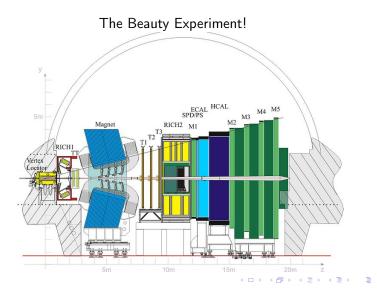
Simulating LHCb RICH upgrade Test Beam

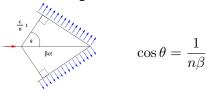
Claudia Merlassino

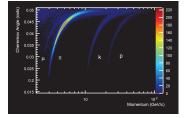

Università degli Studi di Milano

August 2014

イロト イロト イヨト イヨト 三日

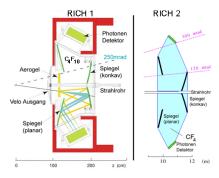
LHCb





Cherenkov Light and PID

Cherenkov radiation is created when charged particles travel in a medium faster than light



Velocity measure + momentum measure \rightarrow mass measure

 \rightarrow particle identification

Ring Imaging CHerenkov Detector The cherenkov light is projected on a plane and it creates a ring. Two detectors to cover different range of momentum

RICH1:

- radiator: gas +areogel
- acceptance: 25-300mrad

RICH2:

- radiator: gas
- acceptance: 15-120mrad

Higher LuminosityAll software trigger

 \implies read out at $40\,\mathrm{MHz}$

Upgrades:

- optimize the optics to reduce occupancy (remove the areogel in RICH1)
- change HPD with PMTs + external readout electronics (faster)

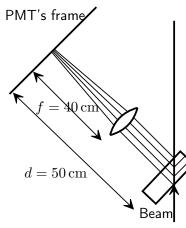
Test beam to evaluate the efficiency (photon yelds) and resolution of the new PMTs (October 2014)

Goal of my project:

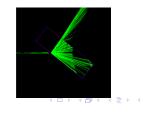
- decide the radiator for the test beam and it's characteristics
- set up the simulation for the analysis

Simulation (based on GEANT4):

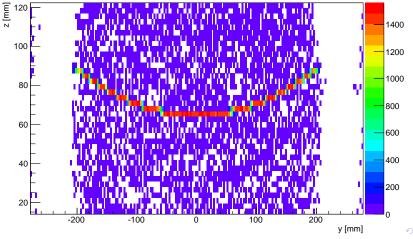
- Beam $\rightarrow 50 \, \text{GeV}$ protons (beam width $\approx 10 \, \text{mm}$)
- Radiator \rightarrow crystal (shape to be decided)
- Detector \rightarrow PMTs



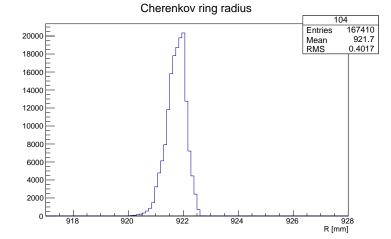
In order to get a better resolution on the measurement of the Cherenkov angle the light must be focused. 2 ideas:


- Light is created in a flat crystal and than focused with an external lens
- Light is created in a crystal with a spherical surface, no need of extra lens

Crystal + lens - Geometry

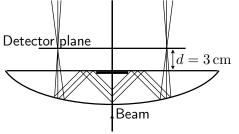

- the crystal is tilted, so the Cherenkov photons are normal to the surface and hence minimal reflection when exiting the crystal
- the crystal is covered upstream and lateral side to block the photons internally reflected
- the lens's focus distance is R = 400 mm

Crystal + Lens - Hits distribution on detector plane


Crystal Refractive Index = 1.5, Crystal Thickness $1 \,\mathrm{cm}$ Photon location on frame

^{9/17}

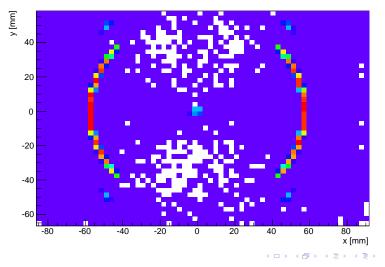
Crystal + Lens - Cherenkov Ring Radius



Mean = Cherenkov Radius, RMS = width of the ring (both in mm)

イロト イポト イヨト イヨト

Lens - Geometry



- at first the light is totally internal reflected
- reflective layer on the spherical surface
- absorber layer to choose the photons created in the $1\,\mathrm{cm}$ of material

Lens - Hits distribution on detector plane

Photon location on frame

Lens - Cherenkov Ring Radius

Cherenkov ring radius Entries 57.19 Mean RMS 0.5517 R [mm]

Mean = Cherenkov Radius, RMS = width of the ring (both in mm)

13/17

Both configuration show similar resolution < than PMTs pixels' size

Crystal + lens

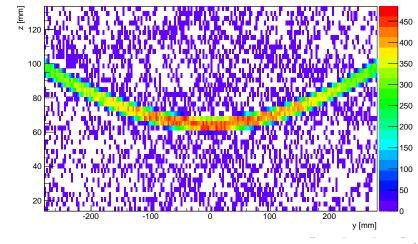
Focus plane far from the beam \downarrow No risk of damage for the PMTs

Just lens

2 parts of the ring may be reconstructed ↓ Possibility to test more PMTs + more compact configuration in terms of mechanics

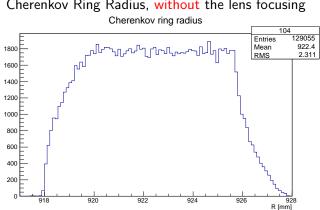
- 2 radiator configurations have been explored
- both of them can be used for the test beam

Further steps:


- Create the hits not on a simple plane, but with PMTs
- Store the hits in an output file for further analysis

Thank you!

Lens effect



Hits distribution, without the lens focusing Photon location on frame

Lens effect

Cherenkov Ring Radius, without the lens focusing

Mean = Cherenkov Radius, RMS = width of the ring (both in mm)