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Peer-Reviewed Neuroscientific Articles�
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Number of newly released CNS drugs�
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Multi-Scale Challenge 

*Herculano-Houzel 2009; ** Sims et al. 2007 

•  Each cell – a universe**!
~O(10B) proteins/nerve cell!
!

•  Human brain*!
~90B (1011) nerve cells!
~90B glial cells!
~O(1015) synapses!
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Position Statement 
 
Status 

1. Exponential increase in data 
2.  Increasingly fragmented 
3. Benefits for society decreasing 
4. Economic burden increasing 

 
Lacking 

1. No integration plan 
2. No data curation plan 
3. No plan to bridge levels 
4. No plan from animal to human 
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Unifying Brain Models 
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Performance Development of Supercomputers 

1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 
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Learning from the Brain�
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low power consumption, and the ability to learn new skills 
without explicit programming.

Many computer scientists believe that the best way to 
create these capabilities is to imitate the brain. However, ef-
forts in this direction have been hampered by the poor in-
tegration between neuroscience and technology developers 
and by the lack of the necessary tools and technologies. One 
of the HBP’s most important goals would be to move beyond 
this fragmentation, developing neuromorphic computing 
systems that bring together state-of-the art hardware ad de-
sign tools and simplified versions of HBP brain models. The 
HBP Neuromorphic Computing Platform will offer develop-
ers access to these systems, providing them with the tools 
and support they need to explore new applications.

Key properties of neuromorphic technology, already 
demonstrated by the FACETS, BrainScaleS and SpiNNaker 
projects, include massive parallelism, very low power con-
sumption, high resilience to failure of individual compo-
nents and extremely fast computation. 

The HBP would attempt to build systems that can ac-
quire specific capabilities without explicit programming 
– overcoming another major barrier to the development 
of new ICT systems. Today, for example it is very difficult 
to program systems to extract and categorize high-level in-
formation from noisy, rapidly varying sensor data. Neuro-
morphic computing could offer an efficient solution to this 
problem. Potential applications include computer vision for 
domestic and industrial robots, vehicles and industrial ma-
chinery, data mining for scientific research, marketing, and 
policing, real time analysis of financial data (e.g. for fraud 
detection; rapid detection of market trends), and the moni-
toring of large-scale telecommunications, power distribu-
tion, and transport networks. Systems of this kind would 
be especially valuable in applications requiring low power 
consumption and high resilience to failure (e.g. wearable 
and portable devices, large scale environmental monitoring, 
monitoring of hostile industrial environments). 

Simple devices could be integrated into compact, low-
power systems with the ability to control complex physical 
systems (e.g. vehicles, industrial machinery) with many de-
grees of freedom. Like the brain, such systems would have the 
ability to create implicit models of their environment, includ-
ing their own actions and representations and those of other 
agents, to predict the likely consequences of their decisions, 
and to choose the action most likely to lead to a given goal. 
Although far less flexible and powerful than the human brain, 
such systems would be able to perform tasks, difficult or im-
possible for current ICT. Examples include technical assis-
tance to humans, real-time diagnostics of complex machinery 
autonomous navigation, self-repair, and health monitoring.

Neurorobotics

One of the most important potential applications for neu-
romorphic computing would be in neurorobots – robots 
whose controllers incorporate a model brain, implemented 
on a neuromorphic computing system. Neuromorphic con-Figure 48: A comparative views of different approaches to computing
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The Human Brain Project 

Use ICT as a 
catalyst for a global 
collaborative effort 
to understand the 
human brain, its 
diseases and 
ultimately to 
emulate its 
computational 
capabilities. 
 

Future  
Neuroscience 

Future  
Medicine 

Future  
Computing 
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Roadmap of the HBP 
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Brain Simulation 

High Performance 
Computing 

Medical Informatics 
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Jülich BigBrain 

CHUV 
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(M120) 

Partnering 
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Partnering 
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Projects 

use contribute 

First Draft Cellular Mouse Brain 
(M60) 
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The Human Brain Project 

FET Flagship Idea 
•  Funded from ICT branch 
•  100MEuro/a for 10 years 

Ramp-up Phase (2 ½ years) 
•  FP7 (54MEur) 
•  112 partner institutions 
•  24 countries 

Operational Phase (7 ½ years) 
•  H2020 
•  FPA+Partner Projects 
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Contacts 

The Human Brain Project Consortium!
http://www.humanbrainproject.eu!

Contacts:!
Prof. Henry Markram !
Director Blue Brain Project !
Coordinator Human Brain Project!
Email: henry.markram@epfl.ch!
!
Prof. Felix Schürmann!
Blue Brain Project – Co-Director, Head of Computing!
Email: felix.schuermann@epfl.ch!
!
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