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Design parameters of the J-PARC RCS

Circumference
Super-periodicity

Injection

Injection period
Injection energy
Extraction energy
Repetition rate
Harmonic number
Number of bunches
Particles per pulse
Output beam power
Transition gamma
Number of dipoles
guadrupoles
sextupoles
steerings
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Linac upgrade :
- Installation of ACS in 2013 Summer-Autumn:

Injection energy 181 MeV = 400 MeV

- Replacement of IS and RFQ in 2014 Summer:

Intensity 5.0E13 = 8.3E13/pulse

We plan to start 1-MW beam tuning from Oct. 2014.



History of the RCS output beam power

€ Beam commissioning of the linac  ; November 2006~
€ Beam commissioning of the RCS  ; October 2007~
@ Startup of the MLF user operation ; December 2008~
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The RCS output beam power has been steadily increasing following;
- Progression of beam tuning,
- Hardware improvements,
- Careful monitoring of the trend of residual activation levels.

- Maximum output beam power demonstrated so far : ~540 kW

- Current output beam power for the routine user program : ~300 kW
*** Qutput beam power is now limited by the capability of the neutron target.



High intensity beam trial of up to 540 kW

& Date ; Nov. 2012
@ |njection beam;
181 MeV/24.5 mA/0.5 ms/0.60 chopper beam-on duty factor

= 4.5E13/pulse, corresponding to 540 kW output at 25 Hz.
€ Operating point; (6.45, 6.42) ;

Xx=6.5
1 4x=27

x=7.5

In this experiment, we measured;

- Injection painting parameter dependence

of beam loss

66 *nx¢b
- Intensity dependence of beam loss >>6_4 5
- Time structure of beam loss . ”%? ]
- Transverse & longitudinal beam profiles, ) 57
and bunching factor...... N &
¥
In this talk, we present sel s . /
the above experimental results R

X

together with the corresponding numerical simulation results.
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Beam loss reduction by injection painting



Transverse painting

Transverse painting makes use of a controlled phase space offset
between the centroid of the injection beam and the ring closed orbit
to form a different particle distribution of the circulating beam
from the multi-turn injected beam.

Horizontal painting
by a horizontal closed orbit
variation during injection

Circulating beam ellipse
with a painting emittance

Vertical painting
by a vertical injection
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M. Yamamoto et al, NIM., Sect. A 621, 15 (2010).

Longitudinal painti ng F. Tamura et al, PRST-AB 12, 041001 (2009).

Longitudinal painting makes use of a controlled momentum offset
to the rf bucket in combination with superposing a second harmonic rf
to get a uniform bunch distribution after the multi-turn injection.
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The second harmonic rf fills the role in shaping
flatter and wider rf bucket potential, leading to
better longitudinal motion to make a flatter

bunch distribution.

Uniform bunch distribution is formed through
emittance dilution by the large synchrotron motion
excited by momentum offset.



Longitudinal painting
Additional control of longitudinal painting ; phase sweep of V, during injection

V_=V,sing-V,sin{2(¢-d,)+d,}

Phase sweep of the second harmonic rf

RF potential well (Arb.)
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Numerical simulation setup
Simpsons (PIC particle tracking code developed by Dr. Shinji Machida)

Imperfections included:
€ Time independent imperfections
- Multipole field components for all the main magnets:
BM (Ki~), QM (K; o), and SM (Kg) obtained from field measurements
- Measured field and alignment errors
@ Time dependent imperfections
- Static leakage fields from the extraction beam line:
Ko,1 and SK;, ; estimated from measured COD and optical functions
- Edge focus of the injection bump magnets:
K, estimated from measured optical functions
- BM-QM field tracking errors
estimated from measured tune variation over acceleration
- 1-kHz BM ripple
estimated from measured orbit variation
- 100-kHz ripple induced by injection bump magnets
estimated from turn-by-turn BPM data
€ Foil scattering:
Coulomb & nuclear scattering angle distribution calculated with GEANT

Time-dependent imperfections
can be included easily,

because “Simpsons” takes “time”
as an independent variable.

We improve calculation model following the progression of
beam experiment in collaboration with Dr. S. Machida,
discussing space-charge effect and its combined effects with imperfections.
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Transverse painting

Numerical simulations
Transverse beam distribution just after beam injection (at 0.5 ms)
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Longitudinal painting

Longitudinal beam distribution just after beam injection (at 0.5 ms)
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Tune footprint at the end of injection

Numerical Simulation

- No transverse painting - 1005t transverse painting
- No longitudinal painting - Full longitudinal painting
(V,/V,=80%, ¢,=-100 to 0 deg, Ap/p=-0.2%)
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Particles here suffer from emittance dilutions,
leading to beam loss.



Emittance growth mitigation by painting

99 % normalized emittance
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We experimentally investigated the effectiveness of injection painting
on the beam loss reduction for 540 kW intensity beam.



Beam loss reduction by painting

— Measurements (DCCT)
— Calculations
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- Beam loss takes place only for the first 4 ms in the low energy region for all the cases.
- Beam loss of ~30% observed with no painting (ID1) was decreased to ~2%
by the combination of 100m transverse painting and full longitudinal painting (1D8).
- Most of the remaining 2% beam loss was well localized at the collimator section.
- The 2% beam loss corresponds to 650 W in power,
which is still less than 1/6 of the collimator limit of 4 kW.
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Beam survival

Beam loss reduction by painting
Beam survival: output intensity (DCCT) /input intensity (SCT76)
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ID1=ID8 Beam loss reduction by painting
ID8=ID11 Beam loss increase caused by large transverse painting (g,,>150m)
due to the dynamic aperture limit.



Intensity dependence of
beam loss, bunching factor,
extraction beam profile=--



Measurements vs. Calculations

: Bunching factor

Bunching factor
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Measurements vs. Calculations
: Time structure of beam loss
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The beam loss appears only for the first 4 ms in the low energy region:
(A) mainly from foil scattering during injection
(B) Origin? == -to be discussed later



Measurements vs. Calculations
. Intensity dependence of beam loss

Painting parameter ID8 : Beam survival :
- 1007t transverse painting ratio of output intensity (DCCT)
- Full longitudinal painting to input intensity (SCT76)
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Charge density (Arb.)

Measurements vs. Calculations

: Extraction beam profile at 3 GeV
MWPM @ extraction beam line
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Discussions for ~2%-loss
remaining for 540-kW intensity beam



Possible causes of ~2-% loss
remaining for 540-kW intensity beam
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A~+1.6%
by 100-Hz ripple induced
by injection bump magnets

A~+0.3%
by 1-kHz BM ripple;
collimator aperture reduction
caused by orbit variation

A~+0.5%
by foil scattering



100-kHz resonance ripple induced in the ceramic

vacuum vessel screening strips by injection bump field
FFT of BPM signal
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Effect of 100-kHz ripple

Tune footprint calculated at the end of injection
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100-kHz ripple makes additional
betatron resonances at 0.2 (0.8).

A part of beam particles reaches to
0.2 lines due to space-charge

tune depression,

where the effect of ripple builds up,
leading to emittance growth.

The situation for higher intensity beam is more severe,
because the 100-kHz ripple directly affect the tail part of the beam.



Effect of 100-kHz ripple

Beam profile calculated at the end of injection (plotted in log scale)
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Possible scheme for further beam loss reduction
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Re-optimization of operating point
i @ OP1 : Current operating point
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7 = . . . .
: / Y sufficiently by painting.
“*1 v b 100-kHz ripple (0.2 resonances)
66| e also strongly affect the beam.
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= Larger transverse painting
(150m) is available.

- Effect of 100-kHz ripple
(0.8 resonances in this case) is less.



OP1 vs. OP2 : Time structure of beam loss

Numerical simulations

OP1, 100 transverse painting OP2, 1505 transverse painting
+ full longitudinal painting + fuII Iongltudmal pamtmg

Beam loss (%) # of lost particles/turn

C
i T s I ]
15| — E 151 - F0|I ﬁthng rate reductlon .
- 13 | by larger transverse painting -
101 1.e10 L ]
- 1E | - *Mitigation of 100-kHz-ripplel
5 o 5 .
5[ -1 & 5
u N g B
| n i
0 12 ol
4 5 6% 0 1 2 3 4 5 6
3 | | | | | 1 3 | | | | |
: =
2| | n 2 ]
B (7p] n
i o
1 e 1 -
A o [
0_’“"""III\‘IIII‘\III‘\IIIm0__‘\\|J|||||||\l|\|1|||1|||1\|
0 1 2 3 4 5 6 0 1 2 3 4 5 6
0.7 ms : Time (ms) 0.7 ms : Time (ms)
End of foil scattering End of foil scattering

We will try “OP2” in the next high intensity trial experiment (Apr. 15-20).



OP1 vs. OP2 : Effect of 100-kHz ripple

Tune footprint calculated at the end of injection
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Reference:
H. Hotchi, et. al., Phys. Rev. ST Accel. Beams 15, 040402 (2012).

1) Modeling of high intensity proton synchrotron and quantitative
benchmarking between experiment and simulation becomes feasible.

2) Key factors are, to include all known imperfections in addition to
the correct modeling of transverse and longitudinal dynamics,
injection process, space charge tune spread, etc.

3) Several beam loss mitigation idea were proposed with help of
simulation and verified by experiment.

4) Based on the study, there is a good reason that we could use simulation
as a tool of the performance improvement in future.



