the potential around one of
its minima

We identify a small parameter, and keep only few
terms in a Taylor expansion
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Classic harmonic oscillator

V =
kx2

2

We solve the E-L equation and get

x(t) = A cos(ωt) k = mω2

The period does not depend on the amplitude

Energy is conserved

Which of the above two statements is a result of the
approximation of keeping only the harmonic term in the
expansion?
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Coupled oscillators
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Coupled oscillators

There are normal modes

The normal modes are not “local” as in the case of one
oscillator

The energy of each mode is conserved

This is an approximation!

Once we keep non-harmonic terms energy moves
between modes

V (x, y) =
k1x

2

2
+
k2y

2

2
+ αx2y

What determines the rate of energy transfer?
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Things to think about

Relations between harmonic oscillators and fields

When can we treat an oscillator as harmonic?
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Quantum mechanics
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What is QM?

Many ways to formulate QM

For example, we promote x → x̂

We solve QM if we know the wave function ψ(x, t)

How many wave function describe a system?

The wave function is mathematically a field

Y. Grossman HEP theory (2) CERN, July 2, 2015 p. 13



The quantum SHO

H =
p2

2m
+
mω2x2

2
En = (n+ 1/2)~ω

We also like to use

H = (a†a+ 1/2)~ω a, a† ∼ x± ip x ∼ a+ a†

We call a† and a creation and annihilation operators

a|n〉 ∝ |n− 1〉 a†|n〉 ∝ |n+ 1〉

So far this is abstract. What can we do with it?
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Couple oscillators and Fields

With many DOFs, a → ai → a(k)

And the states

|n〉 → |ni〉 → |n(k)〉

And the energy

(n+ 1/2)~ω →
∑

(ni + 1/2)~ωi →
∫

[n(k) + 1/2]~ωdk

Just like in mechanics, we expand around the minimum
of the fields, and to leading order we have SHOs

In QFT fields are operators while x and t are not
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SHO and photons

I have two questions:

What is the energy that it takes to excite a SHO by one
level?

What is the energy of the photon?
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SHO and photons

I have two questions:

What is the energy that it takes to excite a SHO by one
level?

What is the energy of the photon?

Same answer

~ω

Why the answer to both question is the same? Can we
learn anything from it?
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What is a particle?

Excitations of SHOs are particles

Y. Grossman HEP theory (2) CERN, July 2, 2015 p. 17



More on QFT
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What about masses?

A SHO give a “free” Lagrangian

L =
1

2
(∂µφ)

2

We can add “potential” terms (without derivatives)

L =
1

2
(∂µφ)

2
+m2φ2

Here m is the mass of the particle. Still free particle

(HW) Show that it is a mass by showing that

ω2 = k2 +m2
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What about other temrs?

We can add terms. How do we choose what to add?

Must be invariant under the symmetries

We keep some leading terms (usually, up to φ4)

Lets add λφ4. We get the non-linear wave equation

∂2φ

∂x2
−
∂2φ

∂t2
= 4λφ3

We do not knwo how to solve it classically, nor in QM
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What about fermions?

We see how photons are related to SHO

We can construct a fermion SHO

[a, a†] = 1 → {b, b†} = 1

No classical analogue since b2 = 0

We can then think of fermionic fields. They can
generate only one particle in a given state
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A short summary

Particles are excitations of fields

The fundeumental Lagrangian is giving in term of fields

Our aim is to find L

We can only solve the linear case, that is, the
equivalent of the SHO.
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Perturbation theory
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Perturbation theory

H = H0 +H1 H1 ≪ H0

In many cases pertubation theory is a mathematical
tool

There are cases, however, that PT is a better way to
describe the physics

Many times we prefer to work with EV of H (why?)

Yet, at times it is better to work with EV of H0 (why?)
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PT for 2 SHOs

V (x, y) =
kx2

2
+

4ky2

2
+ αx2y

Classically α moves energy between the two modes

How it goes in QM?

Recall the Fermi golden rule

P ∝ |A|2 × P.S. A ∼ 〈f |αx2y|i〉

If the initial state is |0, 1〉 what transitions are alowed?

x ∼ ax + a†
x y ∼ ay + a†

y
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PT for 2 SHOs again

V (x, y) =
kx2

2
+

4ky2

2
+ αx2y

since the perturbation is x2y we see that f = |2, 0〉

A ∼ 〈2, 0|αx2y|0, 1〉 ∼ 〈2, 0|(ax+a†
x)(ax+a†

x)(ay+a†
y)|0, 1〉

ay in y annihilates the y “particle” and (a†
x)2 in x2

creates two x “particles”

It is a decay of a particle y into two x particles with

lifetime of τ ∝ α2
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Even More PT

V ′ = αx2z + βxyz ωz = 10, ωy = 3, ωx = 1

Calculate y → 3x using 2nd order PT

A ∼ 〈3, 0, 0|O|0, 1, 0〉 O ∼
∑ 〈3, 0, 0|V ′|n〉〈n|V ′|0, 1, 0〉

En − E0,1,0

What intermediate states contribute? |1, 0, 1〉 and
|2, 1, 1〉

|0, 1, 0〉 → |1, 0, 1〉 → |3, 0, 0〉+|0, 1, 0〉 → |2, 1, 1〉 → |3, 0, 0〉

What is the meaning of the 1/∆E?
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