Analysis of Z + jet events in proton-lead collisions with the CMS detector #### Qifei Gu Supervisors: Lamia Benhabib, Krisztian Krajczar and Gabor Veres CERN Student Session 14th August 2014 #### **Contents** - Motivation for colliding heavy ions - Z⁰ + jet events in pPb collisions to study jet quenching - Event selection for Z⁰ + jet pair - Preliminary results ### Why collide heavy ions? - LHC collides pPb and PbPb. - In PbPb collisions, we have many nucleon-nucleon interactions at TeV energies. - We create a new state of matter, the quark-gluon plasma (QGP). - QGP was present in the early universe. - Partons in the QGP subsequently hadronise to form particles and jets. - Use these remnants to probe the QGP. Phase diagram for QGP [1] # Do pPb collisions create QGP? Phase diagram for QGP [1] #### Z⁰ + jet from pPb to study jet quenching - The QGP is strongly interacting. - Jets (partons) that travel through the QGP interacts with the medium, and loses energy -> jet quenching. - Z⁰ + jet event is a clear channel to study jet quenching. - Jets are affected by QGP but Z⁰ bosons are not. - Clean signal for Z^0 as it decays to two oppositely charged muons. pPb->q \overline{q} -> Z^0 -> $\mu^+ \mu^-$ + gluon jet [2] pPb->qg-> Z^0 -> $\mu^+ \mu^-$ + quark jet [3] # Event selection for pPb-> Z^0 -> μ^+ μ^- + jet - Data from pPb at $\sqrt{s_{NN}} = 5.02 \, \text{TeV}$ taken in Jan. and Feb. 2013. - Z⁰ reconstruction from two muons: - Apply standard "good muon" selections. Slice of CMS detector [4] - Further selections for Z⁰: - Two muons oppositely charged. - Cut on muon transverse momentum ($p_{T, muon} > 20 \text{ GeV}$). - Invariant mass of Z between 60 and 120 GeV. - Compare data to simulation. - Simulation PYTHIA embedded in simulated pPb. - No QGP effects included. # Z⁰ and jet correlations - Now have Z⁰, find corresponding leading-jet* from the same interaction. - Consider particle flow jets. - Jets with $p_{T, jet} > 25$ GeV and $|\eta_{jet}| < 2.1$. - pPb collide along the z-axis no momentum component in transverse (xy) plane. - Expect correlation Z^0 + jet to have $\Delta \phi = |\phi_{jet} \phi_Z| \approx \pi$. - Selection: Consider pairs that have $\Delta \phi = |\phi_{jet} \phi_z| > \pi/2$. ^{*}Jet with the highest p_T. • Slight correlation between Z and jets seen at $\Delta \phi = \pi$. #### Motivation for $p_{T, Z} > 60$ GeV cut • The $p_{T, Z} > 60$ GeV cut gives much better back-to-back correlation. # Jet quenching - p_T imbalance - Final selection, Z^0 and leading jets that have $\Delta \phi > 2\pi/3$. - Calculate the p_T imbalance, p_{T, jet} / p_{T, Z}. # Mean p_T imbalance #### **Event selection summary:** - p_{T, muon} > 20 GeV - 60 GeV < M_z <120 GeV - p_{T, jet} > 25 GeV - |η_{jet} |< 2.1 - $\Delta \varphi = |\varphi_{jet} \varphi_z| > \pi/2$ - $p_{T, z} > 60 \text{ GeV}$ - $\Delta \phi > 2\pi/3$ # Mean p_T imbalance #### Further improvements - More optimized selections to find the Z^0 + jet pair. - Search for fake jets. - E.g. high p_T muons that are identified as a jet. - Consider systematic uncertainty. - In muon selection. - Background muon contributions to Z⁰. - Jet energy scale corrections. # **Disclaimer:** All data shown are preliminary. Not officially approved by CMS. # Thank you for your attention! ### Image references - [1] QGP phase diagram: - http://www.hep.lu.se/staff/tydesjo/physics/theses/lichtml/node4.html Feynman diagrams of Z + jet events - [2] http://www.physik.uzh.ch/~che/FeynDiag/Details.php?code=40000001 - [3] http://www.physik.uzh.ch/~che/FeynDiag/Details.php?code=40000011 CMS detector slice - [4] http://upload.wikimedia.org/wikipedia/commons/8/8a/CMS Slice.gif