Projections at 14 TeV for Dark Matter Searches in the monojet final state using the upgraded CMS Detector

Apichayaporn Ratkata

CERN Summer student 12 August 2014

Gratefully Acknowledge

Suprevisor Dr. Norraphat Srimanobhas

Outlines

- Motivation
- Objective
- DM pair production
- My work

ЗT

Motivation

Motivation

Motivation

HOW ?

- Estimate the upper limits on DM-nucleon scattering cross sections (X-Nσ) using DELPHES simulation compared to generator level analysis
- Scope: At 14 TeV with integrated luminosity 300 fb⁻¹

Missing Transverse Energy

Missing Transverse Energy

Dark matter pair production

Monojet signature

Process (DELPHES)

Generator Level analysis

Generator Level analysis Event Generation Approximation MADGRAPH Detector Simulation **Event selection Background Estimation** Acceptances Upper Limit on $\chi - N\sigma$ (Cm²)

CMS Monojet analysis

• Event selection

- $p_{_{T}}(j_{_1})$ > 100 GeV in $|\eta|$ <2.4 $\,$, MET > 200 GeV
- $N_{jets} \le 2$, jets with $p_T > 60$ GeV, $\delta \Phi(j_1, j_2) < 2.5$
- e, μ, hadronic vetoes
- MET > 1000, 1100, ..., 1500 GeV & $p_T(j_1) > 500$ GeV
- Upper limit on production cross section

 Projection of 90% CL spin dependent for the DM-nucleon cross section as a function of DM mass

Distributions of Jet & MET

For DM mass = 1000 GeV Jet transverse momentum

Upper limit on DM-nucleon scattering cross section

[CMS-PAS-EXO-12-048]

DM-nucleon scattering cross section (GL)

Work in progress

• DELPHES

- total background event yeilds from Z(vv), W+jets

Generator Level

 Find event yields for the signal and backgrounds estimated from 8 TeV

Next step

Analysis for upgraded LHC at 33 TeV, 100 TeV

It's time to unviel the mysterious universe.

Thank you

References

[1] CMS Analysis Note, Projection at 14 TeV for Dark Matter Searches in the monojet FinalState Using the Upgraded CMS Detector

[2] Patrick J. Fox et al., "Missing energy signatures of dark matter at the LHC", PhysRevD.85.056011.

[3] CMS Search for dark matter and large extra dimensions in monojet events in pp collisions at s = 7 TeV, arXiv:1206.5663v1.

[4] "Snowmass Energy Frontier Simulations", arXiv:1309.1057, Sept. 2013

 [5] "Methods and Results for Standard Model Event Generation at sqrt(S) = 14 TeV, 33 TeV and 100 TeV Proton Colliders (A Snowmass Whitepaper)", arXiv:1308.1636, Aug. 2013