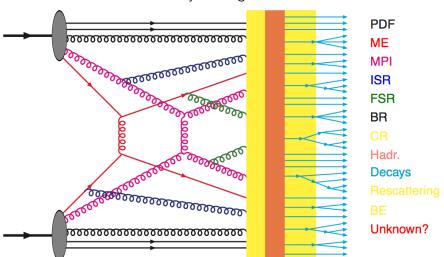
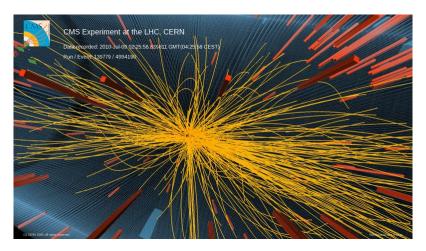


Monte Carlo Generators and Soft QCD

3. MultiParton Interactions and Hadronization


Torbjörn Sjöstrand

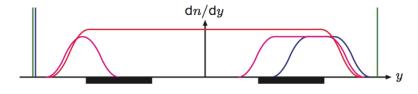
Department of Astronomy and Theoretical Physics Lund University Sölvegatan 14A, SE-223 62 Lund, Sweden


CERN, 3 September 2013

Event Generators Reminder

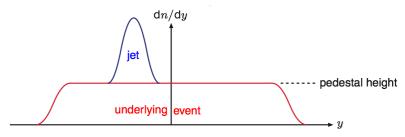
An event consists of many different physics steps, which have to be modelled by event generators:

Event topologies



Expect and observe high multiplicities at the LHC.

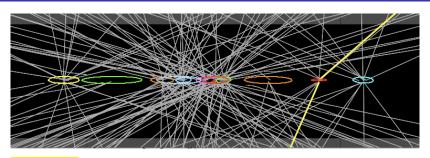
What are production mechanisms behind this?


What is minimum bias (MB)?

MB \approx "all events, with no bias from restricted trigger conditions" $\sigma_{\rm tot} = \sigma_{\rm elastic} + \sigma_{\rm single-diffractive} + \sigma_{\rm double-diffractive} + \cdots + \sigma_{\rm non-diffractive}$ Schematically:

Reality: can only observe events with particles in central detector: no universally accepted, detector-independent definition $\sigma_{\rm min-bias} \approx \sigma_{\rm non-diffractive} + \sigma_{\rm double-diffractive} \approx 2/3 \times \sigma_{\rm tot}$

What is underlying event (UE)?



In an event containing a jet pair or another hard process, how much further activity is there, that does not have its origin in the hard process itself, but in other physics processes?

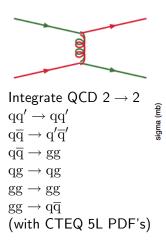
Pedestal effect: the UE contains more activity than a normal MB event does (even discarding diffractive events).

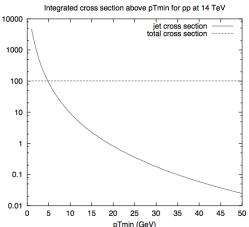
Trigger bias: a jet "trigger" criterion $E_{\perp \rm jet} > E_{\perp \rm min}$ is more easily fulfilled in events with upwards-fluctuating UE activity, since the UE E_{\perp} in the jet cone counts towards the $E_{\perp \rm jet}$. Not enough!

What is pileup?

$$\langle n \rangle = \overline{\mathcal{L}} \, \sigma$$

where $\overline{\mathcal{L}}$ is machine luminosity per bunch crossing, $\overline{\mathcal{L}} \sim n_1 n_2/A$ and $\sigma \sim \sigma_{\rm tot} \approx 100$ mb.


Current LHC machine conditions $\Rightarrow \langle n \rangle \sim 10 - 20$.


Pileup introduces no new physics, and is thus not further considered here, but can be a nuisance.

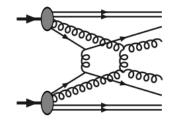
However, keep in mind concept of bunches of hadrons leading to multiple collisions.

The divergence of the QCD cross section

Cross section for $2 \to 2$ interactions is dominated by *t*-channel gluon exchange, so diverges like $\mathrm{d}\hat{\sigma}/\mathrm{d}p_{\perp}^2 \approx 1/p_{\perp}^4$ for $p_{\perp} \to 0$.

What is multiple partonic interactions (MPI)?

Note that $\sigma_{\rm int}(p_{\perp \rm min})$, the number of (2 \rightarrow 2 QCD) interactions above $p_{\perp \min}$, involves integral over PDFs,

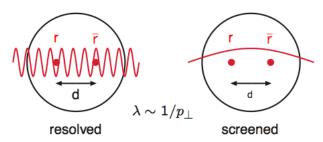

$$\sigma_{\mathrm{int}}(p_{\perp \mathrm{min}}) = \iiint_{p_{\perp \mathrm{min}}} \mathrm{d}x_1 \, \mathrm{d}x_2 \, \mathrm{d}p_{\perp}^2 \, f_1(x_1,p_{\perp}^2) \, f_2(x_2,p_{\perp}^2) \, \frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}p_{\perp}^2}$$

with $\int dx f(x, p_{\perp}^2) = \infty$, i.e. infinitely many partons.

So half a solution to $\sigma_{\rm int}(p_{\perp \rm min}) > \sigma_{\rm tot}$ is

many interactions per event: MPI (historically MI or MPPI)

$$\begin{array}{lcl} \sigma_{\rm tot} & = & \displaystyle\sum_{n=0}^{\infty} \sigma_n \\ \\ \sigma_{\rm int} & = & \displaystyle\sum_{n=0}^{\infty} n \, \sigma_n \\ \\ \sigma_{\rm int} & > & \sigma_{\rm tot} \Longleftrightarrow \langle n \rangle > 1 \end{array}$$

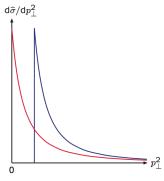

Colour screening

Other half of solution is that perturbative QCD is not valid at small p_{\perp} since q, g are not asymptotic states (confinement!).

Naively breakdown at

$$p_{\perp \rm min} \simeq \frac{\hbar}{r_{_D}} \approx \frac{0.2~{\rm GeV} \cdot {\rm fm}}{0.7~{\rm fm}} \approx 0.3~{\rm GeV} \simeq \Lambda_{\rm QCD}$$

... but better replace r_p by (unknown) colour screening length d in hadron:

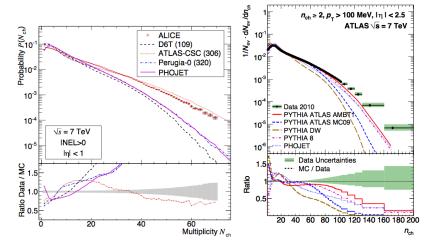


Regularization of low- p_{\perp} divergence

so need nonperturbative regularization for $p_{\perp} \rightarrow 0$, e.g.

$$\frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}p_{\perp}^{2}} \propto \frac{\alpha_{\mathrm{s}}^{2}(p_{\perp}^{2})}{p_{\perp}^{4}} \quad \rightarrow \quad \frac{\alpha_{\mathrm{s}}^{2}(p_{\perp}^{2})}{p_{\perp}^{4}} \, \theta \, (p_{\perp} - p_{\perp \mathrm{min}}) \quad \text{(simpler)}$$

$$\text{or} \quad \rightarrow \quad \frac{\alpha_{\mathrm{s}}^{2}(p_{\perp 0}^{2} + p_{\perp}^{2})}{(p_{\perp 0}^{2} + p_{\perp}^{2})^{2}} \quad \text{(more physical)}$$


where $p_{\perp \min}$ or $p_{\perp 0}$ are free parameters, empirically of order 2 GeV.

Typically 2 - 3 interactions/event at the Tevatron, 4 - 5 at the LHC, but may be more in "interesting" high- p_{\perp} ones.

MPI effects

By now several direct tests of back-to-back jet pairs and similar. However, only probes high- p_{\perp} tail of effects.

More direct and dramatic are effects on multiplicity distributions:

MPI and event generators

All modern general-purpose generators are built on MPI concepts.

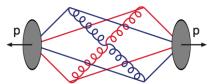
PYTHIA implementation main points:

- MPIs are gererated in a falling sequence of p_{\perp} values; recall Sudakov factor approach to parton showers.
- Multiparton PDFs: energy, momentum and flavour are subtracted from proton by all "previous" collisions.
- Protons modelled as extended objects, allowing both central and peripheral collisions, with more or less activity.
- (Partons at small x more broadly spread than at large x.)
- Colour screening increases with energy, i.e. $p_{\perp 0} = p_{\perp 0}(E_{\rm cm})$, as more and more partons can interact.
- (Rescattering: one parton can scatter several times.)
- Colour connections: each interaction hooks up with colours from beam remnants, but also correlations inside remnants.
- Colour reconnections: many interaction "on top of" each other ⇒ tightly packed partons ⇒ colour memory loss?

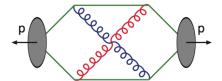
Interleaved evolution

- Transverse-momentum-ordered parton showers for ISR and FSR.
- MPI also ordered in p_{\perp} .
- ⇒ Allows interleaved evolution for ISR, FSR and MPI:

$$\begin{array}{ll} \frac{\mathrm{d}\mathcal{P}}{\mathrm{d}\boldsymbol{p}_{\perp}} &=& \left(\frac{\mathrm{d}\mathcal{P}_{\mathrm{MPI}}}{\mathrm{d}\boldsymbol{p}_{\perp}} + \sum \frac{\mathrm{d}\mathcal{P}_{\mathrm{ISR}}}{\mathrm{d}\boldsymbol{p}_{\perp}} + \sum \frac{\mathrm{d}\mathcal{P}_{\mathrm{FSR}}}{\mathrm{d}\boldsymbol{p}_{\perp}}\right) \\ &\times & \exp\left(-\int_{\boldsymbol{p}_{\perp}}^{\boldsymbol{p}_{\perp}\max} \left(\frac{\mathrm{d}\mathcal{P}_{\mathrm{MPI}}}{\mathrm{d}\boldsymbol{p}_{\perp}'} + \sum \frac{\mathrm{d}\mathcal{P}_{\mathrm{ISR}}}{\mathrm{d}\boldsymbol{p}_{\perp}'} + \sum \frac{\mathrm{d}\mathcal{P}_{\mathrm{FSR}}}{\mathrm{d}\boldsymbol{p}_{\perp}'}\right) \mathrm{d}\boldsymbol{p}_{\perp}'\right) \end{array}$$


Ordered in decreasing p_{\perp} using "Sudakov" trick.

Corresponds to increasing "resolution": smaller p_{\perp} fill in details of basic picture set at larger p_{\perp} .


- Start from fixed hard interaction ⇒ underlying event
- No separate hard interaction ⇒ minbias events
- Possible to choose two hard interactions, e.g. W⁻W⁻

Colour correlations and $\langle p_{\perp} angle (n_{ m ch}) - 1$

 $\langle p_{\perp}
angle (n_{\mathsf{Ch}})$ is very sensitive to colour flow

long strings to remnants \Rightarrow much $n_{\rm Ch}$ /interaction $\Rightarrow \langle p_{\perp} \rangle (n_{\rm Ch}) \sim$ flat

short strings (more central) \Rightarrow less $n_{\rm Ch}$ /interaction $\Rightarrow \langle p_{\perp} \rangle (n_{\rm Ch})$ rising

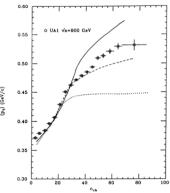
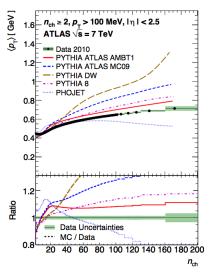
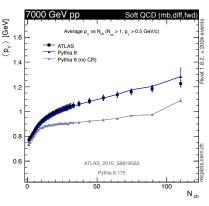
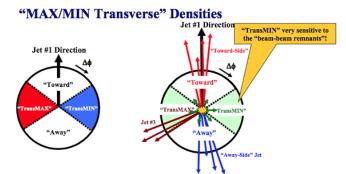




FIG. 27. Average transverse momentum of charged particles in $|\eta| < 2.5$ as a function of the multiplicity. UA1 data points (Ref. 49) at 900 GeV compared with the model for different assumptions about the nature of the subsequent (nonhardest) interactions. Dashed line, assuming $q\bar{q}$ scatterings only; dotted line, gg scatterings with "maximal" string length; solid line gg scatterings with "minimal" string length;

Colour correlations and $\langle p_{\perp} \rangle (n_{\rm ch}) - 2$

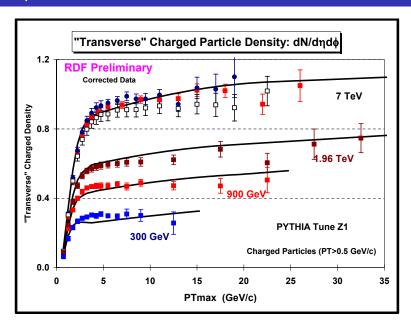
Comparison with data, generators before and after LHC data input:

see also A. Buckley et al., Phys. Rep. 504 (2011) 145 [arXiv:1101.2599[hep-ph]]


Jet pedestal effect – 1

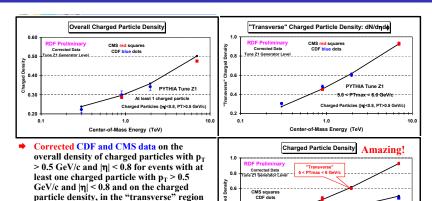
Events with hard scale (jet, $\ensuremath{\mathrm{W}/\mathrm{Z}}\xspace$) have more underlying activity!

Events with n interactions have n chances that one of them is hard,


- so "trigger bias": hard scale \Rightarrow central collision
- \Rightarrow more interactions \Rightarrow larger underlying activity.

Studied in particular by Rick Field, with CDF/CMS data:

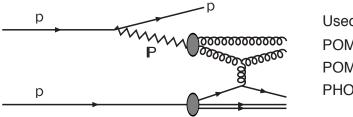
 Define the MAX and MIN "transverse" regions on an event-by-event basis with MAX (MIN) having the largest (smallest) density.


Jet pedestal effect – 2

Jet pedestal effect – 3

as defined by the leading charged particle (PTmax) for charged particles with $p_T > 0.5$ GeV/c and $|\eta| < 0.8$ with 5 < PTmax < 6 GeV/c. The data are plotted versus the

center-of-mass energy (log scale).


Conclusion: "transMIN" (MPI+BBR) increases much faster with $E_{\rm cm}$ than "transDIF" (ISR+FSR), proportionately speaking.

0.1

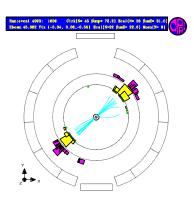
Center-of-Mass Energy (TeV)

Diffraction

Ingelman-Schlein: Pomeron as hadron with partonic content Diffractive event = (Pomeron flux) \times ($\mathbb{P}p$ collision)

Used e.g. in POMPYT POMWIG PHOJET

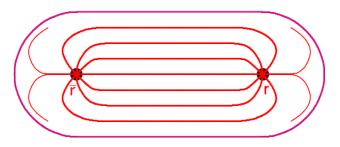
- 1) $\sigma_{\rm SD}$ and $\sigma_{\rm DD}$ taken from existing parametrization or set by user.
- 2) $f_{\mathbb{P}/p}(x_{\mathbb{P}},t) \Rightarrow$ diffractive mass spectrum, p_{\perp} of proton out.
- 3) Smooth transition from simple model at low masses to IPp with full pp machinery: multiple interactions, parton showers, etc.
- 4) Choice between 5 Pomeron PDFs.
- 5) Free parameter $\sigma_{\mathbb{P}p}$ needed to fix $\langle n_{\mathrm{interactions}} \rangle = \sigma_{\mathrm{jet}}/\sigma_{\mathbb{P}p}$.


Diffraction data

∆n = largest empty σinel as a function of ΔηΕ pseudorapidity interval, from edge of detector Δnr non-diffractive events dominate at small gaps diffractive plateau observed for large gaps typical single diffractive topology φ detector CMS Preliminary, $\sqrt{s} = 7$ TeV, $L = 20.3 \mu b^{-1}$ signature $d\sigma/d\Delta\eta^F$ [mb] 102 0 +1 +2 +3 +4 +5 MinBias, PYTHIA8-MBR ($\epsilon = 0.08$) Diffractive increasing particle threshold requirement results in Non-diffractive 101 Single Diffractive more ND events with large gaps; confirms that Double Diffractive inclusive events are dominated by low pt production Central Diffractive [qu PYTHIA 6 ATLAS AMBT2B Ja/d∆n^F PYTHIA 6 ATLAS AMBT2B ND 10^{-1} PYTHIA 8 4C ND 1.4 1.2 \s = 7 TeV 0.8 p > 800 MeV 0.6 0.4 MC/Data CMS Coll., PAS FSQ-12-005 PYTHIA8 models provide reasonable description ATLAS Coll., EPJ C72 (2012) 1926 (C. Gwenlan, EPSHEP 2013)

Hadronization

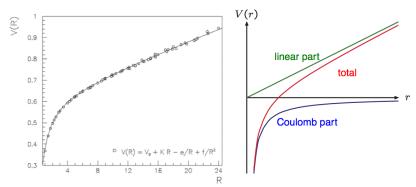
Hadronization/confinement is nonperturbative \Rightarrow only models.


Begin with $e^+e^- \to \gamma^*/Z^0 \to q\overline{q}$ and $e^+e^- \to \gamma^*/Z^0 \to q\overline{q}g$:

The QCD potential – 1

In QCD, for large charge separation, field lines are believed to be compressed to tubelike region(s) \Rightarrow string(s)

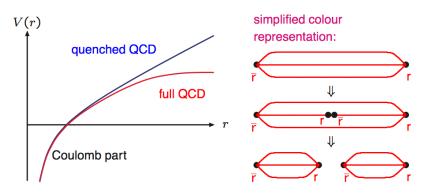
Gives force/potential between a q and a \overline{q} :


$$F(r) \approx \text{const} = \kappa \iff V(r) \approx \kappa r$$

 $\kappa \approx 1~{\rm GeV/fm} \approx$ potential energy gain lifting a 16 ton truck.

Flux tube parametrized by center location as a function of time \Rightarrow simple description as a 1+1-dimensional object – a string.

The QCD potential – 2


Linear confinement confirmed e.g. by lattice QCD calculation of gluon field between a static colour and anticolour charge pair:

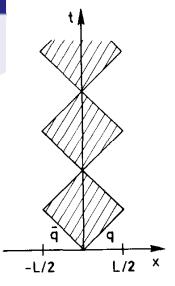
At short distances also Coulomb potential, important for internal structure of hadrons, but not for particle production (?).

The QCD potential – 3

Full QCD = gluonic field between charges ("quenched QCD") plus virtual fluctuations $g \to q\overline{q} (\to g)$ \Longrightarrow nonperturbative string breakings $gg \dots \to q\overline{q}$

String motion

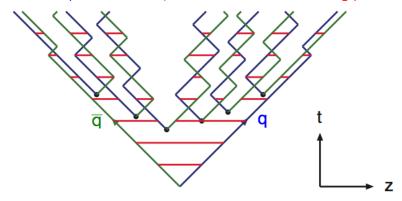
The Lund Model: starting point


Use only linear potential $V(r) \approx \kappa r$ to trace string motion, and let string fragment by repeated $q\overline{q}$ breaks.

Assume negligibly small quark masses. Then linearity between space–time and energy–momentum gives

$$\left| \frac{\mathrm{d}E}{\mathrm{d}z} \right| = \left| \frac{\mathrm{d}p_z}{\mathrm{d}z} \right| = \left| \frac{\mathrm{d}E}{\mathrm{d}t} \right| = \left| \frac{\mathrm{d}p_z}{\mathrm{d}t} \right| = \kappa$$

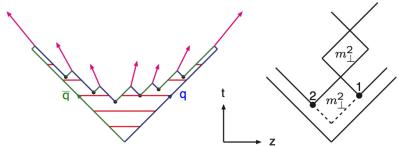
(c=1) for a $q\overline{q}$ pair flying apart along the $\pm z$ axis.


But signs relevant: the q moving in the +z direction has $\mathrm{d}z/\mathrm{d}t=+1$ but $\mathrm{d}p_z/\mathrm{d}t=-\kappa$.

The Lund Model

Combine yo-yo-style string motion with string breakings!

Motion of quarks and antiquarks with intermediate string pieces:



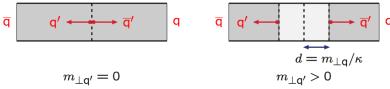
A q from one string break combines with a \overline{q} from an adjacent one.

Gives simple but powerful picture of hadron production.

Where does the string break?

Fragmentation starts in the middle and spreads outwards:

Corresponds to roughly same invariant time of all breaks, $\tau^2=t^2-z^2\sim$ constant,


with breaks separated by hadronic area $m_\perp^2=m^2+p_\perp^2$.

Hadrons at outskirts are more boosted.

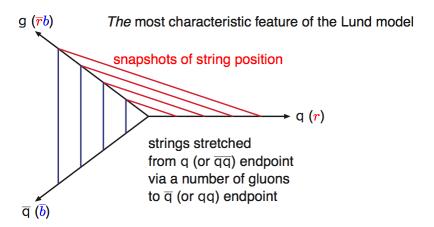
Approximately flat rapidity distribution, $\mathrm{d}\textit{n}/\mathrm{d}\textit{y} \approx \text{constant}$

 \Rightarrow total hadron multiplicity in a jet grows like ln $E_{\rm jet}$.

How does the string break?

String breaking modelled by tunneling:

$$\mathcal{P} \propto \exp\left(-\frac{\pi \textit{m}_{\perp q}^2}{\kappa}\right) = \exp\left(-\frac{\pi \textit{p}_{\perp q}^2}{\kappa}\right) \, \exp\left(-\frac{\pi \textit{m}_{q}^2}{\kappa}\right)$$

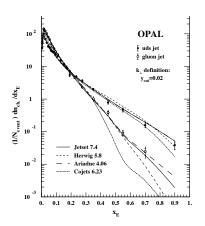

- Common Gaussian p_{\perp} spectrum, $\langle p_{\perp} \rangle \approx 0.4$ GeV.
- Suppression of heavy quarks,

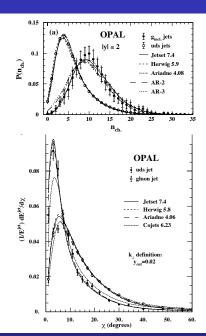
$$u\overline{u} : d\overline{d} : s\overline{s} : c\overline{c} \approx 1 : 1 : 0.3 : 10^{-11}$$
.

• Diquark \sim antiquark \Rightarrow simple model for baryon production.

String model unpredictive in understanding of hadron mass effects \Rightarrow many parameters, 10–20 depending on how you count.

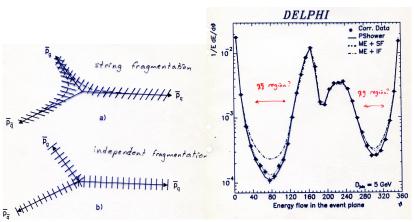
The Lund gluon picture – 1

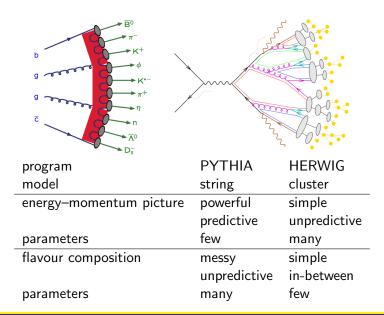



Gluon = kink on string

Force ratio gluon/ quark = 2, cf. QCD $N_C/C_F = 9/4$, \rightarrow 2 for $N_C \rightarrow \infty$ No new parameters introduced for gluon jets!

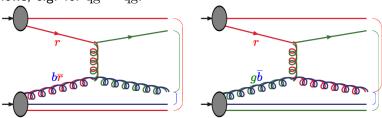
The Lund gluon picture – 2


Energy sharing between two strings makes hadrons in gluon jets softer, more and broader in angle:

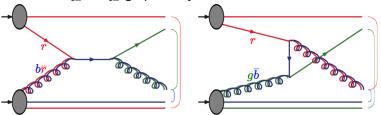


The Lund gluon picture – 3

Particle flow in the $q\overline{q}g$ event plane depleted in $q–\overline{q}$ region owing to boost of string pieces in q–g and $g–\overline{q}$ regions:



String vs. Cluster



Colour flow in hard processes – 1

One Feynman graph can correspond to several possible colour flows, e.g. for $qg \rightarrow qg$:

while other $qg \to qg$ graphs only admit one colour flow:

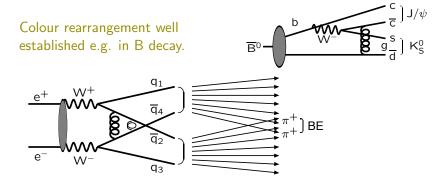
Colour flow in hard processes – 2

so nontrivial mix of kinematics variables (\hat{s}, \hat{t}) and colour flow topologies I, II:

$$\begin{aligned} |\mathcal{A}(\hat{\boldsymbol{s}},\hat{\boldsymbol{t}})|^2 &= |\mathcal{A}_{\mathrm{I}}(\hat{\boldsymbol{s}},\hat{\boldsymbol{t}}) + \mathcal{A}_{\mathrm{II}}(\hat{\boldsymbol{s}},\hat{\boldsymbol{t}})|^2 \\ &= |\mathcal{A}_{\mathrm{I}}(\hat{\boldsymbol{s}},\hat{\boldsymbol{t}})|^2 + |\mathcal{A}_{\mathrm{II}}(\hat{\boldsymbol{s}},\hat{\boldsymbol{t}})|^2 + 2\,\mathcal{R}e\,\big(\mathcal{A}_{\mathrm{I}}(\hat{\boldsymbol{s}},\hat{\boldsymbol{t}})\mathcal{A}_{\mathrm{II}}^*(\hat{\boldsymbol{s}},\hat{\boldsymbol{t}})\big) \end{aligned}$$

with $\mathcal{R}e\left(\mathcal{A}_{\mathrm{I}}(\hat{s},\hat{t})\mathcal{A}_{\mathrm{II}}^{*}(\hat{s},\hat{t})\right)\neq0$

- ⇒ indeterminate colour flow, while
- showers should know it (coherence),
- hadronization must know it (hadrons singlets).


Normal solution:

$$\frac{\rm interference}{\rm total} \propto \frac{1}{N_{\rm C}^2-1}$$

so split I:II according to proportions in the $\textit{N}_{C}\rightarrow\infty$ limit, i.e.

$$\begin{split} |\mathcal{A}(\hat{\boldsymbol{s}},\hat{\boldsymbol{t}})|^2 &= |\mathcal{A}_{\mathrm{I}}(\hat{\boldsymbol{s}},\hat{\boldsymbol{t}})|_{\mathrm{mod}}^2 + |\mathcal{A}_{\mathrm{II}}(\hat{\boldsymbol{s}},\hat{\boldsymbol{t}})|_{\mathrm{mod}}^2 \\ |\mathcal{A}_{\mathrm{I(II)}}(\hat{\boldsymbol{s}},\hat{\boldsymbol{t}})|_{\mathrm{mod}}^2 &= |\mathcal{A}_{\mathrm{I}}(\hat{\boldsymbol{s}},\hat{\boldsymbol{t}}) + \mathcal{A}_{\mathrm{II}}(\hat{\boldsymbol{s}},\hat{\boldsymbol{t}})|^2 \left(\frac{|\mathcal{A}_{\mathrm{I(II)}}(\hat{\boldsymbol{s}},\hat{\boldsymbol{t}})|^2}{|\mathcal{A}_{\mathrm{I}}(\hat{\boldsymbol{s}},\hat{\boldsymbol{t}})|^2 + |\mathcal{A}_{\mathrm{II}}(\hat{\boldsymbol{s}},\hat{\boldsymbol{t}})|^2}\right)_{\mathcal{N}_{\mathrm{C}} \to \infty} \end{split}$$

Colour Reconnection Revisited

At LEP 2 search for effects in $e^+e^- \to W^+W^- \to q_q\overline{q}_2\,q_3\overline{q}_4$:

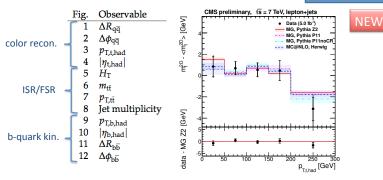
- perturbative $\langle \delta M_{\rm W} \rangle \lesssim 5$ MeV : negligible!
- nonperturbative $\langle \delta M_{\rm W} \rangle \sim$ 40 MeV : signs but inconclusive.
- ullet Bose-Einstein $\langle \delta M_{
 m W} \rangle \lesssim 100$ MeV : full effect ruled out.

Hadronic collisions with MPI's: many overlapping colour sources. Reconnection established by $\langle p_{\perp} \rangle (n_{\rm ch})$, but details unclear.

The Mass of Unstable Coloured Particles – 1

MC: close to pole mass, in the sense of Breit-Wigner mass peak.

```
t, W, Z: c\tau \approx 0.1 \text{ fm} < r_{\rm p}.
                                        annon
                                         aggagg
                                         000000
                                        agggagg
                                         000000
                                         000000
 <u>00000</u>
                                         000000
                                         000000
                                         000000
                                         000000
```

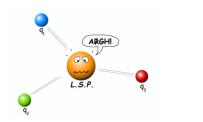

```
At the Tevatron: m_{\rm t} = 173.20 \pm 0.51 \pm 0.71 \; {\rm GeV} = {\rm PMAS(6,1)}
At the LHC: m_{\rm t} = 173.4 \pm 0.4 \pm 0.9 \; {\rm GeV} \; ({\rm CMS}) = 6 : {\rm m0} \; ?
```

Need better mass definition for coloured particles?

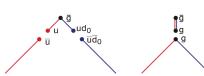
The Mass of Unstable Coloured Particles – 2

Dependence of Top Mass on Event Kinematics

CMS-PAS-TOP-12-029


- First top mass measurement binned in kinematic observables.
- Additional validation for the top mass measurements.
- With the current precision, no mis-modelling effect due to
 - color reconnection, ISR/FSR, b-quark kinematics, difference between pole or MS[~] masses.

E. Yazgan


(Moriond 2013)

10

QCD and BSM physics

BNV ⇒ junction topology ⇒ special handling of showers and hadronization

Hidden valleys:

Hidden valleys: showers potentially interleaved with normal ones; hadronization in hidden sector;

decays back to normal sector

R-hadrons: long-lived \tilde{g} or \tilde{q} ;

new: hadronization of massive object "inside" the string

Summary

- Multiparton interactions well established by now.
- Detailed modelling differs between generators.
- Decent description of many kinds of data.
- Some progress on modelling of diffraction.
- Hadronization: string model most sophisticated.
- Slow/no evolution of core hadronization models.
- Colour reconnection highly relevant but unclear.
- QCD is relevant for many aspects of SM & BSM physics.

The Road Ahead – 1

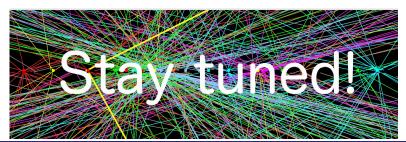
What will be the role of the LHC?

- to study a rich set of new particles predominantly decaying to leptons, photons and invisible particles?
- to study a rich set of new particles predominantly decaying to partons, i.e. jets?
- to study a SM Higgs in boring detail, but do little else (cf. top at the Tevatron)?
- to become a QCD machine for lack of better (cf. HERA)?

Either way, generators will always be needed, but to a varying degree.

Many obvious evolutionary steps for generators:

- automated NLO ⇒ POWHEG calculations
- UNLOPS: combining CKKW-L-style matching with NLO
- parton showers with complete NLL accuracy
- improved MPI and hadronization frameworks


The Road Ahead – 2

And some revolutionary ones:

- automated multiloops for complete NⁿLO calculations,
 e.g. formalism with inherent Sudakov form factors
- lattice QCD describes hadronization

But what is progress (in the eyes of experimentalists)?

- more complicated models with more tunable parameters, giving better agreement with data?
- more sophisticated/predictive models with fewer tunable parameters, giving worse agreement with data?

