Setting limits on simplified dark matter models using LHC monojet results

Karl Nordström

Supervised by Andreas Weiler, Caterina Doglioni, and Sofia Vallecorsa

August 12th, 2014

Things I will discuss:

- Why mono-X $(X = jet, \gamma, Z, W)$ analyses are sensitive to particle dark matter models
- \triangleright What simplified dark matter (DM) models are, and why they are needed for the interpretation of LHC results
- \blacktriangleright How to set limits on such models

Figure : Diagram for DM pair production with a gluon radiated off the initial state.

 \triangleright Question: how do we describe the interaction in a model-independent way?

Solution 1: Assume the mediator is heavy and integrate out $-$ the Effective Field Theory (EFT) approach. Assuming a vector mediator and Dirac fermion DM with vector couplings, the operator is:

 $\bar{\chi}\gamma_\mu\chi\bar{\mathsf{q}}\gamma^\mu\mathsf{q}$

Figure : Diagram of the EFT approach.

Pros:

- \triangleright The simplest way to add DM to the Standard Model, little model dependence
- \triangleright Easy to compare limits to those set by (in)direct detection experiments

Cons:

- \triangleright Depending on M_{med} , might be probing events where $Q > \Lambda = M_{\text{med}} / \sqrt{g_q g_\chi}$ at the LHC: 1402.1275 (Busoni et al.)
- \triangleright Can over/underestimate limits depending on details of UV physics: 1308.6799 (Buchmueller et al.)

Figure : Same diagram as before, but with an explicit mediator.

Solution 2: Use a theory with a generic mediator ξ – the Simplified Model approach. Again assuming a vector mediator and Dirac fermion DM with vector couplings, we get the operator $^1\colon$

$$
g_q\bar{q}\gamma^\mu q\xi_\mu+g_\chi\bar{\chi}\gamma_\mu\chi\xi^\mu
$$

Pros:

 \triangleright Gives reliable results for all kinematically allowed configurations of M_{med} , M_{DM} , and Q

Cons:

 \triangleright Is more complicated to set limits on, and the limits can not be easily compared to those of (in)direct detection experiments

¹With thanks to Amelia Brennan!

- 1. Write down Lagrangian in FeynRules and output a model file
- 2. Plug model into MadGraph and generate parton level events
- 3. Shower the events in Pythia 8
- 4. Perform detector simulation and analysis in Atom/Rivet
- 5. Do statistics with numpy/RooStats

MET distribution, SR1, Data Events/GeV **ATLAS** 10 Background + Signal $10²$ 10^{\degree} \mathbf{I} 10^{-1} 10^{-2} 1.4 MC/Data 1.2 T 0.8 0.6 800 200 400 600 1000 1200 \circ E_T^{miss} [GeV]

Figure : Example of background + signal versus data for missing E_T in one of the signal regions. In this case the signal is for $M_{\rm med}=1$ TeV, $M_{\rm DM}=400$ GeV at $\sqrt{s} = 8$ TeV.

Figure : Example of output for $\sqrt{s} = 8$ TeV. This is for the operator defined earlier with $\Gamma_{\xi} = M_{\xi}/3$.

Karl Nordström 9 / 10

Thank you!