BSM Likelihoods in CMS

Likelihoods for the LHC Searches, CERN January, 23, 2013

Overview

- Likelihoods in BSM searches at CMS
 - Binned Cut and Count (Poisson)
 - Unbinned Shape Analysis (Analytic function)
 - Binned Cut and Count (Multinomial)
- Approximating the likelihood for reinterpretation
 - Simplify as binned cut and count (Poisson)
- Tools to help and future efforts

Public Likelihoods in CMS

CMS SUSY Public Likelihoods

CMS SUSY Analysis	Reference	Likelihoods and Additional Information
Razor (7 TeV, 4.7 fb ⁻¹)	arXiv:1212.6961 twiki.cern.ch/twiki/bin/viewauth/CMSPublic/ RazorLikelihoodHowTo	Binned Likelihood, Yields, Forthcoming: Detector Response, Efficiencies
SS Dilepton, 2 b-jets (8 TeV, 10.5 fb ⁻¹)	arXiv:1212.6194	Yields, Detector Response, Efficiencies
1 Lepton (7 TeV, 4.98 fb ⁻¹)	arXiv:1212.6428	Yields, Detector Response, Efficiencies
OS Dilepton	arXiv:1206.3949	Yields, Detector Response, Efficiencies
Z, Jets, MET	PLB 716, 260–284 (2012) arXiv:1204.3774	Yields, Detector Response, Efficiencies

Canonical Use of Likelihoods

Canonical Use

Use your favorite generator, Pythia8, MadGraph5, etc. for your BSM model

Apply cuts, efficiencies and smear with detector response

Reinterpret results for your BSM model with the likelihood

One possible simple application is a Bayesian Analysis...

Bayesian Application of Likelihood

Recall from G. Cowan's talk

Bayes' theorem only needs $L(x|\theta)$ evaluated with a given data set (the 'likelihood principle').

Single bin counting experiment Interested in a signal, with Poisson $\mathcal{L}(N|s,b) = \frac{(s+b)^N e^{-(s+b)}}{N^N}$ likelihood and mean s+b (model)

 $p(s,b|N) = \frac{\mathcal{L}(N|s,b)\pi(s,b)}{\int L(N|s,b)\pi(s,b)dbds}$ Update our priors in light of data with Bayes' rule normalization in model space

Bayesian Application of Likelihood

Parameters play different roles

s - signal yield, parameter-of-interest

b - background yield, nuisance parameter

 $\pi(s,b) = \pi_s(s)\pi_b(b)$ Usually only interested in $p(s|N) \propto \int \mathcal{L}(N|s,b)\pi_s(s)\pi_b(b)db$ signal yield, so we marginalize nuisance parameter

Compute 95% credibility intervals or whatever we want

non-informative

Example: cut and count

SS Dilepton

arXiv:1104.3168 JHEP 1106:077 (2011)

7 TeV/8 TeV Updates arXiv:1205.3933 arXiv:1212.6194

After selection, estimate backgrounds

Rare SM processes

 (from MC)
 e.g. qq → WZ and ZZ
 qq → q'q'W[±]W[±]

 2 × (qq → W[±]), ttW, and WWW
 1 or 2 fake leptons

 (data-driven)

e.g. semi-leptonic $t\bar{t}$

Search in SS dilepton + jets + MET final states in several signal regions

- 2 isolated leptons, first lepton $p_T > 20$ GeV, second lepton $p_T > 10$ GeV
- RelIso< 0.1 for $p_T > 20$ GeV and IsoSum< 2GeV for $p_T < 20$ GeV
- 2 reconstructed jets, $p_T > 30 \text{ GeV}$
- $E_T^{\text{miss}} > 30 \text{ GeV} (ee \text{ and } \mu\mu)$ or $E_T^{\text{miss}} > 20 \text{ GeV} (e\mu)$
 - charge mis-reconstruction (data-driven)

SS Dilepton Results

Search Region	ee	μμ	еµ	total	95% CL UL Yield
Lepton Trigger					
$E_T^{\text{miss}} > 80 \text{ GeV}$					
MC	0.05	0.07	0.23	0.35	
predicted BG	$0.23^{+0.35}_{-0.23}$	$0.23^{+0.26}_{-0.23}$	0.74 ± 0.55	1.2 ± 0.8	
observed	0	0	0	0	3.1
$H_T > 200 \mathrm{GeV}$					
MC	0.04	0.10	0.17	0.32	
predicted BG	0.71 ± 0.58	$0.01^{+0.24}_{-0.01}$	$0.25^{+0.27}_{-0.25}$	0.97 ± 0.74	
observed	0	0	1	1	4.3
H _T Trigger					
Low- p_T					
	· ·				
MC	0.05	0.16	0.21	0.41	
MC predicted BG	0.05 0.10 ± 0.07	0.16 0.30 ± 0.13	0.21 0.40 ± 0.18	0.41 0.80 \pm 0.31	
MC predicted BG observed	0.05 0.10 ± 0.07 1	0.16 0.30 ± 0.13 0	0.21 0.40 \pm 0.18 0	0.41 0.80 ± 0.31 1	4.4
MC predicted BG observed	0.05 0.10 \pm 0.07 1 $e\tau_h$	0.16 0.30 \pm 0.13 0 $\mu \tau_h$	0.21 0.40 ± 0.18 0 $\tau_h \tau_h$	0.41 0.80 ± 0.31 1 total	4.4 95% CL UL Yield
$\frac{\text{MC}}{\text{predicted BG}}$ $\frac{\tau_h \text{ enriched}}{\tau_h \text{ enriched}}$	0.05 0.10 \pm 0.07 1 $e\tau_h$	0.16 0.30 \pm 0.13 0 $\mu \tau_h$	0.21 0.40 ± 0.18 0 $\tau_h \tau_h$	0.41 0.80 ± 0.31 1 total	4.4 95% CL UL Yield
$\frac{MC}{predicted BG}$ observed $\tau_h \text{ enriched}$ MC	0.05 0.10 \pm 0.07 1 $e\tau_h$ 0.36	0.16 0.30 \pm 0.13 0 $\mu \tau_h$ 0.47	0.21 0.40 \pm 0.18 0 $\tau_h \tau_h$ 0.08	0.41 0.80 ± 0.31 1 total 0.91	4.4 95% CL UL Yield
mC predicted BG observed $\tau_h \text{ enriched}$ MC predicted BG	$0.05 \\ 0.10 \pm 0.07 \\ 1 \\ e\tau_h \\ 0.36 \\ 0.10 \pm 0.10 \\ \end{array}$	0.16 0.30 \pm 0.13 0 $\mu \tau_h$ 0.47 0.47 0.17 \pm 0.14	$0.21 \\ 0.40 \pm 0.18 \\ 0 \\ \tau_h \tau_h$ $0.08 \\ 0.02 \pm 0.01$	0.41 0.80 ± 0.31 1 total 0.91 0.29 ± 0.17	4.4 95% CL UL Yield

Data: No excess

Set Bayesian 95% credibility limits

Additional Information for Gen-level Study

Parametrized curve describes analysis efficiency to canonical signal model **at gen-level**

Validation - SS Dilepton

Using simple efficiency model of CMS detector, the 95% C.L. limits are reproduced

Model Publication - SS Dilepton

arXiv:1104.3168 JHEP 1106:077 (2011)

clearly specified selection

- 2 isolated leptons, first lepton $p_T > 20$ GeV, second lepton $p_T > 10$ GeV
- RelIso< 0.1 for $p_T > 20$ GeV and IsoSum< 2GeV for $p_T < 20$ GeV
- 2 reconstructed jets, $p_T > 30 \text{ GeV}$
- $E_T^{\text{miss}} > 30 \text{ GeV} (ee \text{ and } \mu\mu)$ or $E_T^{\text{miss}} > 20 \text{ GeV} (e\mu)$

object efficiencies for a canonical signal model

predicted background and observed yields

Search Region	ee	μμ	еµ	total	95% CL UL Yield
Lepton Trigger					
$E_T^{\text{miss}} > 80 \text{ GeV}$					
MC	0.05	0.07	0.23	0.35	
predicted BG	$0.23^{+0.35}_{-0.23}$	$0.23^{+0.26}_{-0.23}$	0.74 ± 0.55	1.2 ± 0.8	
observed	0	0	0	0	3.1
$H_T > 200 \text{ GeV}$					
MC	0.04	0.10	0.17	0.32	
predicted BG	0.71 ± 0.58	$0.01^{+0.24}_{-0.01}$	$0.25^{+0.27}_{-0.25}$	0.97 ± 0.74	
observed	0	0	1	1	4.3
H _T Trigger					
Low-p _T					
MC	0.05	0.16	0.21	0.41	
predicted BG	0.10 ± 0.07	0.30 ± 0.13	0.40 ± 0.18	0.80 ± 0.31	
observed	1	0	0	1	4.4
	$e\tau_h$	$\mu \tau_h$	$\tau_h \tau_h$	total	95% CL UL Yield
τ_h enriched					
MC	0.36	0.47	0.08	0.91	
predicted BG	0.10 ± 0.10	0.17 ± 0.14	0.02 ± 0.01	0.29 ± 0.17	
observed	0	0	0	0	3.4

reproducibility of limits

Reinterpreting a shape analysis in a new BSM model Example: 2011 Razor analysis

Razor Variables Motivation

Approximate the squark rest frame by boosting to the frame where $p_{j1}^{R} = p_{j2}^{R}$

Transformed momentum defines razor variable MR

Estimates the momentum in the **true** squark rest frame

$$|\vec{p}_{j1}| = \frac{M_{\tilde{q}}^2 - M_{\tilde{\chi}}^2}{2M_{\tilde{q}}}$$

Modeling the Background in 2D

Razor Shape Analysis

Events are classified in 6 disjoint boxes based on lepton content In each box, each SM background probability density is modeled by 1 or 2 instances of

$$f_j(M_R, R^2) = [k_j(M_R - M_{R,j}^0)(R^2 - R_{0,j}^2) - 1]$$

$$\times \exp[-k_j(M_R - M_{R,j}^0)(R^2 - R_{0,j}^2)]$$

Razor Shape Analysis

Razor Shape Analysis

HAD Events are classified in 6 disjoint boxes MU ELE based on lepton content ELE-ELE MU-MU In each box, each SM **MU-ELE** background probability density is modeled by 1 or 2 instances of $f_j(M_R, R^2) = k_j M_R - M_{R,j}^0 (R^2 - R_{0,j}^2)$ -1] $\times \exp[-k_j M_R - M_{R,j}^0] (R^2 - R_{0,j}^2)$ $\log f_j(M_R, R^2)$ j indexes the SM background, e.g. j = ttbar, W/Z+jets, etc. -15 0.4 -200.3 R^2 500 1000 1500 fit parameters of bkgd model 2000 0.22500 M_R Javier Duarte Caltech Wednesday, January 23, 13

Razor Unbinned Likelihood

An unbinned, extended maximum likelihood fit is performed in a sideband fit region, and extrapolated

$$\mathcal{L}_b = \frac{\exp\left[-\sum_{j\in SM} N_j\right]}{N!} \prod_{i=1}^N \left(\sum_{j\in SM} N_j f_j(M_{R(i)}, R_{(i)}^2)\right)$$

i indexes an event in the dataset

N = total number of events $N_j =$ expected yield per SM bkgd $f_j =$ prob. density per SM bkgd. $R^2_{(j)}, M_{R(j)} =$ per-event observables

Razor Fit Results

Events/(0.013)

Sum of W/Z+jets and tt+jets backgrounds described by sum of 3 PDFs of the form

$$f_j(M_R, R^2) = [k_j(M_R - M_{R,j}^0)(R^2 - R_{0,j}^2) - 1]$$

 $\times \exp[-k_j(M_R - M_{R,j}^0)(R^2 - R_{0,j}^2)]$

HAD	68% range	mode	median	observed	p-value
SR1	(0, 0.7)	0.5	0.5	0	0.99
SR2	(0, 0.7)	0.5	0.5	0	0.99
SR3	(45, 86)	73	69	74	0.68
SR4	(4, 15)	9.5	10.5	20	0.12
SR5	(530, 649)	566	593	581	0.82
SR6	(886, 1142)	987	1020	897	0.10

Signal + Background Likelihood

An unbinned, extended likelihood for the signal +background hypothesis is formed from the sum

Caltech

Limit Setting

We use the ratio of *marginal* likelihoods as the test statistic, evaluated on data in the signal region

$$\mathcal{L}_{s+b} = \frac{\exp[-N_s - \sum_{j \in SM} N_j]}{N!} \prod_{i=1}^N \left(N_s f_s(M_{R(i)}, R_{(i)}^2) + \sum_{j \in SM} N_j f_j(M_{R_i}, R_i^2) \right)$$
$$\mathcal{L}_{s+b}^{(m)} = \int \mathcal{L}_{s+b} \ d\boldsymbol{\nu_b} \ d\boldsymbol{\nu_b} \ d\boldsymbol{\nu_s}$$

 \log

Done *numerically*, by varying the distributions of the signal and background in pseudo-experiments according to the nuisance parameter priors*

- $\boldsymbol{\nu_b}$ bkgd fit parameters $k_j M_{R,j}^0 R_{0,j}^2$ etc.
- u_s jet energy scale, PDFs, etc.

*More on this procedure later

2011 Razor Limits

Razor Binned Likelihood

Since CMS data is not public, unbinned likelihood is of limited use Instead, one can construct an binned likelihood as the product of many independent poisson likelihoods

$$\mathcal{L}_{s+b}^{(m)} = \prod_{\text{bin } i} \int \text{Poisson}(n_i | s_i, b_i) \pi(b_i | \overline{b}_i, \delta b_i) db_i$$

Mean expected background Gamma, Gaussian, LogNormal, etc. count is marginalized with your choice of prior

Had Box	Observed	Predicted Mode	Predicted Median	$b \pm \delta b$
bHad_4_3	56	64.5	64.5	64.3 ± 1.4
bHad_4_4	27	23.5	23.5	22.7 ± 1.1
bHad_5_3	30	39.5	39.5	38.6 ± 1.3
bHad_5_4	18	12.5	12.5	12.2 ± 0.8
bHad_6_3	21	23.5	23.5	23.4 ± 1.0
bHad_6_4	4	7.5	7.5	6.6 ± 0.8
bHad_7_2	44	57.5	58.5	57.6 ± 1.5
bHad_7_3	11	14.5	14.5	14.1 ± 0.8

Additional Information - Razor Analysis arXiv:1202.1503 <u>twiki.cern.ch/twiki/bin/viewauth/CMSPublic/RazorLikelihoodHowTo</u>

clearly specified selection

- 2, jets with $p_T > 60$ GeV, cluster all jets ($p_T > 40$, $|\eta| < 3.0$) into megajets
- $R^2 > 0.18, M_R > 400 \text{ GeV}$ (Had)
- Tight electron ($p_T > 20, |\eta| < 2.5$), Loose electron ($p_T > 10, |\eta| < 2.5$)
- Tight muon ($p_T > 15, |\eta| < 2.1$), Loose muon ($p_T > 10, |\eta| < 2.1$)

sel. efficiencies for CMSSM

1500

2000

1000

 M_0 [GeV]

- MuEle: one Tight electron, one Tight muon
- MuMu: one Tight muon, one Loose muon

CMSSM tanβ=10 HAD Box

700

600

500

400

300

200

100

 $M_{1/2}$ [GeV]

• Ele: one Tight electron

• Mu: one Tight muon

- EleEle: one Tight electron, one Loose electron
- Had: all other events

Signal Region Efficiency (%)

predicted background and observed yields

Had Box	Observed	Predicted Mode	Predicted Median	$b \pm \delta b$
bHad_4_3	56	64.5	64.5	64.3 ± 1.4
bHad_4_4	27	23.5	23.5	22.7 ± 1.1
bHad_5_3	30	39.5	39.5	38.6 ± 1.3
bHad_5_4	18	12.5	12.5	12.2 ± 0.8
bHad_6_3	21	23.5	23.5	23.4 ± 1.0
bHad_6_4	4	7.5	7.5	6.6 ± 0.8
bHad_7_2	44	57.5	58.5	57.6 ± 1.5
bHad_7_3	11	14.5	14.5	14.1 ± 0.8
bHad_7_4	1	3.5	3.5	3.3 ± 0.8
bHad_8_2	50	64.5	64.5	63.5 ± 1.5
bHad_8_3	18	14.5	14.5	13.9 ± 0.9
bHad_8_4	4	3.5	3.5	3.0 ± 0.7
bHad_9_2	18	29.5	29.5	28.7 ± 1.1
bHad_9_3	4	5.5	5.5	5.0 ± 0.7
bHad_9_4	2	1.5	1.5	0.7 ± 0.7
bHad_10_2	8	13.5	13.5	13.1 ± 0.9
bHad_10_3	2	2.5	2.5	1.7 ± 0.8
bHad_10_4	0	0.5	0.5	0.3 ± 0.3

marginal binned likelihood function

$$\mathcal{L}_{s+b}^{(m)} = \prod_{\text{bin } i} \int \text{Poisson}(n_i | s_i, b_i) \ \pi(b_i | \overline{b}_i, \delta b_i) db_i$$

500

Validation and Combination of Razor Binned Likelihood

Reinterpretation for light stops

400

arXiv:1212.6847

Search for right-handed stop with

 $m_{\tilde{t}_1} = 200-400 \,\mathrm{GeV}$

Motivated by LHC data and flavor constraints, RG equations, and thermal abundance for DM

1

Generated pair-produced stops with Pythia 8, clustered into jets with FastJet

$$\tilde{t} \to \ell \nu_{\ell} b N.$$

3

Applied lepton efficiencies from SS Dilepton

$$P(\sigma) = \int_0^\infty db \int_0^1 d\epsilon \frac{(b + L\sigma\epsilon)^n e^{-b - L\sigma\epsilon}}{n!} \operatorname{Ln}(\epsilon | \bar{\epsilon}, \delta_{\epsilon}) \operatorname{Ln}(b | \bar{b}, \delta_b)$$

500

Recap of Uses

arXiv:1206.0264

BayesFITS combination of Razor with Higgs, $B_s \rightarrow \mu\mu$, etc. to derive posterior probabilities in CMSSM

Reinterp. for very light stops*

*Used a coarser binned likelihood

BayesFITS (2012) solid: 1σ region Posterior pdf CMSSM, $\mu > 0$ dashed: 2σ region Log Priors 1.6 LHC (5/fb) $m_{\rm L} \simeq 125 {\rm GeV}$ m_{1/2} (TeV) Best fit Posterior mean 0.8 0.4 CMS Razor (4 4 fl 0.8 2.4 3.2 1.6 40 m_0 (TeV)

Reinterp. for light stops, ~ degen. with neutralino

Example: Search for contact interactions in jet p_T spectrum

Contact Interactions

New quark-gluon physics at a high mass scale Λ

 \Rightarrow effective 4-fermion interaction

$$L = \zeta \frac{2\pi}{\Lambda^2} (\bar{q}_L \gamma^\mu q_L) (\bar{q}_L \gamma_\mu q_L)$$

Reparametrize $\lambda = 1/\Lambda^2$

destructive constructive

+1

cross section proportional to squared amplitude

$$a = a_{\rm SM} + \lambda a_{\rm CI}$$

$$\Rightarrow \sigma_k = c_k + b_k \lambda + a_k \lambda^2$$

$$QCD_{NLO} \quad CI(\Lambda)$$

Statistical Model

Handling Nuisances

Likelihood is marginalized discretely by creating ensemble of **correlated** background and signal spectra, in which parameters vary randomly

> jet energy scale jet energy resolution PDFs renormalization scale factorization scale

Refit resulting distributions 500 times, arrive at a discrete approximation of marginal model $p(D|\lambda)$

$$= \int p(D|\lambda,\omega) \pi(\omega) \, d\omega,$$
$$\approx \frac{1}{M} \sum_{m=1}^{M} p(D|\lambda,\omega_m),$$

37

Results

Set 95% lower limits of 9.9 TeV (destructive) and 14.3 TeV (constructive) $-2\log\left(\frac{p(x|\lambda)}{p(x|0)}\right)$ using ratio of marginal model and CLs

Summary and Outlook

Summary and Outlook CMS BSM searches use a variety of likelihoods and

- CMS BSM searches use a variety of likelihoods and handle nuisances / compute limits in different ways
 - Bayesian (Marginalize), Frequentist (Profile), Hybrid
- Several analyses provide public likelihoods and details for generator-level study of your own BSM model
- Even in cases where full model are not provided, one can derive an approximate likelihood
- Working to provide public likelihoods in future CMS BSM analyses
 - Razor Analysis will provide full details and code to implement binned likelihood in python

