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Four Lessons

|) How could | do anything without knowing
everything that had already been done!? [...]
pick up what | needed to know as | went along.
It was sink or swim. [...] But | did learn one big

thing: that no one knows everything, and you
don’t have to.

2) While you are swimming and not sinking you
should aim for rough water. [...] My advice is to
go for the messes — that’s where the action is.

Scientist: Four golden lessons
Steven Weinberg, Nature 426, 389 (27 November 2003)



Four Lessons -
o

3) Forgive yourself for wasting time.[...] in the
real world, it’s very hard to know which
problems are important, and you never know
whether at a given moment in history a B
problem is solvable [...] get used [...] to being = L.
becalmed on the ocean of scientific knowledge |

4) Learn something about the history of
science [...] As a scientist, you're probably not
going to get rich. [...] But you can get great
satisfaction by recognizing that your work in
science is a part of history.

Scientist: Four golden lessons
Steven Weinberg, Nature 426, 389 (27 November 2003)
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The energy frontier
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What can we expect to discover!
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Quark and Lepton
mass hierarchy
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Masses on a Log-scale
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YD — (md7 me, mb)/v

Yy = VCKM (M My Mg ) [0

Yp ~ (107°,0.0005, 0.026)

107° —0.002 0.007 + 0.0047
Yo~ | 107° 0.007 —0.04 + 0.0008¢

1078 +10""% 0.0003 0.96

SM quark masses: mostly small & hierarchical.
Origin of this structure!

Compare to: gs~1, g~ 0.6, g ~ 0.3, AHiggs ~ |



Analog to mysterious spectral lines before QM
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Explained by Bohr E. =

s there an analogue to the Bohr atom, we might
Gllsceversatitetlas (o



Flavor dynamics @
LHC ? \Q\‘oc’\n

Possible, but ...

|) Lack of scale -
Lﬂavor — [YU]ij Qichj + ..
dim 0+ 3/2+1+3/2=4

— D. Straub lecture

2) Very strong constraints from flavor physics:
Generic flavor dynamics >> 100 TeV






What'’s the problem?




What'’s the problem!?
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On the Self-Energy and the Electromagnetic Field of the Electron

V. F. WEISSKOPF .
University of Rochester, Rochester, New York

(Received April 12, 1939)

The charge distribution, the electromagnetic field and logarithmically infinite in positron theory are given. It is
the self-energy of an electron are investigated. It is found proved that the latter result holds to every approximation
that, as a result of Dirac’s positron theory, the charge and in an expansion of the self-energy in powers of e2/hc. The
the magnetic dipole of the electron are extended over a  self-energy of charged particles obeying Bose statistics is
finite region; the contributions of the spin and of the found to be quadratically divergent. Some evidence is
fluctuations of the radiation field to the self-energy are given that the “‘critical length’’ of positron theory is as
analyzed, and the reasons that the self-energy is only small as &/(mc)-exp (—hc/e?).

.  E——

Weisskopf, Phys. Rev. 56 (1939) /2




Electro-weak scale unstable

1

Quantum fluctuations
destabilize weak scale

36



A light Higgs is unnatural

V(h) = eA*h°

No tuning:
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A light Higgs is unnatural

V(R) = eA2h2 + \h* A>my

No tuning:

=+ 0(1) U /\

Needs tuning or
new physics close by Ve~ my /A

~ My /Mpianck ~ 80.4/10* ~ 0.00000000000000001




New physics in EVV sector
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Different to flavor (Maaor >>10° TeV), ;L S
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the Higgs constrains only ~ few TeV
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New dynamics possible and required, promising for
LHC!




Overview

|. Motivation for new physics at the TeV scale
2. Supersymmetry
3. Composite/Little Higgs

4. Alternatives (if time allows)



Motivation




Dark matter?
Dark Energy?
Origin of quark mass and mixing hierarchies?
Strong CP?
-W strong coupling/unrtarity problem?
Matter-Antimatter asymmetry?

Neutrino masses!
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VWWhy expect new
physics at the LHC?
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< matter! Weakly interacting massive particle
MP) works, but also mpm =10"1> or 102 GeV
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Origin of quark mass and mixing hierarchies?
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Dark matter? Weakly interacting massive particle
(WIMP) works, but also mpm =10 or 102 GeV
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Origin of quark mass and mixing hierarchies?

EW strong coupling/unitarity problem
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SM without the Higgs

Eeﬂc = ESM()@ AW, Z,,Gu,q, k) (unitary gauge)
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SM without the Higgs

Lo = ESM()@ AW, Z,,Gu,q,f)  (unitary gauge)
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Adding SM-like Higgs

SM works up to A > LHC
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Adding SM-like Higgs

SM works up to A > LHC
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Adding SM-like Higgs

SM works up to A > LHC
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Adding SM-like Higgs
What if the coupling is not exactly like in the SM?

W w-

DL-V*' W A ~ 47v




1:7-‘-/1}
A ~ 471 )

/ V1 — a?

Even if we measure @ < 1, no guarantee for new
physics in reach of LHC.

Example: composite pseudo-Goldstone Higgs:

a:\/l—(v/f)2%0.8...0.9
A>6...8TeV



Stability and meta- stablllty

Cabibbo, Mai sio, '79;
Tree-level Hung '79: g d " 86 Sh Sgo:
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Stability and meta-stability

Cabibbo, Maiani, Parisi, Petronzio, '/9:
Tree-level Hung '79; Lindner 86; Sher '89: ...

V(g) = —p®|of* HAlo*




Stability and meta-stability

Cabibbo, Maiani, Parisi, Petronzio, '/9:
Tree-level Hung '79; Lindner 86; Sher '89: ...

V(p) = —p?|¢)?

What happens at |¢| > v ? Can ignore 1° < |¢|”

Quantum fluctuations change potential



Stability and meta-stability
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Tree-level Hung '79; Lindner 86; Sher '89: ...
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Stability and meta-stability

Cabibbo, Maiani, Parisi, Petronzio, '/9:
Tree-level Hung '79; Lindner 86; Sher '89: ...

V(p) = —p?|¢)?

What happens at |¢| > v ? Can ignore 1° < |¢|”

Quantum fluctuations change potential
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Stability and meta-stability

SM vacuum is unstable but sufficiently
long-lived, compared to the age of the Universe
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| Unlikely the full story,
0.05 - m, = 125.6 GeV .
m=1732+09Gev  assumes nothing but
SM up to the Planck
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So what should be our
guiding principle?
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Effective Field Theory

An approximate field theory which works up to
a certain energy scale (A), using only degrees of
freedom with m < A .

Example: QED (e,v), for E << Mw
Is the SM an EFT?

Yes! Breaks down latest at the gravity scale
(details unknown).



Principle: UV insensitivity

Naturalness : absence of special conspiracies |
' between phenomena occurring at very different |

length scales.

~—

Planets do not care
about QED.

QED at E ~ me does not care
about the Higgs.



See e.g. G. Giudice: 130/./8/9

Hierarchy problem

® Higgs mass sensitive to thresholds (GUT, gravity)

® Enormous quantum corrections O (highest scale)
exceed Higgs mass physical value, need to fine-
tune parameters

- ) - -

bare


http://arxiv.org/pdf/1307.7879v2.pdf
http://arxiv.org/pdf/1307.7879v2.pdf

See e.g. G. Giudice: 130/.7/879

Hierarchy problem

® Higgs mass sensitive to thresholds (GUT, gravity)

® Enormous quantum corrections O (highest scale)
exceed Higgs mass physical value, need to fine-
tune parameters
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http://arxiv.org/pdf/1307.7879v2.pdf
http://arxiv.org/pdf/1307.7879v2.pdf

® Does the photon quantum correction
matter?

® How about the other quarks (u,d,c,s,b)?
Why did | only consider the top!?
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® The ‘cancelation of divergencies’ is not the
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Comments

® The ‘cancelation of divergencies’ is not the
question

® Rather: parameters in the effective theory
are strongly sensitive to fundamental ones
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Comments

® The ‘cancelation of divergencies’ is not the
question

® Rather: parameters in the effective theory
are strongly sensitive to fundamental ones

¥ , e.g. GUT
2 9GUT 5 42 15 2
H__%__ = A~ UL © (107 Ge)

® The hierarchy problem needs a ‘hierarchy
of scales’. The SM alone (no gravity, nothing
else): no hierarchy, no problem!




This is not an inconsistency of physics (can
always cancel bare vs. quantum) rather it helps
us understand where new physics might set in.




Electron Mass

: divergent energy of electric field

\ /;7 New phy5|cs expected
¢\ A ~ me/oz

/ rE? ~al s Me
r=A—1

Classically:



Electron Mass

Ex| : divergent energy of electric field +positron

Extend space-time symmetry,
relativity + QM: predict positron

A
0Me gme log ( )

s e

— natural electron mass.



Another example: Pion mass

Ex2 Neutral-charged pion mass difference

Expect — A < 850 MeV



Another example: Pion mass

Ex2 Neutral-charged pion mass difference
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‘New physics’: comes inat m, = 770 MeV
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Another example: Pion mass

Ex2 Neutral-charged pion mass difference

Expect — A < 850 MeV

‘New physics’: comes inat m, = 770 MeV
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Naturalness disaster

® We don’t understand the cosmological
constant ('’ = Ay~ (10 % eV)*

1

5= 167w

[ dtov=g (&~ a0

oAg ~ A* = new physics at 10" eV or
~ few mm !?!



Next

A &/ /@ Supersymmetry
- e » (new space-time
@ c@ symmetry)

Composite Higgs



