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Micro-Fabrication
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In Micro-fabrication, used mainly
for Micro-Electro Mechanical
Systems (MEMS), the process is
performed 3 dimensionally within
the silicon volume.

Different processing types

include: Slcon Subsiate Dry Etch Pattams
% Surface: Structures are formed by Surtace Bulk LIGA
deposition and etching of
sacrificial and structural thin films
Applications:
s Bulk, Volume: 3D structures
formed by dry or wet etching of > Everyday life (cars, portable devices..)
silicon substrates > Medical/Biology
s LIGA: 3D structures formed by i a'pahceEn qv Phvsi
mold fabrication followed by '9 ergy rFnysics
injection molding or electroplating >
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Industrial applications: sensors and actuators
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Source: Lami EpoSS 2012

Applications in Bio-Medicine

Pressure Sensing
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Acceleration monitoring in pacemakers

D. Ha et al. IMS 2010

Glaucoma diagnosis

<2mm § <300 ym
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3D IC and MEMS stacking

Inserted in a mouse’s eye
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Applications in HEP: 3D sensors
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*High Energy Physics

3D silicon detectors were proposed in 1995 by S.
Parker, and active edges in 1997 by C. Kenney.

Combine traditional electronics processing and
MEMS (Micro Electro Mechanical Systems)
technology.

Electrodes are processed inside the detector
bulk instead of being implanted on the
Wafer's surface.

The edge is an electrode! Dead volume at the
Edge < 5 microns!

The electric field is parallel to wafer’s surface:
and smaller inter-electrode spacing: low bias
voltage, low power, reduced charge sharing and
high speed - for the same wafer thickness
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Deep Reactive lon Etching
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3D sensors are now in the — fy* SDATLAS R&D
fATLAS ollaboration
core o

3D sensors just being installed in the <
first LHC detector upgrade in the
ATLAS —Insertable B-Layer (IBL)

>300 sensors fabricated to cover 25% IBL

250 x 50 um?

FE-14 = 2x2cm?
336 x 80
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NIM A 603 (2009) 319-324

3D sensors and radiation hardness

In the LHC experiments Vertex Detectors will be exposed to the highest radiation level
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3D sensors with active edges

Fully sensitive volumes, large area imagers

Test beam setup at CERN Test beam with x-ray micro beam
e At Berkeley USA
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X-ray energies in medicine and biology
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Charge sharing and increased thickness
Medical Imaging, X-ray Spectroscopy
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Pioneering work from
3DMiMic Project coordinated by

M icro-d OSi metry A. Kok et al. SINTEF Norway

for Cancer Therapy, Space Radiation Monitoring e—

MICRODOSIMETRY

Microdosimetry measures the stochastic energy deposition events at cellular level
Radio-Biological Effectiveness (RBE) depends on linear energy transfer (LET or Lineal Energy) which is
different for different radiation type. Average chord length <I> is independent on radiation directjon

“Mixed Field detection in

a small sized array of

cell-like elements of well defined
Sensitive volume SV is required to
precisely determine RBE

cells

~10mm
‘ ’ ~10mm -
SV Silicon
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v

++Silicon Dose Equivalent can be
determined From the lineal Energy

Spectra and the tissue equivalent

dose D+ ¢ . Quality factors Q are determined

Experimentally. n*
Active
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3D sensors with central n* electrode

surrounded by p* trench define cellular size
<C;ERN§3 | sensitive volume
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High Efficiency Neutron Detection

Neutron capture therapy, diffraction

. Silicon is not sensitive to neutrons but is a

well established radiation detector \ e
- wwm
*  Need neutron reactive converter materials - N ,. 4pm
usually deposited on the surface thin 3um g 50 um » Jitch
films or different geometries © ,’"‘"-’W ‘g..:n Charged
§ i particles
«  With reference to '°B converter: g S + - Electronhole pairs

—  90% capture in 43 ym
— Range of reaction products 2-5 ym Planar geometry Micro-fabricated Squares
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Micro-structured Semiconductor Neutron
D ete Cto rS ( M S N D ) D. McGregor et al., J. Crystal Growth 379 (2013) 99

Cell Width = 4 microns

Feature Ratio = 50%

Feature Depth = 40 microns
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Comparison of efficiencies as a function

« Extended interaction surface, and higher of feature size, as measured by its cell

probability for reaction products to enter the fraction, for hole, trench and column

designs with unit cell dimensions of 4

semiconductor um and feature depths of 40 um. OB is

_ _ the back fill material and the LLD was
 Different shapes and geometries set for 300keV

@m { l @ Maximum efficiencies reported with this method~50%
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Conclusions

Micro Fabricated Sensors developed for High
Energy Physics have found applications in
other fields like medicine and biology

Future developments include astronomy,
environmental monitoring and space
applications
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