

Pseudo-Observables at LEP

1 KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

Precision measurements at the electroweak scale

- determination of parameters of the Z-Boson: mass, total width, partial widths, couplings to fermions
- WW-boson pair production and validation of gauge structure of ZWW and γ WW vertices, search for "anomalous couplings"
- test of the quantum structure of the electroweak interaction **LEP –** effects from propagator and vertex loops

led to

The Nobel Prize in Physics 1999 Gerardus 't Hooft, Martinus J.G. Veltman

for "elucidating the quantum structure of the electroweak interaction"

and

 prediction of the top-quark mass, and – together with top and W mass from Tevatron – prediction of Higgs boson mass from virtual corrections

The Menu of this Lecture

- \bullet Observables at LEP 1:
	- ~500 measurements in total of
		- * total cross sections
		- * forward-backward asymmetries
	- over 6 years by 4 experiments at ~20 "energy points"
- Choice of "Pseudo-Obervables"
	- 9 parameters, boils down to five with lepton-universality
	- model-independent with 16 parameters (S-matrix)
- several "electroweak libraries" fast enough for fitting: BHM/MIZA, ZFITTER and TOPAZ0 documented in "The Standard Model in the Making, Bardin/Passarino.
- Standard-Model fits: σ / A_{FR} vs. POs
- Final combination of LEP results is based on POs what are the uncertainties ?
- An application: the last fit by the LEP-EWWG to precision-POs

Measurements in e⁺ e– at LEP – the four experiments

Event displays

Event Displays from LEP experiments

LEP 1 and LEP 2

LEP 1: measurement of Z boson parameters (~16 million Z's) **LEP 2**: measurement of W and Z boson pair production, W boson Parameters

(main) Achievements at LEP

LEP 1: 17 Million Z-boson decays recorded by the four experiments

- precise determination of Z-boson parameters,
- determination of the number of light neutrino-species
- precise measurements of the weak mixing-angle
- prediction of top-quark and W-boson masses from radiative corrections
- LEP 2: integrated Luminosity of 3/fb recorded by the four experiments at centre-of-mass energies between 130 and 209 GeV
	- measurements of W-pair production (from ~40'000 W-pairs in total)
	- W-boson mass and width
	- studies of fermion- and photon-pair production
	- studies of four-fermion processes
	- self-couplings of electroweak gauge bosons
	- searches: Higgs-Boson, supersymmetry …
	- *together with top- and W-boson mass from Tevatron:* prediction of Higgs-boson mass from radiative corrections

The observables at LEP 1: differential cross sections

total cross section

$$
\sigma_{tot} \equiv \int_{-1}^{1} \frac{d\sigma}{d\cos\theta} d\cos\theta
$$

depends on (1+cos2 Θ) terms only

Forward-backward asymmetry

$$
A_{FB} \equiv \frac{\int_0^1 \frac{d\sigma}{d\cos\theta} d\cos\theta - \int_{-1}^0 \frac{d\sigma}{d\cos\theta} d\cos\theta}{\sigma_{tot}}
$$

depends on cos Θ terms only

Principle:

Extract combinations of Z-couplings to fermions form measurements of σ_{tot} and A_{FB} in different channels and at different energies

Fermion-pair cross-section around Z resonance

Fundamental parameters of interest are "hidden".

Need theoretical corrections to access them.

M_7 : "LEP definition" vs. "pole mass"

Yellow Report "Z Physics at LEP 1" (CERN-89-08) suggested to use a *"Breit-Wigner with s-dependent width*" to parametrise the Z resonance:

$$
\sigma_{Z \to f\overline{f}}(s) = \sigma_f^{\rm peak} \frac{s\Gamma_Z^2}{(s - M_Z^2)^2 + s^2 \Gamma_Z^2/M_Z^2}
$$

this differs from the usual "pole mass" by a factor $\sqrt{1+\Gamma_Z^2/M_Z^2}$

(corresponding to 34 MeV)

ľ and is the origin of the remark on the Z-boson mass in the PDG table:

The Z-boson mass listed here corresponds to the mass parameter in a Breit-Wigner distribution with mass dependent width. The value is 34 MeV greater than the real part of the position of the pole (in the energy*from PDG, http://pdg.lbl.gov*

btw.: the same remark holds for M_{W}

Message: while "observables" (like cross sections) are rather unambiguous, the exact definition of "pseudo-observables" does matter !

The improved Born-approximation

can cast differential cross-section

into a **Born-type structure** with complex effective couplings:

$$
\frac{2s}{\pi} \frac{1}{N_c^f} \frac{d\sigma_{\text{ew}}}{d\cos\theta} (e^+e^- \to f\bar{f}) =
$$
\n
$$
\frac{|\alpha(s)Q_f|^2 (1 + \cos^2\theta)}{\gamma}
$$
\n
$$
\frac{-8\Re \{\alpha^*(s)Q_f \chi(s) [\mathcal{G}_{\text{Ve}}\mathcal{G}_{\text{Vf}}(1 + \cos^2\theta) + 2\mathcal{G}_{\text{Ae}}G_{\text{Af}}\cos\theta] \}}{\gamma - Z \text{ interference}}
$$
\n
$$
+16|\chi(s)|^2 [(|\mathcal{G}_{\text{Ve}}|^2 + |\mathcal{G}_{\text{Ae}}|^2)(|\mathcal{G}_{\text{Vf}}|^2 + |G_{\text{Af}}|^2)(1 + \cos^2\theta)
$$
\n
$$
+8\Re \{\mathcal{G}_{\text{Ve}}\mathcal{G}_{\text{Ae}}^*\}\Re \{\mathcal{G}_{\text{Vf}}G_{\text{Af}}^*\} \cos\theta]
$$
\nwith\n
$$
\chi(s) = \frac{m_Z^2}{8\pi\sqrt{2}} \frac{s}{s - m_Z^2 + i\Gamma_Z m_Z}
$$

Improved Born Approximation: Remarks

- This parametrisation describes the main features of the measurements around the Z resonance
- parameters are not "realistic observables", but rather "pseudo-observables" which receive significant theoretical corrections;

however, their definition is close to experimental observables

- very fortunate: QED-effects depend in a model-independent manner on the resonance properties
- QED-deconvoluted pseudo-observables absorb electroweak corrections
- There are, however, small non-factorizable (complex-valued) corrections, so-called "remnants", wich are included in the complex couplings These effects are small in the SM (e.g. amounting to 0.05% for σ ⁰, which is negligible compared to the experimental errors) but may not be so small in other (arbitrary exotic) theories !
- the parametrisation is "model-independent" in all cases where predicted remnants are small

Example: final ALEPH results, hadrons and leptons (publ. 1999)

Observables: Hadronic cross-sections by the four experiments

The challenge: ~300 individual measurements (different channels, CM energies and data taking periods) to obtain **M^Z , ΓZ and pole production cross sections of q, e,** μ **and** τ

Combining four sets of "Pseudo-Observables"

Ok to combine experiments at PO-level only ?

??? Is it ok to use pseudo-observables ?

Or, must the measurements be combined at cross-section level ?

Check performed by LEP-EWWG

internal note LEPEWWG/LS 98-01

Tested with 4×7 precisely measured hadronic cross sections

- 1. combine four sets of (three) parameters
- 2. determine parameters by combining 28 cross-section measurements

Results indicated only a small experimental problem

(resulting form treatment of energy errors on the '93 and '95 values of the Z mass)

but no "theoretical" problem

final combination of all LEP I results was based on POs

Example: letpton forward-backward asymmetries

Forward-Backward Asymmetry

$$
A_{FB} = \frac{N_{forward}-N_{back}}{N_{tot}} = \frac{\int_0^1 \frac{d\sigma}{d\cos\theta} d\cos\theta - \int_{-1}^0 \frac{d\sigma}{d\cos\theta} d\cos\theta}{\sigma_{tot}}
$$

LEP I: combined line-shape results

Set of combined, well-understood pseudo-observables and their correlated errors represents a very effective way to preserve "legacy results":

Possible Alternative: combination at cross-section level

We could also have produced combined cross-sections and asymmetries,

 $\sigma_i^f(E_i), i = 1, \ldots 20, f = q, e, \mu, \tau, A_{\text{FB}}^{f,i}(E_i), i = 1, \ldots 20, f = e, \mu, \tau$

but these would have been very complicated to handle:

- correlated errors on all σ_i^f

- not measured at a fixed value of centre-of-mass energy, E_i *(there is a spread in energy due to the fill-to-fill reproducibility of the beam-energy and the natural beam-energy spread of the accelerator)* energy-spread correction depends on the line shape !
- energy errors are correlated

So, one would have needed a large set of numbers to describe the measurements: $\sigma_i^f(E_i), \Delta \sigma_i^f, A_{\text{FB}}^{f,i}, \Delta A_{\text{FB}}^{f,i}, \Delta E_i, \delta_E^{\text{spread}}$ and the correlation matrices C_{σ} , C_A , C_E

for a total of ~80 combined cross-sections and 60 combined asymmetries around 20 different energy points

Such sets of numbers have been produced by each experiment individually, however, no LEP combination at this level has been attempted.

S-Matrix Approach: a more general set of parameters

The S-Matrix Ansatz describes the differential cross-section assuming one massless and one massive vector boson:

$$
\sigma_{\text{tot,f}}^{0}(s) = \frac{4}{3}\pi\alpha^{2}\left[\frac{g_{\text{f}}^{\text{tot}}}{s} + \frac{j_{\text{f}}^{\text{tot}}(s - \overline{m}_{\text{Z}}^{2}) + r_{\text{f}}^{\text{tot}}s}{(s - \overline{m}_{\text{Z}}^{2})^{2} + \overline{m}_{\text{Z}}^{2}\overline{\Gamma}_{\text{Z}}^{2}}\right] \text{ with } f = \text{had}, e, \mu, \tau
$$
\n
$$
A_{\text{fb,f}}^{0}(s) = \pi\alpha^{2}\left[\frac{g_{\text{f}}^{\text{fb}}}{s} + \frac{j_{\text{f}}^{\text{fb}}(s - \overline{m}_{\text{Z}}^{2}) + r_{\text{f}}^{\text{fb}}s}{(s - \overline{m}_{\text{Z}}^{2})^{2} + \overline{m}_{\text{Z}}^{2}\overline{\Gamma}_{\text{Z}}^{2}}\right] / \sigma_{\text{tot,f}}^{0}(s)
$$
\n
$$
\text{differential}
$$
\nof $\mathfrak{m}_{\text{Z}} \& \tau_{\text{Z}} \rightarrow \mathfrak{m}_{\text{Z}} \& \tau$

The r and j parameters scale the Z exchange and γ /Z interference contributions, *i.e. couplings and interference terms are treated as free parameters*

S-Matrix parameters can be related to SM-parameters: $r_{\rm f}^{\rm tot} = \kappa^2 \left[g_{\rm Ae}^2 + g_{\rm Ve}^2 \right] \left[g_{\rm Af}^2 + g_{\rm Vf}^2 \right] - 2\kappa \, g_{\rm Ve} \, g_{\rm Vf} C_{Im} \qquad \kappa = \frac{G_F m_Z^2}{2\sqrt{2}\,\pi\alpha} \approx 1.50$ $j_f^{\text{tot}} = 2\kappa g_{\text{Ve}} g_{\text{Vf}} (C_{Re} + C_{Im})$ with $C_{Im} = \frac{\Gamma_Z}{m_Z} Q_e Q_f \text{ Im} \{F_A(m_Z)\}$
 $C_{Re} = Q_e Q_f \text{ Re} \{F_A(m_Z)\}$
 $F_A(m_Z) = \frac{\alpha(m_Z)}{\alpha},$ $g_{\rm f}^{\rm tot} \ = \ Q_{\rm e}^2 Q_{\rm f}^2 \left| F_A(m_{\rm Z}) \right|^2$ $r_{\rm f}^{\rm fb}$ = $4\kappa^2 g_{\rm Ae} g_{\rm Ve} g_{\rm Af} g_{\rm Vf} - 2\kappa g_{\rm Ae} g_{\rm Af} C_{Im}$ $j_{\rm f}^{\rm fb}$ = $2\kappa g_{\rm Ae} g_{\rm Af} (C_{Re} + C_{Im})$ $= 0.$

S-Matrix Approach: combined results

 $\mathbf{r} \text{ in } \mathbf{e}^{\text{+}} \mathbf{e}^{\text{-}} \rightarrow \mathbf{\tau}^{\text{+}} \mathbf{\tau}^{\text{-}}$:

Spin in final state can be measured assuming V-A structure in τ decay

average τ polarization depends on e and τ couplings

SLDs main contribution

Measurements at SLAC linear collider: **polarized e[−] colliding with unpolarized e⁺ at √s=M_Z** measurements analogous to LEP, but can determine σ and A_{FB} for left- and right-handed e⁻

$$
\begin{aligned}\n\text{Pos from From SLD:} \\
A_{LR} &= \frac{1}{\mathcal{P}_e} \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R} \propto \mathcal{A}_e \\
A_{fb,LR} &= \frac{1}{\mathcal{P}_e} \left(A_{fb,L} - A_{fb,R} \right) \propto \mathcal{A}_e\n\end{aligned}
$$

 A_{LR} is most sensitive single measurement to sin $^2\theta_W^{\text{eff}}$

Z-couplings

IBA-parametrisation gives access to the vector and axial- vector couplings of the Z boson to fermions;

 small imaginary parts of the couplings taken from Standard Model *(so-called "Standard Model remnants")*

Effective couplings are functions of Standard-Model parameters

$$
\mathcal{G}_{V, A f} = \mathcal{G}_{V, A f}(\alpha_{em}, G_F, M_Z, m_{top}, M_{Higgs}, ...)
$$

due to virtual corrections.

Can use (real parts of) vector and axial-vector couplings as fit parameters

> $g_{\rm Vf} = \Re(\mathcal{G}_{\rm Vf})$ $g_{\rm Af} = \Re(\mathcal{G}_{\rm Af})$

effective p-parameter and effective sin² θ_w

tree-level relation

 $g_V^{\text{tree}} \equiv g_L^{\text{tree}} + g_R^{\text{tree}} \equiv \sqrt{\rho_0} \left(T_3^{\text{f}} - 2 Q_{\text{f}} \sin^2 \theta_W^{\text{tree}} \right)$

 $g_{\rm A}^{\rm tree} \equiv g_{\rm L}^{\rm tree} - g_{\rm R}^{\rm tree} = \sqrt{\rho_0} T_3^{\rm f}.$

further away from measurements, but closer to the structure of the ew corrections

 $\Delta \rho$ and $\sin^2 \Theta_w^{\text{eff}}$

becomes relation of "effective" parameters 0.233 m_t = 178.0 ± 4.3 GeV $\begin{array}{rcl} g_{\rm Vf} & \equiv & \sqrt{\rho_{\rm f}} \left(T_3^{\rm f} - 2 Q_{\rm f} \sin^2 \theta_{\rm eff}^{\rm f} \right) \\ g_{\rm Af} & \equiv & \sqrt{\rho_{\rm f}} \, T_3^{\rm f} \, , \end{array}$ $m_{H} = 114...1000$ GeV m_H 0.231 $\int \Delta \alpha$ m. 68% CL 1.002 1.004 1.006 ρ_1

More measurements: b-quarks

special diagrams involving top-quarks

Two more POS:
\n
$$
R_{\rm b} = \frac{\Gamma_{\rm b\overline{b}}}{\Gamma_{\rm had}}
$$
\n
$$
A_{\rm FB}^{0, \rm b} = \frac{4}{3} \mathcal{A}_{\rm e} \mathcal{A}_{\rm b}
$$

Top-Quark mass

Early $t\bar{t}$ candidate event in CDF (09/24/92)

large corrections from virtual top quarks,

888888

$$
\propto G_F m_{\rm top}^2
$$

require precise measurements of the top-quark mass

sensitivity to Higgs-boson mass only after precise value of m_{top} became available

W-boson mass

Together with m_Z , m_W fixes the on-shell weak mixing angle !

Theoretical calculations by **many theorists** are incorporated in computer codes, the **"electroweak libraries"**

EW libraries compared during "Precision calculation WS", 1995

- BHM / MIZA Burgers, Hollik, Martinez, Teubert
- LEPTOP ITEP Moscow group: Novikov, Okun, Rozanov, Vysotsky
- TOPAZ0 Torino-Pavia group: Montagna, Nicrosini, Passarino, Piccinini, Pittau
- WHO Beenakker, Burgers, Hollik
- ZFITTER Dubna-Zeuthen group: Bardin, Bilenky, Chizov, Olchevsky, S. Riemann, T. Riemann, Sachwitz, Sazonov, Sedykh, Sheer

TOPAZ0 *and* **ZFFITER** *continued to be compared/developed into the LEP 2 era*

KK2f *(fermion-pair production LEP2)* Jadach, Ward, Was

ZFITTER references

Two very complete program packages,

thoroughly compared and used for final results and combinations:

ZFITTER references:

D. Y. Bardin *et al.*, Z.Phys. C44 (1989) 493;

D. Y. Bardin et al., Comput.Phys.Commun. 59 (1990) 303-312;

D. Y. Bardin *et al.*, Nucl. Phys. **B351** (1991) 1–48;

D. Y. Bardin et al., Phys. Lett. **B255** (1991) 290–296;

D. Y. Bardin et al., ZFITTER: An Analytical program for fermion pair production in e^+e^- annihilation, Eprint hep-ph/9412201, 1992;

D. Y. Bardin et al., Comput. Phys. Commun. 133 (2001) 229-395;

A. Arbuzov, Light pair corrections to electron positron annihilation at LEP / SLC, Eprint hep-ph/9907500, 1999;

- A. Arbuzov, JHEP 0107 (2001) 043;
- A. Arbuzov *et al.*, Comput. Phys. Commun. 174 (2006) 728-758;

ZFITTER support group, ZFITTER 6.43, June 2008, http://zfitter.desy.de.

TOPAZ0 references:

G. Montagna et al., Nucl. Phys. **B401** (1993) 3-66;

- G. Montagna et al., Comput.Phys.Commun. 76 (1993) 328-360;
- G. Montagna et al., Comput. Phys. Commun. 93 (1996) 120-126;

G. Montagna et al., Comput. Phys. Commun. 117 (1999) 278-289, updated to include initial state pair radiation (G. Passarino, priv. comm.).

Detailed procedures: input to ew libraries

Measuremens of total cross-sections and forward-backward asymmetries were corrected to an "ideal" acceptance that can be handled by the ew libraries

Different "interfaces" in the codes allow to calculate

- **cross-sections and asymmetries** (within ideal acceptance) as functions of
	- Standard-Model Parameters

 $(\alpha_{em}, G_F, \alpha_s, M_Z, m_{top}, M_H,$ light fermion masses)

- POs $(M_{\rm Z}, \Gamma_{\rm Z}, \sigma_{\rm had}^0, R_{\rm e}, R_{\mu}, R_{\tau}, A_{\rm FB}^{0, e}, A_{\rm FB}^{0, \mu}, A_{\rm FB}^{0, \tau})$ or $(M_{\rm Z}, \Gamma_{\rm Z}, \Gamma_{\rm had}, \Gamma_{\rm e}, \Gamma_{\mu}, \Gamma_{\tau}, A_{\rm FB}^{0,e}, A_{\rm FB}^{0,\mu}, A_{\rm FB}^{0,\tau})$

- couplings $(M_Z, \Gamma_Z, \sigma_{\text{had}}^0, g_{\text{Vf}}, g_{\text{Af}})$

POs from Standard-Model-Parameters

 $(\alpha_{em}, G_F, \alpha_s, M_Z, m_{top}, M_H,$ light fermion masses)

remark: other "interfaces", like the "ε-parameters" *(Altarelli, Barbierei, Jadach, Caravaglios)* or "STU-parameters" *(Peskin, Takeuchi)* , were also implemented

SM fit to σ / A_{FB} vs. fit to POs

Dominant effect is on M_Z , but small compared to total error of 2.1 MeV

POs are an excellent representation of the experimental measurements

Theoretical uncertainties on POs

Theoretical uncertainties arise from:

- QED radiative corrections (known to full 2^{nd} order and 3^{rd} order LL)
- residual Standard-Model dependencies
	- * parameric uncertainties from (at the time) unknown Higg-boson mass, top-quark mass and $\alpha_{em}(s)$.

(α _s self-consistently fitted from hadronic cross section)

- * genuine theoretical uncertainties from missing higher orders and detailed treatment in codes
- "ambiguities" in the parametrisation of the differential cross-section near the Z-resonance in terms of the POs

Z-Pole Legacy Results

Legacy results of precision measurements around the Z-Pole are represented by a set of Pseudo-observables

These can be expressed as functions of more fundamental parameters $(\alpha_{em}, G_F, \alpha_s, M_Z, m_{top}, M_H,$ light fermion masses)

and serve to

- constrain Standard Model parameters
- test alternative theories

Standard-Model fit to precision pseudo-observables

Pseudo-Observables defined and measured at LEP 1,2 are important members of a longer list of precision "observables"

proof-of-principle: top-mass prediction 1993/94

Excellent agreement between top from loops and from direct measurement !

indirect vs. direct top-quark mass

Estimating Theoretical Uncertainties

Uncertainties evaluated by WG "Precision calculations for the Z resonance" (1997) comparing different, but (to present knowledge) equivalent treatments of

- *re-summation techniques*
- *factorisation schemes*
- *choice of scales for vertex corrections etc.*

Into the Future

LEP Electroweak Working Group

 finished its mission with the publication of the "LEP 2 report" *Phys. Rept. 532 (2013)*

POs continue to play their role, and calculations are still being improved, e.g. full EW 2-loop calculation of Z partial widths (A. Freitas, 2014), included in a new-generation fitting tool

> global ew fit by GFITTER team http://project-qfitter.web.cern.ch

> > Higgs-boson mass: $M_{\rm H} = 93^{+25}_{-21} \, GeV$

Lessons to learn for future endeavours

 (personal view, and thanks to Martin Grünewald for some input):

• reaching agreement on a set of Pseudo-Observables ("POs") is tedious and takes much time

- consensus of theoretical and experimental communities is essential, both should be involved from the very beginning
- need at least two "tools" supporting the common set of POs
- interface to experimental fitting-tools must be well designed to support complex use cases
- an established set of POs, derived from a well-defined set of input measurements, is much easier to handle than a long list of (raw) experimental measurements, or even worse, limits and constraints on a variety of parameters derived from sub-sets of measurements
- experiments are free to use other approaches but results based on common agreements should always be included

Change agreements when something truly better comes along ...

Thanks for your attention

(some) selected literature

- CERN Yellow Report "Z Physics at LEP 1" (CERN-89-08)
- CERN Yellow Report "Precision calculations on the Z resonance (CERN-95-03)
- D. Bardin, G. Passarino, "The Standard Model in the Making", Oxford University Press
- ZFITTER: D. Bardin et al., Z: Phys C44 (1989), and later documents
- TOPAZ0: G. Montagna et al., Nucl. Phys. B401 (1993), and later documents
- The ALEPH, DELPHI, L3 OPAL, SLD Collaborations, the LEP Electroweak Working Group, the SLD Electroweak and Heavy Flavour Groups, "Precision Electroweak Measurements on the Z Resonance", Phys. Rept. 427 (2006)
- The ALEPH, DELPHI, L3 OPAL Collaborations, the LEP Electroweak Working Group, "Electroweak Measurements in Electron-Positron Collisions at W-Boson-Pair Energies at LEP", Phys. Rept. 532 (2013)
- D. Bardin, M. Grünewald, G. Passarino, "Precision Calculation Project Report", arXiv:hep-ph/9902452