$K^{\mathbf{0}}_{\boldsymbol{S}} \rightarrow \pi^{\mathbf{0}} \mu \mu$

Introduction

 μ misID

Interaction with the Detector

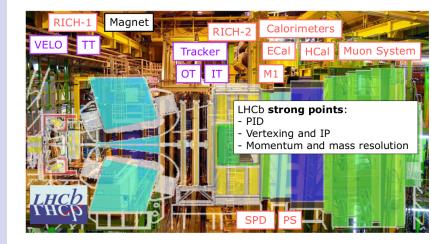
Position of the π^0

Conclusion

Study of the decay $K^0_S
ightarrow \pi^0 \mu \mu$

Xabier Cid Vidal, Victor Renaudin

August 14th 2014


$$\kappa_{\boldsymbol{S}}^{\boldsymbol{0}} \to \pi^{\boldsymbol{0}} \mu \mu$$

 μ misID

Interaction with the Detector

Position of the π^0

Conclusion

Introduction

 $K_{\mathbf{S}}^{\mathbf{0}} \rightarrow \pi^{\mathbf{0}} \mu \mu$

$\mu \text{ mis}|\mathsf{D}$

- Interaction with the Detector
- Position of the π^{0}
- Con clusion

- $BF({\cal K}^0_L o \pi^0 \mu \mu)$ could be sensitive to New Physics
- $BF(K_S^0 \to \pi^0 \mu \mu)$ can constrain the CP violating amplitude of $K_L^0 \to \pi^0 \mu \mu$ and let us access the New Physics contribution.
- Now $BF(K_S^0) = (2.9^{+1.5}_{-1.2}) imes 10^{-9}$
- ightarrow Is it possible to measure this BF and improve accuracy ?

$$\kappa_{\boldsymbol{S}}^{\boldsymbol{0}} \to \pi^{\boldsymbol{0}} \mu \mu$$

Origin of Background

Introduction

 μ misID

Interaction with the Detector

Position of the π^0

Conclusion

Several sources of Background (a priori):

- $K_S^0 \to \pi\pi$
- $\Lambda, \overline{\Lambda} \to p\pi$
- $K_S^0 \to \pi^\pm \mu^\mp \nu_\mu$
- Interaction with the detector
- combinatorial Background

 \rightarrow We need to find cuts to separate the signal to this background

We will compare MC truth matched and Data after Stripping Selections.

$$\kappa_{\boldsymbol{s}}^{\boldsymbol{0}} \to \pi^{\boldsymbol{0}} \mu \mu$$

$\mu \text{ mis}|\mathsf{D}$

Interaction with the Detector

Position of the π^0

Conclusion

$\begin{array}{l} BF(K_S^0 \to \pi\pi) \approx 0.69 \\ p(\pi \to \mu) \approx 0.01 \\ \to \\ BF(K_S^0 \to \pi\pi_{doubleMislD}) \approx 0.69 \times 0.01^2 \approx 6.9 \ 10^{-5} >> 10^{-9} \\ \text{Idea for a cut : reconstruct the } \pi\pi \text{ mass, it should produce a} \\ \text{peak with all the events } K_S^0 \to \pi\pi \end{array}$

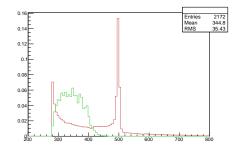


Figure : Distribution of $\pi\pi$ mass. Data and MC signal.

 μ mis|D

Interaction with the Detector

Position of the π^0

Conclusion

fake K_S^0 from particles interacting with the detector.

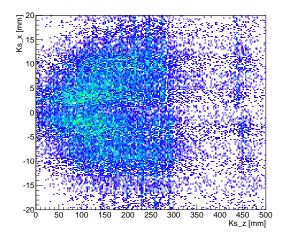


Figure : Plot of the x and z components of the reconstructed K_S^0 vertex.

Position of the π^0

Introduction

 $K_{\mathbf{S}}^{\mathbf{0}} \rightarrow \pi^{\mathbf{0}} \mu \mu$

$\mu \, \min |\mathsf{D}$

Interactior with the Detector

Position of the π^0

Conclusion

- Reconstructing π^0 is very difficult.
- π^0 in each event is randomly chosen.
- each π^0 decays in two photons.

 \rightarrow Can we determine the direction of the π^0 and compare its expected position with the positions of the two photons ?

Position of the π^0

Introduction

 $K_{\mathbf{S}}^{\mathbf{0}} \rightarrow \pi^{\mathbf{0}} \mu \mu$

 μ mis|D

Interaction with the Detector

Position of the π^0

Conclusion

We reconstruct the expected position of the π^0 with :

- The direction of the K⁰_S (via the primary¹ and second² vertices).
- The momenta, energies and masses of both muons.
- π^0 and K_S^0 masses.

The most efficient strategy is to reject the candidates in which we can't compute the solution.

¹where the pp collision happens ²where the K_S^0 decays

Conclusion

Introduction

 $K_{\mathbf{s}}^{\mathbf{0}} \rightarrow \pi^{\mathbf{0}} \mu \mu$

 μ misID

Interaction	
with the	
Detector	

Position of the π^0

Conclusion

Name	Efficiency on Data (%)	Efficiency on MC signal (%)
$\pi\pi$ mass	75.8	99.7
reconstruction of the <i>pi</i> ⁰ position	27.7	76.7
$\pi\mu$ mass	49.8	90.1
pπ mass	91.6	93.3
PID cuts for both muons	3.2	53.0
All cuts	0.31	34.1

Data refers to a small sample of data which is mostly composed by background.

- We will explore all the variables.
- We will develop a MVA.

Thank you for your attention !