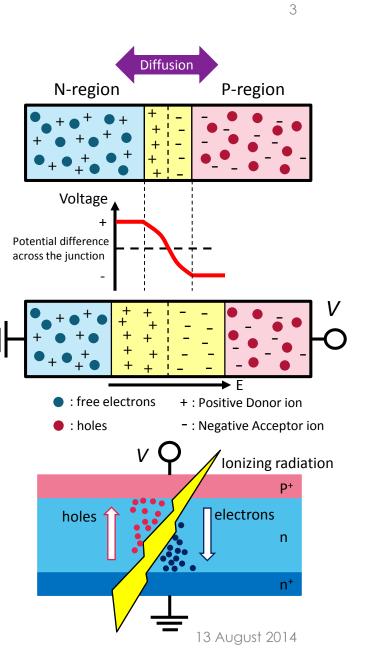


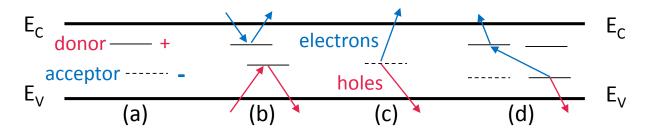
Annealing Study of Proton and Pion Irradiated Silicon Pad Detectors

Hiroki Sumida PH-DT Detector Development Summer Student Session


13th Aug, 2014

Outlines

- Silicon Sensors
- Radiation Damage
- Annealing
- Silicon Diodes
- CV/IV Setup
- CV/IV Measurement
- TCT Setup
- TCT Measurement
- Summary & Outlook


Silicon Sensors

- Silicon diode
 - pn-junction : build in **depletion region**
 - Operation voltage : reverse bias voltage
 → expand depletion region
 - Detector operation point is above full depletion voltage.
- Detection of ionizing radiation
 - Ionizing radiation creates electron hole pairs within the depletion region
 - e/h pairs are separated by the electric field in the depletion region
 - Charge signal is induced by movement of e/h pair

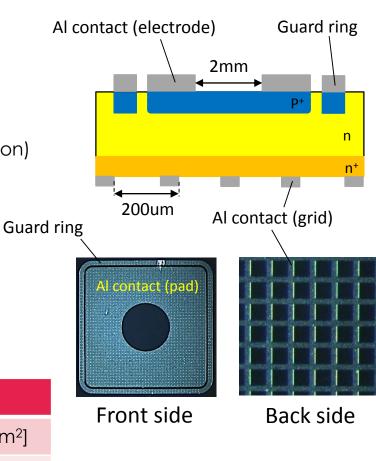
Radiation Damage

If Si diodes are exposed to radiation (proton, neutron, pion, etc...)
 → properties of silicon change

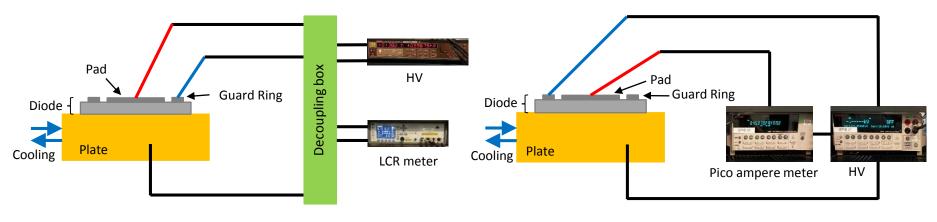
• radiation introduces defects within silicon

(a): Change of effective number of donors/acceptors

 \rightarrow Change of depletion voltage


- (b) & (c) : Thermal fluctuation
 - \rightarrow trapping and de-trapping of electrons and holes
 - \rightarrow charge signal lost (trapping time > 25ns(LHC bunch crossing time))
- (d) : Creation of intermediate levels between valence band and conduction band \rightarrow Leakage current increase ^{13 August 2014}

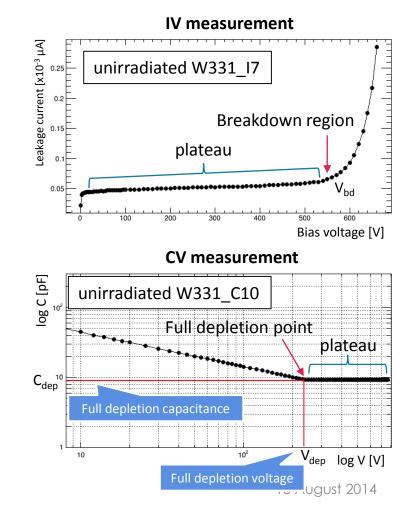
Silicon Diodes


- 14 samples
 - 2 unirradiated samples
 - 2 proton irradiated samples (CERN PS irradiation)
 - 10 pion irradiated samples (PSI irradiation)
- Doping type : p-in-n
- Size : 5.00 mm x 5.00 mm
- Thickness : 300 um
- Thickness of p⁺ and n⁺ : < 3 um

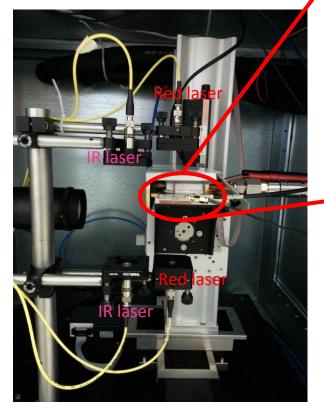
Irradiated samples

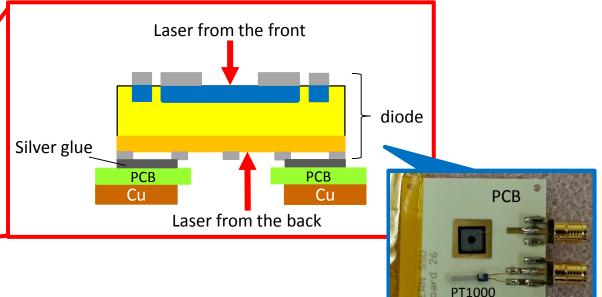
Particle	Beam energy	fluences		
proton	24 [GeV/c]	1.01, 9.64 [x10 ¹³ p/cm ²]		
pion	300 [MeV/c]	0.0134, 0.0274, 0.0768, 0.241 1.07, 3.70, 10.0, 17.1, 42.6, 51.2 [x10 ¹³ π/cm ²]		

CV/IV Setup


C-V measurement

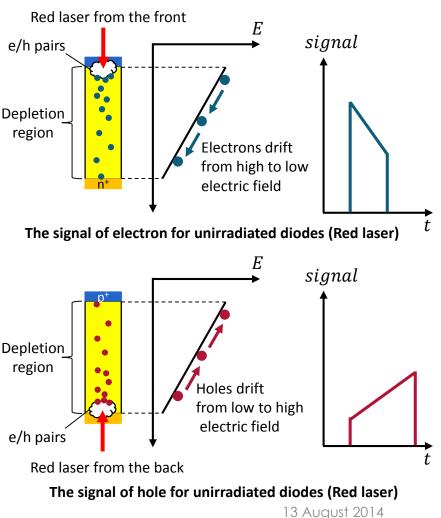
I-V measurement


- Surface current : read out with the probe needle (Blue)
- Pad current : readout with the probe needle (Red)
- Temperature : -20°C,-10°C, 0°C, +10°C, +20°C
- Frequency (for C-V measurement)
 - Unirradiated diodes : 1k, 10k, 100k, 1M, 10M [Hz]
 - Irradiated diodes : 200, 500, 1k, 5k [Hz]


CV/IV Measurement

- measure leakage current and capacitance of diodes against bias voltage
- Above breakdown region, exponential increase of leakage current
- Plot data on double-logarithmic graph of CV
- \rightarrow Full depletion capacitance and voltage
- Result
 - $V_{dep} < V_{bd}$ (for all diodes)
 - C_{dep}: 9~11 [pF] (unirradiated)
 - C_{dep}: ~9 [pF] (proton irradiated)

TCT Setup



- Used laser : Red (660nm), IR (1064nm)
- Max bias voltage = -1000V
- Temperature : -20°C, 0°C, +20°C
- Measured points
 - in the circle hole (front side of diodes)
 - in the gap of grid (back side of diodes)

TCT Measurement

- TCT : Transient Current Technique
- enables to study the influence of radiation damage in sensor material
- Use picosecond laser pulse
- The signal of electron is obtained by red laser shoot from the front of diodes
- The signal of hole is obtained by red laser shoot from the back of diodes
- $I_{signal} \propto E$ (by Ramo's theorem)

TCT Measurement

Laser from the back Laser from the front signal voltage [mV] signal voltage [mV -50 Red laser -100 (660nm) Voltage goes down -150 -200 time [ns] time [ns] signal voltage [mV] gnal voltage [mV] -50 100-150 IR laser -200 (1064nm) -120 -250 -16 -180 30 time [ns] 10 15 20 25 30 time [ns] 20 25 almost same Summer Student Session 13 August 2014

Summary & Outlook

- So far
 - CV, IV measurement of unirradiated and proton irradiated diodes
 - TCT measurement of unirradiated diodes
- Now
 - CV, IV measurement of pion irradiated diodes
- Outlook
 - Annealing study (CV,IV and TCT measurement)
 - Comparison with the simulation of aneealing

Step	1	2	3	4	5	6
Annealing time [min]	10	70	80	160	320	640
Total annealing time [min]	10	80	160	320	640	1280

Annealing temperature : 60°C

Acknowledgement

I would like to thank

- Christian Gallrapp (supervisor, CERN PH-DT-DD SSD lab)
- Hannes Neugebauer (supervisor, CERN PH-DT-DD SSD lab) for their support and supervision.

I also want to thank

- Ian Mcgill (CERN PH-DT-DD Bonding lab)
- Florentina Manolescu (CERN PH-DT-DD Bonding lab)

for the wire bonding of my samples.

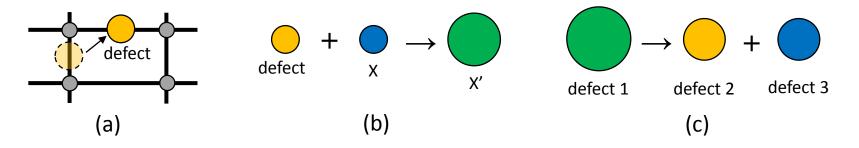
For the irradiation of the diodes, I want to thank

- CERN PS irradiation facility
- The proton accelerator facility at PSI

Special thanks to all of SSD lab members for their help and the good time !!

Summer Student Session

Summer Student Session


13 August 2014 13

Backup

Annealing

- Long term performance after aging
- Process : warming up high temperature (60°C, 80°C)
- \rightarrow change of defect properties

- (a): Migration through the silicon lattice
- (b): Complex formation (X is same defect, different defect, silicon lattice, etc...)
- (c): **Dissociation** (the lattice vibration energy > the binding energy)