

# Analysis of Z + jet events in proton-lead collisions with the CMS detector

#### Qifei Gu

Supervisors: Lamia Benhabib, Krisztian Krajczar and Gabor Veres

CERN Student Session 14<sup>th</sup> August 2014

#### **Contents**

- Motivation for colliding heavy ions
- Z<sup>0</sup> + jet events in pPb collisions to study jet quenching
- Event selection for Z<sup>0</sup> + jet pair
- Preliminary results

### Why collide heavy ions?

- LHC collides pPb and PbPb.
- In PbPb collisions, we have many nucleon-nucleon interactions at TeV energies.
  - We create a new state of matter, the quark-gluon plasma (QGP).
  - QGP was present in the early universe.
- Partons in the QGP subsequently hadronise to form particles and jets.
  - Use these remnants to probe the QGP.



Phase diagram for QGP [1]



# Do pPb collisions create QGP?



Phase diagram for QGP [1]

#### Z<sup>0</sup> + jet from pPb to study jet quenching

- The QGP is strongly interacting.
- Jets (partons) that travel through the QGP interacts with the medium, and loses energy -> jet quenching.
- Z<sup>0</sup> + jet event is a clear channel to study jet quenching.
  - Jets are affected by QGP but Z<sup>0</sup> bosons are not.
  - Clean signal for  $Z^0$  as it decays to two oppositely charged muons.



pPb->q $\overline{q}$ -> $Z^0$ -> $\mu^+ \mu^-$  + gluon jet [2]

pPb->qg-> $Z^0$ -> $\mu^+ \mu^-$  + quark jet [3]

# Event selection for pPb-> $Z^0$ -> $\mu^+$ $\mu^-$ + jet

- Data from pPb at  $\sqrt{s_{NN}} = 5.02 \, \text{TeV}$  taken in Jan. and Feb. 2013.
- Z<sup>0</sup> reconstruction from two muons:
  - Apply standard "good muon" selections.



Slice of CMS detector [4]

- Further selections for Z<sup>0</sup>:
  - Two muons oppositely charged.
  - Cut on muon transverse momentum ( $p_{T, muon} > 20 \text{ GeV}$ ).
  - Invariant mass of Z between 60 and 120 GeV.



- Compare data to simulation.
- Simulation PYTHIA embedded in simulated pPb.
  - No QGP effects included.

# Z<sup>0</sup> and jet correlations

- Now have Z<sup>0</sup>, find corresponding leading-jet\* from the same interaction.
- Consider particle flow jets.
- Jets with  $p_{T, jet} > 25$  GeV and  $|\eta_{jet}| < 2.1$ .



- pPb collide along the z-axis no momentum component in transverse (xy) plane.
  - Expect correlation  $Z^0$  + jet to have  $\Delta \phi = |\phi_{jet} \phi_Z| \approx \pi$ .
- Selection: Consider pairs that have  $\Delta \phi = |\phi_{jet} \phi_z| > \pi/2$ .

<sup>\*</sup>Jet with the highest p<sub>T</sub>.



• Slight correlation between Z and jets seen at  $\Delta \phi = \pi$ .

#### Motivation for $p_{T, Z} > 60$ GeV cut



• The  $p_{T, Z} > 60$  GeV cut gives much better back-to-back correlation.

# Jet quenching - p<sub>T</sub> imbalance

- Final selection,  $Z^0$  and leading jets that have  $\Delta \phi > 2\pi/3$ .
- Calculate the p<sub>T</sub> imbalance, p<sub>T, jet</sub> / p<sub>T, Z</sub>.







# Mean p<sub>T</sub> imbalance



#### **Event selection summary:**

- p<sub>T, muon</sub> > 20 GeV
- 60 GeV < M<sub>z</sub> <120 GeV</li>
- p<sub>T, jet</sub> > 25 GeV
- |η<sub>jet</sub> |< 2.1
- $\Delta \varphi = |\varphi_{jet} \varphi_z| > \pi/2$
- $p_{T, z} > 60 \text{ GeV}$
- $\Delta \phi > 2\pi/3$

# Mean p<sub>T</sub> imbalance



#### Further improvements

- More optimized selections to find the  $Z^0$  + jet pair.
- Search for fake jets.
  - E.g. high  $p_T$  muons that are identified as a jet.
- Consider systematic uncertainty.
  - In muon selection.
  - Background muon contributions to Z<sup>0</sup>.
  - Jet energy scale corrections.





# **Disclaimer:**

All data shown are preliminary.

Not officially approved by CMS.





# Thank you for your attention!

### Image references

- [1] QGP phase diagram:
  - http://www.hep.lu.se/staff/tydesjo/physics/theses/lichtml/node4.html Feynman diagrams of Z + jet events
- [2] http://www.physik.uzh.ch/~che/FeynDiag/Details.php?code=40000001
- [3] <a href="http://www.physik.uzh.ch/~che/FeynDiag/Details.php?code=40000011">http://www.physik.uzh.ch/~che/FeynDiag/Details.php?code=40000011</a>
  CMS detector slice
- [4] http://upload.wikimedia.org/wikipedia/commons/8/8a/CMS Slice.gif