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Figure 8: Left: predicted cross section and experimental limits as functions of the lightest stop
mass. Right: excluded regions in the (m

˜t1
,M

DM

) plane from ATLAS analyses (dotted regions
shaded in yellow), CMS analyses (dot-dashed regions shaded in green), our re-analysis (red).

conclusion applies to compressed stop-neutralino spectra, since the signature in the razor

Had box is the same.

A change in the lepton selection could further increase the sensitivity of these analyses.

The left plot on Fig. 9 shows the distribution of the muon pT for W+jets events selected

by the CMS monojet analysis, before applying the muon veto and the isolated track veto.

This is compared to the equivalent distribution obtained for events with pair-produced stops,

decaying to W ⇤bN , with at least one of the two W ⇤ producing a µ⌫ pair. We consider two

values of the stop mass (m
˜t = 150 GeV and m

˜t = 270 GeV) for �M = 15 GeV. Requiring

one muon with pT < 15 GeV corresponds to reducing the Z(⌫⌫)+jets background to a

negligible level, and to rejecting ⇠ 92% of the other backgrounds.

To evaluate the potential improvement due to this change, we applied the monojet anal-

ysis to the generated stop-stop samples, and we separate the selected events in two boxes

(as for the razor analysis): the Muon box, including all the events with one muon with

pT < 15 GeV; the Had box, with all the other events. We then distribute the background

in the two boxes as follows: all the Z(⌫⌫)+jets background to the Had box; 8% (92%) of

the other background in the Mu (Had) box. We then evaluate the potential sensitivity of

this modified analysis on a sample of pair-produced stop decays, decaying to W ⇤bN , 20% of

which produce at least one muon in stop decay.
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The Razor 2D likelihood is an analytic function in the Razor kinematic variables
MR and R2. The full likelihood for the background-only hypothesis can be written,
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by the 2D Razor Function
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The Razor variables are computed in the R-frame defined by the condition on
the momenta of the jets in a dijet topology
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It can be approximated in a binned way, taking into account the predicted error
on the background prediction
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Y

bin i
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Overview
• Likelihoods in BSM searches at CMS

• Binned Cut and Count (Poisson)

• Unbinned Shape Analysis (Analytic function)

• Binned Cut and Count (Multinomial)

• Approximating the likelihood for reinterpretation

• Simplify as binned cut and count (Poisson)

• Tools to help and future efforts
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Public Likelihoods in CMS
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CMS SUSY 
Analysis Reference Likelihoods and Additional Information

Razor 
(7 TeV, 4.7 fb-1)

SS Dilepton, 
2 b-jets

(8 TeV, 10.5 fb -1)

 1 Lepton
(7 TeV, 4.98 fb-1)

OS Dilepton

Z, Jets, MET

arXiv:1212.6961
twiki.cern.ch/twiki/bin/viewauth/CMSPublic/

RazorLikelihoodHowTo

Binned Likelihood, Yields,
Forthcoming: Detector Response, 

Efficiencies

arXiv:1212.6194 Yields, Detector Response, 
Efficiencies

arXiv:1212.6428 Yields, Detector Response, 
Efficiencies

arXiv:1206.3949 Yields, Detector Response, 
Efficiencies

PLB 716, 260–284 (2012)
arXiv:1204.3774

Yields, Detector Response, 
Efficiencies

CMS SUSY Public Likelihoods
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Canonical Use
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Use your favorite generator, Pythia8, 
MadGraph5, etc. for your BSM model

1

Apply cuts, efficiencies and 
smear with detector response 2

Reinterpret results for your BSM 
model with the likelihood3
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Figure 8: Left: predicted cross section and experimental limits as functions of the lightest stop
mass. Right: excluded regions in the (m

˜t1
,M

DM

) plane from ATLAS analyses (dotted regions
shaded in yellow), CMS analyses (dot-dashed regions shaded in green), our re-analysis (red).

conclusion applies to compressed stop-neutralino spectra, since the signature in the razor

Had box is the same.

A change in the lepton selection could further increase the sensitivity of these analyses.

The left plot on Fig. 9 shows the distribution of the muon pT for W+jets events selected

by the CMS monojet analysis, before applying the muon veto and the isolated track veto.

This is compared to the equivalent distribution obtained for events with pair-produced stops,

decaying to W ⇤bN , with at least one of the two W ⇤ producing a µ⌫ pair. We consider two

values of the stop mass (m
˜t = 150 GeV and m

˜t = 270 GeV) for �M = 15 GeV. Requiring

one muon with pT < 15 GeV corresponds to reducing the Z(⌫⌫)+jets background to a

negligible level, and to rejecting ⇠ 92% of the other backgrounds.

To evaluate the potential improvement due to this change, we applied the monojet anal-

ysis to the generated stop-stop samples, and we separate the selected events in two boxes

(as for the razor analysis): the Muon box, including all the events with one muon with

pT < 15 GeV; the Had box, with all the other events. We then distribute the background

in the two boxes as follows: all the Z(⌫⌫)+jets background to the Had box; 8% (92%) of

the other background in the Mu (Had) box. We then evaluate the potential sensitivity of

this modified analysis on a sample of pair-produced stop decays, decaying to W ⇤bN , 20% of

which produce at least one muon in stop decay.
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One possible simple application 
is a Bayesian Analysis...
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Bayesian Application of Likelihood
Recall from G. Cowan’s talk

G. Cowan  Likelihood Workshop, CERN, 21-23 Jan 2013 7 

Bayesian use of the term ‘likelihood’ 

We can write Bayes theorem as 

where L(x|θ) is the likelihood.   It is the probability for x given 
θ, evaluated with the observed x, and viewed as a function of θ. 

Bayes’ theorem only needs L(x|θ) evaluated with a given data  
set (the ‘likelihood principle’). 

For frequentist methods, in general one needs the full model. 

For some approximate frequentist methods, the likelihood  
is enough. 

Single bin counting experiment
Observe N events (data)

Interested in a signal, with Poisson 
likelihood and mean s+b (model)

• 2 isolated leptons, first lepton pT > 20 GeV,
second lepton pT > 10 GeV

• RelIso< 0.1 for pT > 20 GeV
and IsoSum< 2GeV for pT < 20 GeV

• 2 reconstructed jets, pT > 30 GeV

• Emiss
T > 30 GeV (ee and µµ)

or Emiss
T > 20 GeV (eµ)

MR ⇠
M2

q̃ �M2
�̃

Mq̃

mt̃ < m�̃ +mt

• 2, jets with pT > 60 GeV, cluster all jets (pT > 40, |⌘| < 3.0) into megajets

• R2 > 0.18, MR > 400 GeV (Had)

• Tight electron (pT > 20, |⌘| < 2.5), Loose electron (pT > 10, |⌘| < 2.5)

• Tight muon (pT > 15, |⌘| < 2.1), Loose muon (pT > 10, |⌘| < 2.1)

• MuEle: one Tight electron, one Tight muon

• MuMu: one Tight muon, one Loose muon

• EleEle: one Tight electron, one Loose electron

• Mu: one Tight muon

• Ele: one Tight electron

• Had: all other events

p(s, b|N) =

L(N |s, b)⇡(s, b)R
L(N |s, b)⇡(s, b)dbds

Usually just interested in

p(s|N) /
Z

L(N |s, b)⇡(s)⇡(b)db

L(N |s, b) = (s+ b)Ne�(s+b)

N !

Update our priors in light 
of data with Bayes’ rule

• 2 isolated leptons, first lepton pT > 20 GeV,
second lepton pT > 10 GeV

• RelIso< 0.1 for pT > 20 GeV
and IsoSum< 2GeV for pT < 20 GeV

• 2 reconstructed jets, pT > 30 GeV

• Emiss
T > 30 GeV (ee and µµ)

or Emiss
T > 20 GeV (eµ)

MR ⇠
M2

q̃ �M2
�̃

Mq̃

mt̃ < m�̃ +mt

• 2, jets with pT > 60 GeV, cluster all jets (pT > 40, |⌘| < 3.0) into megajets

• R2 > 0.18, MR > 400 GeV (Had)

• Tight electron (pT > 20, |⌘| < 2.5), Loose electron (pT > 10, |⌘| < 2.5)

• Tight muon (pT > 15, |⌘| < 2.1), Loose muon (pT > 10, |⌘| < 2.1)

• MuEle: one Tight electron, one Tight muon

• MuMu: one Tight muon, one Loose muon

• EleEle: one Tight electron, one Loose electron

• Mu: one Tight muon

• Ele: one Tight electron

• Had: all other events

p(s, b|N) =

L(N |s, b)⇡(s, b)R
L(N |s, b)⇡(s, b)dbds

Usually just interested in

p(s|N) /
Z

L(N |s, b)⇡(s)⇡(b)db

L(N |s, b) = (s+ b)Ne�(s+b)

N !

normalization in 
model space
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Bayesian Application of Likelihood

Usually only interested in 
signal yield, so we marginalize 

nuisance parameter

• 2 isolated leptons, first lepton pT > 20 GeV,
second lepton pT > 10 GeV

• RelIso< 0.1 for pT > 20 GeV
and IsoSum< 2GeV for pT < 20 GeV

• 2 reconstructed jets, pT > 30 GeV

• Emiss
T > 30 GeV (ee and µµ)

or Emiss
T > 20 GeV (eµ)

MR ⇠
M2

q̃ �M2
�̃

Mq̃

mt̃ < m�̃ +mt

• 2, jets with pT > 60 GeV, cluster all jets (pT > 40, |⌘| < 3.0) into megajets

• R2 > 0.18, MR > 400 GeV (Had)

• Tight electron (pT > 20, |⌘| < 2.5), Loose electron (pT > 10, |⌘| < 2.5)

• Tight muon (pT > 15, |⌘| < 2.1), Loose muon (pT > 10, |⌘| < 2.1)

• MuEle: one Tight electron, one Tight muon

• MuMu: one Tight muon, one Loose muon

• EleEle: one Tight electron, one Loose electron

• Mu: one Tight muon

• Ele: one Tight electron

• Had: all other events

p(s, b|N) =

L(N |s, b)⇡(s, b)R
L(N |s, b)⇡(s, b)dbds

Usually just interested in

p(s|N) /
Z

L(N |s, b)⇡s(s)⇡b(b)db

L(N |s, b) = (s+ b)Ne�(s+b)

N !

⇡(s, b) = ⇡s(s)⇡b(b) ⇡s(s) ⇡b(b)

Parameters play different roles
s - signal yield, parameter-of-interest
b - background yield, nuisance parameter

• 2 isolated leptons, first lepton pT > 20 GeV,
second lepton pT > 10 GeV

• RelIso< 0.1 for pT > 20 GeV
and IsoSum< 2GeV for pT < 20 GeV

• 2 reconstructed jets, pT > 30 GeV

• Emiss
T > 30 GeV (ee and µµ)

or Emiss
T > 20 GeV (eµ)

MR ⇠
M2

q̃ �M2
�̃

Mq̃

mt̃ < m�̃ +mt

• 2, jets with pT > 60 GeV, cluster all jets (pT > 40, |⌘| < 3.0) into megajets

• R2 > 0.18, MR > 400 GeV (Had)

• Tight electron (pT > 20, |⌘| < 2.5), Loose electron (pT > 10, |⌘| < 2.5)

• Tight muon (pT > 15, |⌘| < 2.1), Loose muon (pT > 10, |⌘| < 2.1)

• MuEle: one Tight electron, one Tight muon

• MuMu: one Tight muon, one Loose muon

• EleEle: one Tight electron, one Loose electron

• Mu: one Tight muon

• Ele: one Tight electron

• Had: all other events

p(s, b|N) =

L(N |s, b)⇡(s, b)R
L(N |s, b)⇡(s, b)dbds

Usually just interested in

p(s|N) /
Z

L(N |s, b)⇡s(s)⇡b(b)db

L(N |s, b) = (s+ b)Ne�(s+b)

N !

⇡(s, b) = ⇡s(s)⇡b(b) ⇡s(s) ⇡b(b)

informative

non-informative

Compute 95% credibility 
intervals or whatever we want

L(N |s, b) = (s+ b)Ne�(s+b)

N !

⇡(s, b) = ⇡s(s)⇡b(b) ⇡s(s) ⇡b(b)
Z sup

0

p(s|N)ds = 0.95

upper limit on 
signal yield
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Example: cut and count
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SS Dilepton
arXiv:1104.3168

JHEP 1106:077 (2011)
7 TeV/8 TeV Updates 

arXiv:1205.3933
arXiv:1212.6194

Search in SS dilepton + jets + MET 
final states in several signal regions 

After selection, 
estimate backgrounds 

• 2 isolated leptons, first lepton pT > 20 GeV,

second lepton pT > 10 GeV

• RelIso< 0.1 for pT > 20 GeV

and IsoSum< 2GeV for pT < 20 GeV

• 2 reconstructed jets, pT > 30 GeV

• Emiss

T > 30 GeV (ee and µµ)

or Emiss

T > 20 GeV (eµ)

• Rare SM processes 
(from MC)

6 5 Background Estimation

5 Background Estimation
Standard model sources of same-sign dilepton events with both leptons coming from a W or
Z decay are very small in our data sample. Simulation-based predictions of the combined
yields for qq ! WZ and ZZ, double “W-strahlung” qq ! q0q0W±W±, double parton scattering
2 ⇥ (qq ! W±), ttW, and WWW comprise no more than a few percent of the total background
in any of the final states considered. As these processes have never been measured in proton-
proton collisions, and their background contributions are very small, we evaluate them using
simulation, assigning a 50% systematic uncertainty. The background contribution from pp !
Wg, where the W decays leptonically and the photon converts in the detector material giving
rise to an isolated electron, is also estimated from simulation and found to be negligible. All
other backgrounds are evaluated from data, as discussed below.

Backgrounds in all of our searches are dominated by one or two jets mimicking the lepton sig-
nature. Such lepton candidates can be genuine leptons from heavy-flavour decays, electrons
from unidentified photon conversions, muons from meson decays in flight, hadrons recon-
structed as leptons, or jet fluctuations leading to hadronic t signatures. We will refer to all of
these as ”fake leptons”. Leptons from W, Z, gauginos, etc., i.e., the signal we are searching for,
will be referred to as ”prompt leptons”.

The dominant background contribution is from events with one lepton, jets, and Emiss
T —mostly

tt̄ with one lepton from the W decay, and a second lepton from the decay of a heavy-flavour
particle. These events contain one prompt and one fake lepton, and are estimated via two
different techniques described in Sections 5.1 and 5.2. While both techniques implement an
extrapolation in lepton isolation, they differ in the assumptions made. Both techniques lead
to consistent predictions as described in Section 5.4, providing additional confidence in the
results. Backgrounds with two fake leptons are generally smaller, except in the final state with
two hadronic t leptons, where the dominant background source is QCD multijet production.
Contributions due to fake th are estimated using an extrapolation from “loose” to “tight” th
identification, as described in Section 5.3.

For the ee and eµ final states, electron charge misreconstruction due to hard bremsstrahlung
poses another potentially important background, as there are significant opposite-sign ee and
eµ contributions, especially from tt̄, where both W’s from the top quarks decay leptonically.
This is discussed in Section 5.5.

5.1 Searches using Lepton Triggers

Contributions from fake leptons are estimated using the so-called “tight-loose” (TL) method [27,
28]. In this method the probability eTL for a lepton passing loose selections to also pass the tight
analysis selections is measured in QCD multijet events as a function of lepton pT and h. The
key assumption of the method is that eTL is approximately universal, i.e., it is the same for all
jets in all event samples. Tests of the validity of this assumption are described below.

The main difference between the tight and loose lepton selections is that the requirement on
the RelIso variable defined in Section 3 is relaxed from RelIso < 0.1 to RelIso < 0.4. Other
requirements that are relaxed are those on the distance of closest approach between the lepton
track and the beamline (impact parameter) and, in the case of muons, the selection on the c2 of
the muon track fit.

The quantity eTL is measured in a sample of lepton-trigger events with at least one jet satis-
fying pT > 40 GeV and well separated (DR > 1) from the lepton candidate. We refer to this
jet as the “away-jet”. We reduce the impact of electroweak background (W, Z, tt) by excluding
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jet as the “away-jet”. We reduce the impact of electroweak background (W, Z, tt) by excluding

6 5 Background Estimation

5 Background Estimation
Standard model sources of same-sign dilepton events with both leptons coming from a W or
Z decay are very small in our data sample. Simulation-based predictions of the combined
yields for qq ! WZ and ZZ, double “W-strahlung” qq ! q0q0W±W±, double parton scattering
2 ⇥ (qq ! W±), ttW, and WWW comprise no more than a few percent of the total background
in any of the final states considered. As these processes have never been measured in proton-
proton collisions, and their background contributions are very small, we evaluate them using
simulation, assigning a 50% systematic uncertainty. The background contribution from pp !
Wg, where the W decays leptonically and the photon converts in the detector material giving
rise to an isolated electron, is also estimated from simulation and found to be negligible. All
other backgrounds are evaluated from data, as discussed below.

Backgrounds in all of our searches are dominated by one or two jets mimicking the lepton sig-
nature. Such lepton candidates can be genuine leptons from heavy-flavour decays, electrons
from unidentified photon conversions, muons from meson decays in flight, hadrons recon-
structed as leptons, or jet fluctuations leading to hadronic t signatures. We will refer to all of
these as ”fake leptons”. Leptons from W, Z, gauginos, etc., i.e., the signal we are searching for,
will be referred to as ”prompt leptons”.

The dominant background contribution is from events with one lepton, jets, and Emiss
T —mostly

tt̄ with one lepton from the W decay, and a second lepton from the decay of a heavy-flavour
particle. These events contain one prompt and one fake lepton, and are estimated via two
different techniques described in Sections 5.1 and 5.2. While both techniques implement an
extrapolation in lepton isolation, they differ in the assumptions made. Both techniques lead
to consistent predictions as described in Section 5.4, providing additional confidence in the
results. Backgrounds with two fake leptons are generally smaller, except in the final state with
two hadronic t leptons, where the dominant background source is QCD multijet production.
Contributions due to fake th are estimated using an extrapolation from “loose” to “tight” th
identification, as described in Section 5.3.

For the ee and eµ final states, electron charge misreconstruction due to hard bremsstrahlung
poses another potentially important background, as there are significant opposite-sign ee and
eµ contributions, especially from tt̄, where both W’s from the top quarks decay leptonically.
This is discussed in Section 5.5.

5.1 Searches using Lepton Triggers

Contributions from fake leptons are estimated using the so-called “tight-loose” (TL) method [27,
28]. In this method the probability eTL for a lepton passing loose selections to also pass the tight
analysis selections is measured in QCD multijet events as a function of lepton pT and h. The
key assumption of the method is that eTL is approximately universal, i.e., it is the same for all
jets in all event samples. Tests of the validity of this assumption are described below.

The main difference between the tight and loose lepton selections is that the requirement on
the RelIso variable defined in Section 3 is relaxed from RelIso < 0.1 to RelIso < 0.4. Other
requirements that are relaxed are those on the distance of closest approach between the lepton
track and the beamline (impact parameter) and, in the case of muons, the selection on the c2 of
the muon track fit.

The quantity eTL is measured in a sample of lepton-trigger events with at least one jet satis-
fying pT > 40 GeV and well separated (DR > 1) from the lepton candidate. We refer to this
jet as the “away-jet”. We reduce the impact of electroweak background (W, Z, tt) by excluding

• 1 or 2 fake leptons 
(data-driven)

6 5 Background Estimation

5 Background Estimation
Standard model sources of same-sign dilepton events with both leptons coming from a W or
Z decay are very small in our data sample. Simulation-based predictions of the combined
yields for qq ! WZ and ZZ, double “W-strahlung” qq ! q0q0W±W±, double parton scattering
2 ⇥ (qq ! W±), ttW, and WWW comprise no more than a few percent of the total background
in any of the final states considered. As these processes have never been measured in proton-
proton collisions, and their background contributions are very small, we evaluate them using
simulation, assigning a 50% systematic uncertainty. The background contribution from pp !
Wg, where the W decays leptonically and the photon converts in the detector material giving
rise to an isolated electron, is also estimated from simulation and found to be negligible. All
other backgrounds are evaluated from data, as discussed below.

Backgrounds in all of our searches are dominated by one or two jets mimicking the lepton sig-
nature. Such lepton candidates can be genuine leptons from heavy-flavour decays, electrons
from unidentified photon conversions, muons from meson decays in flight, hadrons recon-
structed as leptons, or jet fluctuations leading to hadronic t signatures. We will refer to all of
these as ”fake leptons”. Leptons from W, Z, gauginos, etc., i.e., the signal we are searching for,
will be referred to as ”prompt leptons”.

The dominant background contribution is from events with one lepton, jets, and Emiss
T —mostly

tt̄ with one lepton from the W decay, and a second lepton from the decay of a heavy-flavour
particle. These events contain one prompt and one fake lepton, and are estimated via two
different techniques described in Sections 5.1 and 5.2. While both techniques implement an
extrapolation in lepton isolation, they differ in the assumptions made. Both techniques lead
to consistent predictions as described in Section 5.4, providing additional confidence in the
results. Backgrounds with two fake leptons are generally smaller, except in the final state with
two hadronic t leptons, where the dominant background source is QCD multijet production.
Contributions due to fake th are estimated using an extrapolation from “loose” to “tight” th
identification, as described in Section 5.3.

For the ee and eµ final states, electron charge misreconstruction due to hard bremsstrahlung
poses another potentially important background, as there are significant opposite-sign ee and
eµ contributions, especially from tt̄, where both W’s from the top quarks decay leptonically.
This is discussed in Section 5.5.

5.1 Searches using Lepton Triggers

Contributions from fake leptons are estimated using the so-called “tight-loose” (TL) method [27,
28]. In this method the probability eTL for a lepton passing loose selections to also pass the tight
analysis selections is measured in QCD multijet events as a function of lepton pT and h. The
key assumption of the method is that eTL is approximately universal, i.e., it is the same for all
jets in all event samples. Tests of the validity of this assumption are described below.

The main difference between the tight and loose lepton selections is that the requirement on
the RelIso variable defined in Section 3 is relaxed from RelIso < 0.1 to RelIso < 0.4. Other
requirements that are relaxed are those on the distance of closest approach between the lepton
track and the beamline (impact parameter) and, in the case of muons, the selection on the c2 of
the muon track fit.

The quantity eTL is measured in a sample of lepton-trigger events with at least one jet satis-
fying pT > 40 GeV and well separated (DR > 1) from the lepton candidate. We refer to this
jet as the “away-jet”. We reduce the impact of electroweak background (W, Z, tt) by excluding

e.g. semi-leptonic

• charge mis-reconstruction 
(data-driven)

e.g.
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SS Dilepton Results17

Table 2: Observed and estimated background yields for all analyses. The rows labeled “pre-
dicted BG” refer to the sum of the data-driven estimates of the fake lepton contributions, and
the residual contributions predicted by the simulation. The rows labeled “MC” refer to the
background as predicted from the simulation alone. Rows labeled “observed” show the actual
number of events seen in data. The last column (95% CL UL Yield) represents observed upper
limits on event yields from new physics.

Search Region ee µµ eµ total 95% CL UL Yield
Lepton Trigger
Emiss

T > 80 GeV
MC 0.05 0.07 0.23 0.35

predicted BG 0.23+0.35
�0.23 0.23+0.26

�0.23 0.74 ± 0.55 1.2 ± 0.8
observed 0 0 0 0 3.1

HT > 200 GeV
MC 0.04 0.10 0.17 0.32

predicted BG 0.71 ± 0.58 0.01+0.24
�0.01 0.25+0.27

�0.25 0.97 ± 0.74
observed 0 0 1 1 4.3

HT Trigger
Low-pT

MC 0.05 0.16 0.21 0.41
predicted BG 0.10 ± 0.07 0.30 ± 0.13 0.40 ± 0.18 0.80 ± 0.31

observed 1 0 0 1 4.4
eth µth thth total 95% CL UL Yield

th enriched
MC 0.36 0.47 0.08 0.91

predicted BG 0.10 ± 0.10 0.17 ± 0.14 0.02 ± 0.01 0.29 ± 0.17
observed 0 0 0 0 3.4

simulation samples described in Section 4 are represented. Figure 8 summarizes the signal re-
gion yields and background composition in all four search regions presented in Table 2. The
lepton plus jets background where the second lepton candidate is a fake lepton from a jet clearly
dominates all search regions. The low-pT-lepton analysis has a small, but non-negligible, back-
ground contribution from events with two fake leptons. Estimates for backgrounds due to
events with one or two fake leptons were obtained directly from data in appropriately chosen
control regions, as described in detail in Sections 5.1, 5.2, and 5.3. In the ee and eµ final states,
small additional background constributions are present due to the electron charge mismeasure-
ment, as discussed in Section 5.5. The remaining irreducible background from two prompt iso-
lated same-sign leptons (WZ, ZZ, ttW, etc.) amounts to at most 10% of the total and is estimated
based on theoretical cross section predictions and simulation. Uncertainties on the background
prediction include statistical and systematic uncertainties added in quadrature. Contributions
estimated with simulation are assigned a 50% systematic uncertainty. Data-driven estimates
are assigned a systematic uncertainty between 30% and 50% across the various signal regions
and channels. The ee, eµ, and µµ channels have partially or fully correlated systematic uncer-
tainties, as described in detail in Section 5.

We see no evidence of an event yield in excess of the background prediction and set 95% CL
upper limits (UL) on the number of observed events using a Bayesian method [34] with a flat
prior on the signal strength and log-normal priors for efficiency and background uncertainties.
These include uncertainties on the signal efficiency of 12% , 15%, and 30% for the lepton trig-
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Additional Information for 
Gen-level Study
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Table 2: Observed and estimated background yields for all analyses. The rows labeled “pre-
dicted BG” refer to the sum of the data-driven estimates of the fake lepton contributions, and
the residual contributions predicted by the simulation. The rows labeled “MC” refer to the
background as predicted from the simulation alone. Rows labeled “observed” show the actual
number of events seen in data. The last column (95% CL UL Yield) represents observed upper
limits on event yields from new physics.

Search Region ee µµ eµ total 95% CL UL Yield
Lepton Trigger
Emiss

T > 80 GeV
MC 0.05 0.07 0.23 0.35

predicted BG 0.23+0.35
�0.23 0.23+0.26

�0.23 0.74 ± 0.55 1.2 ± 0.8
observed 0 0 0 0 3.1

HT > 200 GeV
MC 0.04 0.10 0.17 0.32

predicted BG 0.71 ± 0.58 0.01+0.24
�0.01 0.25+0.27

�0.25 0.97 ± 0.74
observed 0 0 1 1 4.3

HT Trigger
Low-pT

MC 0.05 0.16 0.21 0.41
predicted BG 0.10 ± 0.07 0.30 ± 0.13 0.40 ± 0.18 0.80 ± 0.31

observed 1 0 0 1 4.4
eth µth thth total 95% CL UL Yield

th enriched
MC 0.36 0.47 0.08 0.91

predicted BG 0.10 ± 0.10 0.17 ± 0.14 0.02 ± 0.01 0.29 ± 0.17
observed 0 0 0 0 3.4

simulation samples described in Section 4 are represented. Figure 8 summarizes the signal re-
gion yields and background composition in all four search regions presented in Table 2. The
lepton plus jets background where the second lepton candidate is a fake lepton from a jet clearly
dominates all search regions. The low-pT-lepton analysis has a small, but non-negligible, back-
ground contribution from events with two fake leptons. Estimates for backgrounds due to
events with one or two fake leptons were obtained directly from data in appropriately chosen
control regions, as described in detail in Sections 5.1, 5.2, and 5.3. In the ee and eµ final states,
small additional background constributions are present due to the electron charge mismeasure-
ment, as discussed in Section 5.5. The remaining irreducible background from two prompt iso-
lated same-sign leptons (WZ, ZZ, ttW, etc.) amounts to at most 10% of the total and is estimated
based on theoretical cross section predictions and simulation. Uncertainties on the background
prediction include statistical and systematic uncertainties added in quadrature. Contributions
estimated with simulation are assigned a 50% systematic uncertainty. Data-driven estimates
are assigned a systematic uncertainty between 30% and 50% across the various signal regions
and channels. The ee, eµ, and µµ channels have partially or fully correlated systematic uncer-
tainties, as described in detail in Section 5.

We see no evidence of an event yield in excess of the background prediction and set 95% CL
upper limits (UL) on the number of observed events using a Bayesian method [34] with a flat
prior on the signal strength and log-normal priors for efficiency and background uncertainties.
These include uncertainties on the signal efficiency of 12% , 15%, and 30% for the lepton trig-

object efficiencies for a 
canonical signal model

• 2 isolated leptons, first lepton pT > 20 GeV,

second lepton pT > 10 GeV

• RelIso< 0.1 for pT > 20 GeV

and IsoSum< 2GeV for pT < 20 GeV

• 2 reconstructed jets, pT > 30 GeV

• Emiss

T > 30 GeV (ee and µµ)

or Emiss

T > 20 GeV (eµ)

clearly specified selection
predicted background and 

observed yields

reproducibility of limits

arXiv:1104.3168
JHEP 1106:077 (2011)
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Reinterpreting a shape analysis 
in a new BSM model

Example: 2011 Razor analysis
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Razor Variables Motivation

If we could see the LSPs, we could 
boost back by βL, βT, and βCM

In this frame, we would then get 
|pj1| = |pj2|

x

y

x

y
→
βL

→
βT

z

y

squark rest frame

disquark rest framelab frame

Too many missing degrees 
of freedom to do this
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Razor Variables Motivation

pj1

pj2

p*j1

p*j2

pRj1

pRj2

-βLR*

RAZOR
 CONDITION
|pRj1|= |pRj2|

-βTCM

βTCM

Approximate the squark rest 
frame by boosting to the 

frame where 
|pRj1| = |pRj2|

Transformed momentum 
defines razor variable MR

Estimates the momentum in 
the true squark rest frame

L(N |s, b) = (s+ b)

N
e

�(s+b)

N !

⇡(s, b) = ⇡s(s)⇡b(b) ⇡s(s) ⇡b(b)
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MR and New Physics Scale

I What if topology differs from ‘canonical’ di-jet SUSY
topology?) Force di-jet topology

I Consider pair-produced gluinos, undergoing
3-body decays to 2 jets and an LSP

+ Calculation of Razor Variables
!Start from the jets on the 

event

!Group the jets in two mega-
jets, minimizing the sum of 
the invariant masses

!Compute MR and R2
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!  Good performance for the considered final state, tested against specific 
algorithms (min mass distance from top hypothesis)
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Figure 3: Distribution of MR (left) and R2 (right) for different TCHE b-tag multiplicities, for
events from the BJet and BVeto boxes. The normalised ratio of these distributions to the inclu-
sive distribution are shown in the bottom part of each plot.
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Figure 4: Distribution of the megajet mass for the hemisphere with the highest pT (solid line)
and second highest (dashed line) for tt̄ MC (left), QCD MC (centre), and data (right). The
default Razor hemisphere algorithm is labelled as Mass Balance, while the algorithm based on
Eq. 2 is labelled Top Mass.
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Figure 5: Distributions of R2 and MR for tt̄ MC (left), QCD MC (centre), and data (right). The
colour scheme is the same as in Fig. 4. It can be seen that the Razor hemisphere algorithm
produces fewer events in the tail of the R2 distribution.
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What happens to MR for topologies that differ from the one 
where it was derived? 

For di-gluino pair-production (SMS T1), the MR distribution 
peaks at the characteristic scale: 
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Here, gluinos are pair-produced 
and undergo 3-body decays to 
two jets and an LSP 
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Razor Variables Overview
Razor Variables Overview

I The razor variables are two complementary kinematic
variables designed to simultaneously

I characterize potential new physics in a model-independent
way (especially the mass scale), and

I discriminate signal from Standard Model background
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Razor Variables Overview

I The razor variables are two complementary kinematic
variables designed to simultaneously

I characterize potential new physics in a model-independent
way (especially the mass scale), and

I discriminate signal from Standard Model background
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Modeling the Background in 2D

7.1 QCD multijet background 9

after a turn-on at low MR resulting from the pT threshold requirement on the jets entering the287

megajet calculation. The exponential region of these distributions is fitted for each value of288

R2 to extract the coefficient in the exponent, denoted by S. The value of S that maximizes the289

likelihood in the exponential fit is found to be a linear function of R2
cut as shown in Fig. 2 (right);290

fitting S in the form S = a + bR2
cut determines the values of a and b.
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Figure 2: (Top left) MR distributions for different values of the R2 threshold for events in data
selected in the QCD control box. (Top right) R2 distributions for different values of the MR
threshold for events in data selected in the QCD control box. (Bottom left) The exponential
slope S from fits to the MR distribution, as a function of the square of the R2 threshold for data
events in the QCD control box. (Bottom right) The coefficient in the exponent S from fits to
the R2 distribution, as a function of the square of the MR threshold for data events in the QCD
control box.
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R to extract the coefficient in the exponent, again denoted by S0. The value of S0 that295
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R as shown296

in Fig. 2 (right); fitting S0 in the form S0 = c + dMcut
R determines the values of c and d. The d297

slope parameter is found to equal the b slope parameter within an accuracy of a few percent as298

shown in Fig. 2. This is used in building a 2D probability density function (pdf) that analytically299

describes the R2 vs MR distribution and recovers an exponential distribution in MR(R2) after300

integrating out R2(MR), exploiting the equality d = b.301

The other backgrounds exhibit the same behavior; each SM process can be described with the302

same functional form but different parameters.303
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f ∝ exp(-b MR) f ∝ exp(-c R2)
Properties of integration 

specify 2D form f ~ exp(-k MR  R2)
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An unbinned, extended maximum likelihood fit is 
performed in a sideband fit region, and extrapolated

i indexes an event 
in the dataset

N = total number of events 
Nj = expected yield per SM bkgd
fj = prob. density per SM bkgd.

R2(i), MR(i) = per-event observables 
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Razor Fit Results

4

simulated events and fits to control data samples with either a b-jet requirement or a b-jet veto
indicate that the parameters corresponding to the first components of these backgrounds (with
steeper slopes at low MR and R2) are box-dependent. The parameters describing the second
component are box-independent, and at the current precision of the background model, they
are identical among the dominant backgrounds considered in these final states.

These sets of independent data control samples are used to derive a priori the background
shape parameters. The results are incorporated in the final fits as a set of Gaussian penalty
terms [54, 55] for the parameters kj, M0

R,j and R2
0,j multiplying the final likelihood (Eq.(2)). The

RMS-values of the penalty terms for the kj parameters are typically ⇠30%.

An extended and unbinned maximum likelihood (ML) fit is performed in each box using
ROOFIT [55]. The fit performed in the fit region of the R2-MR plane provides the description of
the SM background in the full plane. The likelihood function for a given box is written as [56]:

Lb =
e�(Âj2SM Nj)

N!

N

’
i=1

 

Â
j2SM

NjPj(MR,i, R2
i )

!
, (2)

where N is the total event yield in the box, the sum runs over all the SM processes relevant for
that box, and Nj is the yield of a given fit sample in the box.

The values of the shape parameters that maximize the likelihood in these fits, along with the
corresponding covariance matrix, are used to define the background model and the uncer-
tainty associated with it. Additional background shape uncertainties due to the choice of the
functional form were found to be negligible [33].

The result of the ML fit projected on MR and R2 is shown in Fig. 1 for the HAD box. No
significant discrepancy is observed between the data and the fit model in any of the six boxes
[33].
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Figure 1: Projection of the 2D fit result on MR (left) and R2 (right) for the HAD box. The blue
histogram is the total standard model prediction as obtained from a single pseudo-experiment
based on the 2D fit. The red and green histograms represent a steep-slope component denoted
as V + jets first component, and a component that encapsulates the steep-slope first component
in tt + jets and the effective second component, which is indistinguishable for the different SM
background processes. The fit is performed in the R2-MR fit region (FR as shown in Fig. 2) and
projected into the full analysis region. Only the statistical uncertainty band on the background
predictions is drawn in these projections.

In order to establish the compatibility of the background model with the observed dataset, we
define six signal regions (SRi) in the tail of the background distribution. Using the background
model returned by the ML fit, we derive the distribution of the expected yield in each SRi using
pseudo-experiments accounting for correlations and uncertainties on the parameters describ-
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Figure 2: The p-values corresponding to the observed number of events in the HAD box signal
regions (SRi). The green region indicates the fit region (FR) in the HAD box. Similar results are
obtained for the other boxes.

ing the background model. For each of the SRi the distribution of the number of events derived
by the pseudo-experiments is used to calculate a two-sided p-value (as shown for the HAD box
in Fig. 2), corresponding to the probability of observing an equal or less probable outcome for a
counting experiment in each signal region. The p-values test the compatibility of the observed
number of events in data with the SM expectation obtained from the background parameteri-
zation. We quote the median and the mode of the yield distribution for each SR, together with
the observed yield.

For each box we consider the test statistic given by the logarithm of the likelihood ratio ln Q =

ln L(s+b|H)

L(b|H)

, where H is the hypothesis under test; H1 (signal plus background) or the null hy-
pothesis H0 (background-only). Given the distribution of ln Q for background-only and signal-
plus-background pseudo-experiments, and the value of ln Q observed in the data, we calculate
CLs+b and 1 � CLb [57, 58]. From these values the CLs = CLs+b/CLb is computed for that
model point. A point in the constrained minimal supersymmetric standard model (CMSSM)
plane is excluded at 95% confidence level (CL) if CLs < 0.05. The result is shown in Fig. 3.
The shape of the observed exclusion curves reflect the changing relevant SUSY strong produc-
tion processes across the parameter space with squark-squark and gluino-gluino production
dominating at low and high m0, respectively. The observed limit is less constraining than the
median-expected limit at lower m0 due to an excess of observed events in the HAD box at large
R2, where squark-pair production dominates over gluino-pair production. Cascading decays
of gluinos yield more leptons than decays of squarks. Thus, relative to hadronic boxes, the
contribution of lepton boxes increases with m0.

We estimate the systematic bias on the signal shape model due to parton density functions
(point-by-point up to 30%), jet energy scale (point-by-point up to 1%) and lepton identification
(using using Z ! `+`� data, 1% per lepton), and on the signal yield due to the luminosity
uncertainty (2.2%) [59], the theoretical cross section (point-by-point up to 15%), razor trigger
efficiency uncertainty (2%), and lepton trigger efficiency uncertainty (3%). In the b-tag analysis
path an additional systematic is considered for the b-tagging efficiency (between 6% and 20%
in pT bins [40]). We consider variations of the function modeling the signal uncertainty (log-

HAD
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The Razor variables are computed in the R-frame defined by the condition on
the momenta of the jets in a dijet topology

|~pj1| = |~pj2|

MR =

q
(|~p j1|+ |~p j2

)

2 � (pj1z + pj2z )

2 MR
T ⌘

s
Emiss

T (pj1T + pj2T )� ~Emiss
T ·(~p j1

T + ~p j2
T )

2

R ⌘ MR
T

MR

It can be approximated in a binned way, taking into account the predicted error
on the background prediction
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i=1

 
X

j2SM

Njfj(MR(i), R
2
(i))

!

and the signal+background hypothesis can be written

Ls+b =
exp[�Ns �

P
j2SM Nj]

N !

NY

i=1

 
Nsfs(MR(i), R

2
(i)) +

X

j2SM

Njfj(MR i, R
2
i )

!

In each box, for each background, the probability density may be approximated
by the 2D Razor Function

fj(MR, R
2
) = [kj(MR �M0

R,j)(R
2 �R2

0,j)� 1]

⇥ exp[�kj(MR �M0
R,j)(R

2 �R2
0,j)]

log fj(MR, R
2
) MR R2

The Razor variables are computed in the R-frame defined by the condition on
the momenta of the jets in a dijet topology

|~pj1| = |~pj2|

MR =

q
(|~p j1|+ |~p j2

)

2 � (pj1z + pj2z )

2 MR
T ⌘

s
Emiss

T (pj1T + pj2T )� ~Emiss
T ·(~p j1

T + ~p j2
T )

2

R ⌘ MR
T

MR

It can be approximated in a binned way, taking into account the predicted error
on the background prediction

Ls+b =

Y

bin i

Z
Poisson(ni|si,¯bi)LogNormal(¯bi|bi, �bi)d¯bi

etc.
jet energy scale, PDFs, etc.
bkgd fit parameters

*More on this procedure later
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The Razor 2D likelihood is an analytic function in the Razor kinematic variables
MR and R

2. The full likelihood for the background-only hypothesis can be written,

Lb =
exp[�

P
j2SM Nj]

N !

NY

i=1

 
X

j2SM

Njfj(MR(i), R
2
(i))

!

and the signal+background hypothesis can be written

Ls+b =
exp[�Ns �

P
j2SM Nj]

N !

NY

i=1

 
Nsfs(MR(i), R

2
(i)) +

X

j2SM

Njfj(MR i, R
2
i )

!

Marginalized likelihood

L(m)
s+b =

Z
Ls+b d⌫b d⌫s � = log

 
L(m)

s+b

L(m)
b

!

CLs =
CLs+b

CLb

1� CLb

In each box, for each background, the probability density may be approximated by
the 2D Razor Function

fj(MR, R
2
) = [kj(MR �M

0
R,j)(R

2 �R

2
0,j)� 1]

⇥ exp[�kj(MR �M

0
R,j)(R

2 �R

2
0,j)]

log fj(MR, R
2
) MR R

2

The Razor variables are computed in the R-frame defined by the condition on
the momenta of the jets in a dijet topology

|~pj1| = |~pj2|
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2011 Razor Limits
20 11 Summary

In a control dataset we find a simple 2D functional form that describes the distributions of the460

relevant SM backgrounds as a function of R2 and MR. This function is proved to model the461

correlation between R2 and MR in the region under study to a good precision in the Monte462

Carlo, much higher than the precision of the fit used to predict the shape of the backgrounds463

from data. Assuming the modeling of the R2 vs MR implied by the 2D function is correct, a 2D464

fit of the R2 and MR distributions in control regions is used to predict the background yields465

and shapes in regions at high mass scale that could contain events from new physics.466

No significant excess over the background expectations was observed and the results were467

presented as a 95% CL in the (m0, m1/2) CMSSM parameter space. We exclude up to 1.35 TeV468

squarks and gluinos for m(q̃) ⇠ m(g̃) and for m(q̃) > m(g̃) we exclude gluinos up to 800 GeV.469

These results significantly extend the current LHC limits.470
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Figure 10: Observed (solid curve) and median expected (dot-dashed curve) 95% CL limits in
the (m0, m1/2) CMSSM plane with tan b = 10, A0 = 0, sgn( µ ) = +1 from the razor analysis.
The ± one standard deviation equivalent variations in the uncertainties are shown as a band
around the median expected limit.
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MR =
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T ⌘

s
Emiss

T (pj1T + pj2T )� ~Emiss
T ·(~p j1

T + ~p j2
T )

2

R ⌘ MR
T

MR

It can be approximated in a binned way, taking into account the predicted error
on the background prediction

L(m)
s+b =

Y

bin i

Z
Poisson(ni|si, bi) ⇡(bi|¯bi, �bi)dbi

⇡ = Gamma,Gaussian,LogNormal, etc.

In a Bayesian approach

B01(N) =

Poisson(N |0 + b)R1
0 Poisson(N |s+ b)⇡(s)ds
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Razor Binned Likelihood
Since CMS data is not public, unbinned likelihood is of limited use
Instead, one can construct an binned likelihood as the product of 

many independent poisson likelihoods

Mean expected background 
count is marginalized with 

your choice of prior
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q
(|~p j1|+ |~p j2

)

2 � (pj1z + pj2z )

2 MR
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s
Emiss

T (pj1T + pj2T )� ~Emiss
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It can be approximated in a binned way, taking into account the predicted error
on the background prediction

L(m)
s+b =

Y

bin i

Z
Poisson(ni|si,¯bi) ⇡(¯bi|bi, �bi)d¯bi

⇡ = Gamma,Gaussian,LogNormal, etc.

In a Bayesian approach

B01(N) =

Poisson(N |0 + b)R1
0 Poisson(N |s+ b)⇡(s)ds
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on the background prediction
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bin i

Z
Poisson(ni|si, bi) ⇡(bi|¯bi, �bi)dbi

⇡ = Gamma,Gaussian,LogNormal, etc.

In a Bayesian approach

B01(N) =

Poisson(N |0 + b)R1
0 Poisson(N |s+ b)⇡(s)ds

Additional Information - Razor Analysis
arXiv:1202.1503 twiki.cern.ch/twiki/bin/viewauth/CMSPublic/RazorLikelihoodHowTo

clearly specified selection
predicted background 
and observed yields

marginal binned 
likelihood function

• 2 isolated leptons, first lepton pT > 20 GeV,
second lepton pT > 10 GeV

• RelIso< 0.1 for pT > 20 GeV
and IsoSum< 2GeV for pT < 20 GeV

• 2 reconstructed jets, pT > 30 GeV

• Emiss
T > 30 GeV (ee and µµ)

or Emiss
T > 20 GeV (eµ)

MR ⇠
M2

q̃ �M2
�̃

Mq̃

mt̃ < m�̃ +mt

• 2, jets with pT > 60 GeV, cluster all jets (pT > 40, |⌘| < 3.0) into megajets

• R2 > 0.18, MR > 400 GeV (Had)

• Tight electron (pT > 20, |⌘| < 2.5), Loose electron (pT > 10, |⌘| < 2.5)

• Tight muon (pT > 15, |⌘| < 2.1), Loose muon (pT > 10, |⌘| < 2.1)

• MuEle: one Tight electron, one Tight muon

• MuMu: one Tight muon, one Loose muon

• EleEle: one Tight electron, one Loose electron

• Mu: one Tight muon

• Ele: one Tight electron

• Had: all other events

• 2 isolated leptons, first lepton pT > 20 GeV,
second lepton pT > 10 GeV

• RelIso< 0.1 for pT > 20 GeV
and IsoSum< 2GeV for pT < 20 GeV

• 2 reconstructed jets, pT > 30 GeV

• Emiss
T > 30 GeV (ee and µµ)

or Emiss
T > 20 GeV (eµ)

MR ⇠
M2

q̃ �M2
�̃

Mq̃

mt̃ < m�̃ +mt

• 2, jets with pT > 60 GeV, cluster all jets (pT > 40, |⌘| < 3.0) into megajets

• R2 > 0.18, MR > 400 GeV (Had)

• Tight electron (pT > 20, |⌘| < 2.5), Loose electron (pT > 10, |⌘| < 2.5)

• Tight muon (pT > 15, |⌘| < 2.1), Loose muon (pT > 10, |⌘| < 2.1)

• MuEle: one Tight electron, one Tight muon

• MuMu: one Tight muon, one Loose muon

• EleEle: one Tight electron, one Loose electron

• Mu: one Tight muon

• Ele: one Tight electron

• Had: all other events

sel. efficiencies for CMSSM
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Figure 1: (a) Our approximation of the CMS razor 4.4/fb likelihood map as described in the text. tan � and A
0

are
fixed to the values in the legend. The thick solid line shows the 95.0% CL (2�) bound. It approximates the CMS
95% CL exclusion contour, shown by the dashed black line. The thin solid line and the thin dashed line show our

calculations of the 68.3% CL (1�) the 99.73% CL (3�) exclusion bound, respectively. The dotted gray line shows the
ATLAS 95% CL exclusion bound. (b) Our calculation of the CMS razor 95% CL exclusion line for µ > 0 (red) and

µ < 0 (blue).

For comparison we also show the o�cial CMS exclusion limit. We find a very good agreement, provided we rescale
our signal by a factor 1.8, which is a reasonable assumption given that PYTHIA calculates the pp cross section at
only the leading order2, and PGS4 might present some deficit in the e�ciency reconstruction.

The approximate e�ciency maps derived above allow us to evaluate a likelihood function, so that we can find the
regions of the SUSY model’s parameter space that are in best agreement with the CMS razor limit. Marked in the
figure is also the 95% CL limit from ATLAS, which at low m

0

is actually a bit stronger. We note here that the
ATLAS limit was expected to be lower than the razor one in the (m

0

, m
1/2

) plane. The actual limit being somewhat
higher than expected is a result of downwards fluctuation in the number of background events. Given the fact that
the two limits are actually comparable within the experimental resolution around the region where they are located,
we will henceforth only show the CMS limit in our figures.

We also verify the influence of selecting the negative sign of µ on our likelihood distribution. While the independence
of the exclusion limit of tan � and A

0

in the analysis with all-hadronic final states is a well-known fact, it was never
investigated before in the case of µ < 0. The results of such a scan are presented in Fig. 1(b), where we show our
derived razor 95% CL bound. It appears clear that the position of the line in the (m

0

, m
1/2

) plane is almost insensitive
to the sign of the parameter µ.

C. The Higgs likelihood

In this paper we investigate the impact of the Higgs discovery at the LHC on the CMSSM. In the CMSSM, so
long as m

A

� m
Z

, the lightest Higgs boson is to a very good accuracy SM-like, i.e., its couplings to ZZ and WW
are almost the same as those of the SM Higgs (the so-called decoupling regime) [42]. This has been a conclusion of
many previous studies, and has been also carefully checked in Ref. [43] with experimental constraints available at that
time (among which the constraints on m

0

and m
1/2

were clearly weaker than those available now). We will show in
Sec. III A that this assumption is justified a posteriori, given the present constraints. While the results from the LHC
on the Higgs boson do indicate that the discovered boson is indeed SM-like, here we will assume that it is the lightest
Higgs boson of the CMSSM that has actually been discovered. Note that in our analysis we will be using information
about the Higgs mass but will not be applying constraints on its couplings, in particular on the one to ��.

2 The cross section, and consequently the number of expected supersymmetric events, changes by over ten orders of magnitude over the
(m0, m1/2) plane. The resulting likelihood function is, therefore, not sensitive to next-to-leading order corrections to the cross section.
Even if �NLO ⇠ �LO, the corrections would only slightly shift the isocontours of cross section and likelihood on the (m0, m1/2) plane.

arXiv:1206.0264
9

Measurement Mean or Range Exp. Error Th. Error Likelihood Distribution Ref.
CMS razor 4.4/fb analysis See text See text 0 Poisson [2]
SM-like Higgs mass mh 125 2 2 Gaussian [8, 9, 44]
⌦�h

2 0.1120 0.0056 10% Gaussian [46]
sin2 ✓e↵ 0.23116 0.00013 0.00015 Gaussian [47]
mW 80.399 0.023 0.015 Gaussian [47]
� (g � 2)SUSY

µ ⇥1010 28.7 8.0 1.0 Gaussian [47, 48]

BR
�
B ! Xs�

�
⇥104 3.60 0.23 0.21 Gaussian [47]

BR (Bu ! ⌧⌫)⇥104 1.66 0.66 0.38 Gaussian [49]
�MBs 17.77 0.12 2.40 Gaussian [47]
BR

�
Bs ! µ+µ�

�
< 4.5⇥ 10�9 0 14% Upper limit – Error Fn [23]

Table III: The experimental measurements that we apply to constrain the CMSSM’s parameters. Masses are in GeV.

The experimental constraints applied in our scans are listed in Table III. In comparison with our previous papers
Ref. [25, 26], the new upper limit on BR (B

s

! µ+µ�) is used, which is evidently more constraining than the old
one. Note also that LEP and Tevatron limits on the Higgs sector and superpartner masses are not listed in Table III
because the subsequent LHC limits were generally stronger, and in any case in this paper we consider only the case
of the Higgs signal. The razor and Higgs limits are included as described in Sec. II.

In Ref. [26] we showed that the e↵ect of the current limits from FermiLAT and XENON100 strongly depends on
a proper treatment of astrophysical uncertainties. If the uncertainties are treated in a conservative way, both direct
and indirect limits from DM searches are not more constraining than the accelerator ones, hence we ignore them in
the present analysis.

We have developed a new numerical code, BayesFITS, similar in spirit to the MasterCode [50] and Fittino [51]
frameworks (which perform frequentist analyses), and to SuperBayeS [52] and PySUSY5 (which perform Bayesian
analyses). BayesFITS engages several external, publicly available packages: for sampling it uses MultiNest [53] with
4000 live points, evidence tolerance factor set to 0.5, and sampling e�ciency equal to 0.8. The mass spectrum is
computed with SOFTSUSY and written in the form of SUSY Les Houches Accord files, which are then taken as input
files to compute various observables. We use SuperIso Relic v3.2 [54] to calculate BR

�
B ! X

s

�
�
, BR (B

s

! µ+µ�),

BR (B
u

! ⌧⌫), and � (g � 2)SUSY

µ

, and FeynHiggs 2.8.6 [55] to calculate the electroweak variables m
W

, sin2 ✓
e↵

,
and �M

Bs . The DM observables, such as the relic density and direct detection cross sections, are calculated with
MicrOMEGAs 2.4.5 [56].

Below we will present the results of our scans as one-dimensional (1D) or two-dimensional (2D) marginalized
posterior pdf maps of parameters and observables. In evaluating the posterior pdf’s, we marginalize over the given
SUSY model’s other parameters and the SM’s nuisance parameters, as mentioned above and described in detail in
Refs. [25, 26].

A. The CMSSM with (g � 2)µ

In Figs. 2(a) and 2(b) we show the marginalized posterior pdf in the (m
0

, m
1/2

) plane and in the (A
0

, tan �) plane,
respectively. In these and the following plots we show the Bayesian 68.3% (1�) credible regions in dark blue, encircled
by solid contours, and the 95% (2�) credible regions in light blue, encircled by dashed contours.

The posterior presented in Fig. 2(a) features a bimodal behavior, with two well-defined 1� credible regions. One
mode, smaller in size, which is located at small m

0

, is the ⌧̃ -coannihilation region, whereas a much more extended
mode lies in the A-funnel region. Although the bimodal behavior is superficially similar to what was already observed
in Ref. [25], there are substantial di↵erences. Most notably, the high probability mode which, in that paper and in
Ref. [26], was spread over the focus point (FP)/hyperbolic branch (HB) region at large m

0

and m
1/2

⌧ m
0

, has now
moved up to the A-funnel region.

The reason for the di↵erent behavior of the posterior with respect to Ref. [25] is twofold. On the one hand, we have
found that the highest density of points with the right Higgs mass can be found at m

1/2 ⇠> 1 TeV, which moves the
posterior credible regions up in the plane. On the other hand, some points with a large m

h

can also be found in the
FP/HB region but the scan tends to ignore them in favor of points in the A-funnel region over which the b-physics
constraints are better satisfied. The new upper bound on BR (B

s

! µ+µ�) from LHCb also yields a substantial

5 Written by Andrew Fowlie, public release forthcoming, see http://www.hepforge.org/projects.
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Figure 7: (a) Marginalized 1D posterior pdf of m
h

in the CMSSM constrained by the experiments listed in Table III.
(b) Scatter plot showing the distribution of the total �2 of the points in our chain versus the Higgs mass.

In Fig. 6(a) we show the 2D posterior in the � (g � 2)SUSY

µ

vs. BR
�
B ! X

s

�
�

plane for µ > 0. The (g � 2)
µ

constraint is applied. The red horizontal line (dot-dashed) shows the experimental value of BR
�
B ! X

s

�
�
, and the

pink shaded region highlights the experimental uncertainties at 1�. The blue horizontal line (dotted) shows the SM
value, as calculated by SuperISO. One can see that the 68% and 95% Bayesian credible regions are consistent with
the experimental value of BR

�
B ! X

s

�
�

at the 2� level, while � (g � 2)SUSY

µ

shows a poor fit, as was noticed in
many previous global scans of the CMSSM; see, e.g., [15, 26, 27, 34]. In particular, for µ > 0, a slightly better fit

to � (g � 2)SUSY

µ

is obtained in the ⌧̃ -coannihilation region, which implies values of BR
�
B ! X

s

�
�

closer to the SM
value, which lies ⇠ 1.5� away from the measured one [34]. On the other hand, the best-fit point lies in the A-funnel
region, where it is harder to satisfy (g � 2)

µ

but easier to satisfy BR
�
B ! X

s

�
�
.

Figure 6(b) shows that a similar tension exists between the BR (B
s

! µ+µ�) and (g � 2)
µ

constraints. The red
line (dot-dashed) shows the new LHCb 95% CL upper bound, while the blue line (dotted) shows the SM value for
BR (B

s

! µ+µ�) that we use in our calculations. In an attempt to better fit the (g � 2)
µ

constraint, a narrow 95%
credible region shows up along the SM values of BR (B

s

! µ+µ�), which lie in the ⌧̃ -coannihilation region where tan �
is smaller. However, the best-fit point is situated in the A-funnel region, where the (g � 2)

µ

constraint is overcome
by the one due to BR (B

s

! µ+µ�), which is now free to assume a broader range of values.
The probability distribution of the lightest Higgs mass is shown in Fig. 7(a). The present constraints highly favor

Higgs masses centered around m
h

⇠ 122 GeV. Points having m
h

> 124 GeV are di�cult to achieve in the CMSSM
with the prior ranges we consider (m

0

. 4 TeV, m
1/2

. 2 TeV), as is well known. They are, nonetheless, present
in our chain in appreciable number but they are disfavored by the global constraints. This point is made clear in
Fig. 7(b), where we show a scatter plot of the total �2 versus the Higgs mass. Points giving Higgs masses as large as
125 GeV are generated, but their global fit to all constraints is generally poor.

The reason for so strongly disfavoring larger values of m
h

is the tension between the Higgs mass above 124 GeV
and the correct value of the relic density. This tension manifests itself both in the A-funnel and in the FP/HB region,
though its origin in each of those regions is di↵erent. In the A-funnel the main mechanism that allows to obtain
the correct value of the relic density is the resonance annihilation of neutralinos through the pseudoscalar A boson.
To allow such a process, an approximate relation m

A

⇠ 2m
�

should hold. However, for cases where m
h

> 124 GeV
the mass of the pseudoscalar m

A

exceeds significantly the doubled mass of the neutralino, and annihilation at the
resonance cannot take place.

In the FP/HB region the correct relic density is achieved in another way. Because of the relatively small values of
|µ| the lightest neutralino becomes more Higgsino-like, and the annihilation cross section is enhanced. However, as
we have already stated, in the CMSSM the lightest Higgs boson with mass larger than 124 GeV can be much more
easily obtained for large (. �1 TeV) negative values of A

0

at the GUT scale. After running down to the electroweak
scale, negative values for A

0

yield even larger negative A
t

, which is one of the conditions to obtain large Higgs boson

125 GeV very unlikely 
in CMSSM
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conclusion applies to compressed stop-neutralino spectra, since the signature in the razor

Had box is the same.

A change in the lepton selection could further increase the sensitivity of these analyses.

The left plot on Fig. 9 shows the distribution of the muon pT for W+jets events selected

by the CMS monojet analysis, before applying the muon veto and the isolated track veto.

This is compared to the equivalent distribution obtained for events with pair-produced stops,

decaying to W ⇤bN , with at least one of the two W ⇤ producing a µ⌫ pair. We consider two

values of the stop mass (m
˜t = 150 GeV and m

˜t = 270 GeV) for �M = 15 GeV. Requiring

one muon with pT < 15 GeV corresponds to reducing the Z(⌫⌫)+jets background to a

negligible level, and to rejecting ⇠ 92% of the other backgrounds.

To evaluate the potential improvement due to this change, we applied the monojet anal-

ysis to the generated stop-stop samples, and we separate the selected events in two boxes

(as for the razor analysis): the Muon box, including all the events with one muon with

pT < 15 GeV; the Had box, with all the other events. We then distribute the background

in the two boxes as follows: all the Z(⌫⌫)+jets background to the Had box; 8% (92%) of

the other background in the Mu (Had) box. We then evaluate the potential sensitivity of

this modified analysis on a sample of pair-produced stop decays, decaying to W ⇤bN , 20% of

which produce at least one muon in stop decay.

15

arXiv:1212.6847

Motivated by LHC data and flavor constraints, RG 
equations, and thermal abundance for DM

Search for right-handed stop with

1 Introduction

Supersymmetry has been significantly cornered by LHC searches. The discovery of the

Higgs boson at 126 GeV [1, 2] and the direct limits on sparticles rule out most of the natural

implementations of low-energy supersymmetry, at least in their simplest versions [3]. Pockets

of parameter space still survive, but their exploration requires the 14-TeV phase of the LHC.

At this stage, it is appropriate to examine the available experimental data and look for hints

that can guide us towards special regions where supersymmetry may still hide.

In this paper, we point out that there is a window of supersymmetric parameters that

(i) are well consistent with all collider data and flavor constraints, (ii) naturally emerge

from RG evolution of simple UV completions, (iii) predict the correct thermal abundance

for dark matter (DM), and (iv) give observable signals at LHC14. In this special window,

the supersymmetric mass spectrum has the following properties:

• The lightest stop is mostly right-handed and its mass is in the range m
˜t1 = 200–

400GeV.

• The heavy, mostly left-handed, stop has a much larger mass (in the 1–2 TeV range),

but it is correlated with the light stop in such a way that their geometric average is

mS ⌘ (m
˜t2m˜t1)

1/2 ⇡ 500–600GeV.

• The stop trilinear term is large, such that1 A2

t ⇡ 6m2

S.

• The gluino mass is below about 1.5 TeV.

• The lightest neutralino has a mass slightly smaller than the lightest stop, by an amount

of about 30–40GeV.

In section 2 we will give several arguments that lead to the mass spectrum described

above. None of them is su�ciently compelling to select conclusively the sparticle masses

but these arguments, taken together, give circumstantial evidence in favor of our choice of

parameters. Our conclusion is based on the following considerations:

• We choose the values of the stop parameters that minimize the average stop mass, while

leading to a Higgs mass of about 126 GeV. The resulting stop mass spectrum, although

not strictly natural, has the advantage of reducing the amount of unnaturalness forced

upon supersymmetry by present LHC data.

1This configuration is known as the “maximal mixing” case, although it does not necessarily imply a
large mixing between the two stop mass eigenstates, as discussed in sect. 2.
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Figure 7: Distribution of MR (left), R

2 (center), and box-by-box event fraction (right) for pair-
produced stop events as a function of the stop mass, for t̃ ! `⌫`bN decays and m

˜t � M

DM

= 30
GeV. Even if this case is the most favorable for the selection of leptonic final states, the hadronic
box is the most populated due to the small value of m

˜t �M

DM

.

used in the hadronic SUSY searches: pjetT > 60 GeV for the first two jet; pjetT > 40 for the

other jets. The looser jet selection increases the e↵ective cross section we are sensitive to.

To estimate the sensitivity of the search to the soft leptons from the stop decays, we

implemented an emulation of the razor analysis, based on generator-level jets and leptons.

We generate pair-produced stop squarks in
p
s = 7 TeV pp collisions using PYTHIA8 [30].

The stop are forced to decay with a flat matrix element as t̃ ! `⌫`bN . The transverse

momenta of all the visible particles are summed to compute the missing transverse energy at

generator level. Similarly, these particles are clustered into jets using the FASTJET [31, 32]

implementation of the antikT [33] algorithm. As for CMS, we use R = 0.5 to define the

jet size. The razor variables and the six boxes (MuEle, MuMu, EleEle, Mu, Ele, and Had)

are defined following the instructions provided by the CMS collaboration [34]. To take into

account the limited e�ciency in lepton detection, we applied the e�ciency curves of the CMS

dilepton SUSY search [35], using a hit-or-miss analysis. This is a valid procedure, since the

lepton definition in the razor and dilepton SUSY searches are similar.

We scan the value of the stop mass between 100 GeV and 400 GeV, fixing the stop-to-

neutralino mass gap to 30 GeV. We show in fig. 7 the distribution of the razor variables for

di↵erent stop masses, as well as the breakdown in boxes. A few important features should

be noticed:

i) The MR variable approximates the momentum of the jets in the frame such that

|pj1 | = |pj2 |. In the case of squark pair-production, for which this variable was designed,

this corresponds to the squarks rest frame. This is why the MR distribution for this

case peaks at the M
�

= (m2

˜t1
�M2

DM

)/m
˜t1 . Instead, in the case we consider here the

jets come from the associated (non-resonant) production and the peak is at ⇠ 150

GeV, regardless of the stop and neutralino masses (due to the selection on the jet pT

12

Generated pair-produced stops with 
Pythia 8, clustered into jets with FastJet

6 6 Efficiencies and associated uncertainties

Table 1: A summary of the results of this search. For each signal region (SR), we show its most
distinguishing kinematic requirements, the prediction for the three background (BG) compo-
nents as well as the total, the event yield, and the observed 95% confidence level upper limit on
the number of non-SM events (NUL) calculated under three different assumptions for the event
efficiency uncertainty (see text for details). Note that the count of the number of jets on the first
line of the table includes both tagged and untagged jets.

SR0 SR1 SR2 SR3 SR4 SR5 SR6 SR7 SR8
No. of jets � 2 � 2 � 2 � 2 � 2 � 2 � 2 � 3 � 2
No. of b-tags � 2 � 2 � 2 � 2 � 2 � 2 � 2 � 3 � 2
Lepton charges ++ / � � ++ / � � ++ ++ / � � ++ / � � ++ / � � ++ / � � ++ / � � ++ / � �
Emiss

T > 0 GeV > 30 GeV > 30 GeV > 120 GeV > 50 GeV > 50 GeV > 120 GeV > 50 GeV > 0 GeV
HT > 80 GeV > 80 GeV > 80 GeV > 200 GeV > 200 GeV > 320 GeV > 320 GeV > 200 GeV > 320 GeV
Charge-flip BG 1.4 ± 0.3 1.1 ± 0.2 0.5 ± 0.1 0.05 ± 0.01 0.3 ± 0.1 0.12 ± 0.03 0.03 ± 0.01 0.008 ± 0.004 0.20 ± 0.05
Fake BG 4.7 ± 2.6 3.4 ± 2.0 1.8 ± 1.2 0.3 ± 0.5 1.5 ± 1.1 0.8 ± 0.8 0.15 ± 0.45 0.15 ± 0.45 1.6 ± 1.1
Rare SM BG 4.0 ± 2.0 3.4 ± 1.7 2.2 ± 1.1 0.6 ± 0.3 2.1 ± 1.0 1.1 ± 0.5 0.4 ± 0.2 0.12 ± 0.06 1.5 ± 0.8
Total BG 10.2 ± 3.3 7.9 ± 2.6 4.5 ± 1.7 1.0 ± 0.6 3.9 ± 1.5 2.0 ± 1.0 0.6 ± 0.5 0.3 ± 0.5 3.3 ± 1.4
Event yield 10 7 5 2 5 2 0 0 3
NUL (12% unc.) 9.1 7.2 6.8 5.1 7.2 4.7 2.8 2.8 5.2
NUL (20% unc.) 9.5 7.6 7.2 5.3 7.5 4.8 2.8 2.8 5.4
NUL (30% unc.) 10.1 7.9 7.5 5.7 8.0 5.1 2.8 2.8 5.7

Section 3. The event yields are consistent with the background predictions. In Table 1 we also
show the 95% confidence level observed upper limit (NUL) on the number of non-SM events
calculated using the CLs method [35, 36] under three different assumptions for the signal effi-
ciency uncertainty. This uncertainty is discussed in Section 6.

6 Efficiencies and associated uncertainties

Events in this analysis are collected with dilepton triggers. The efficiency of the trigger is mea-
sured to be 99 ± 1% (96 ± 3%) per electron (muon) in the range |h| < 2.4. The efficiency of the
lepton identification and isolation requirements, as determined using a sample of simulated
events from a typical SUSY scenario (the LM6 point of Ref. [37]), is displayed in Fig. 2. Studies
of large data samples of Z ! ee and Z ! µµ events indicate that the simulation reproduces the
efficiencies of the identification requirements to better than 2% [18, 19]. The efficiency of the
isolation requirement on leptons in Z events is also well reproduced by the simulation. How-
ever, this efficiency depends on the hadronic activity in the event, and is typically 10% lower in
SUSY events with hadronic cascades than in Z events. To account for this variation, we take a
5% systematic uncertainty per lepton in the acceptance of signal events.

 (GeV)TLepton p
20 40 60 80 100 120 140 160 180 200

Ef
fic

ie
nc

y

0

0.2

0.4

0.6

0.8

1

electrons

muons

 = 7 TeVsCMS Simulation, 

 (GeV)Tb-quark p
0 50 100 150 200 250 300 350 400

Ef
fic

ie
nc

y

0

0.2

0.4

0.6

0.8

1
 = 7 TeVsCMS Simulation, 

Figure 2: Lepton selection efficiency as a function of pT (left); b-jet tagging efficiency as a
function of the b quark pT (right).
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and not to the SUSY kinematic).

ii) The R variable is defined as MT
R/MR where MT

R  M
�

is a transverse invariant mass,

such that the QCD background peaks at R ⇠ 0, while the signal can produce events

with larger values of R, where the two jets have similar directions, opposite to the

direction of the neutralinos. In the case of compressed stop spectra the R2 distribution

has some dependence on the stop mass, due to the correlation between the stop mass

(setting the scale of the hard interaction), the spectrum of the associated jets, and the

missing energy in the event.

iii) The majority of the events selected by the analysis falls in the hadronic box.

All these features are explained by the fact that the analysis is only sensitive to the events

with two associated jets. These jets form the hemispheres and the razor variables are com-

puted for a non-resonant production. In the largest fraction of the events the decay products

of the stop are not seen and, e↵ectively, the signal behaves like for the direct production of

Dark Matter [36], The stop plays the part of the Dark Matter, with the big advantage of the

production cross section much larger than for Dark Matter direct detection. At the same

time, the result is largely independent on the final state the stop decays to.

These considerations suggest that the Had box is the only relevant sample to consider in

our study. This is also the only box for which the information needed for phenomenology

studies (observed yield and expected background vs R2 and MR) are given. While we limit

our study to the Had box, we stress the fact that there is some sensitivity in the Mu box and

Ele boxes, which could have be exploited if we had the relevant information. The importance

of the Had box over the others also implies that the monojet analysis is a good candidate to

look for our signal, as it is for Dark Matter direct production.

We show in fig. 8 the limits obtained with the monojet and the razor (Had-only) anal-

yses. For both the analyses, we consider the expected background yield (with error) and

the observed yield, and we model the likelihood according to a Poisson distribution. The

background uncertainty is described using a log-normal function. We assign a 30% error

to the signal e�ciency, to take into account the di↵erences between our implementation

of the analysis and a more realistic description of the CMS detector. We then derive a

posterior-probability density function for the signal cross section as:

P (�) =
Z 1

0

db
Z

1

0

d✏
(b+ L�✏)ne�b�L�✏

n!
Ln(✏|✏̄, �✏) Ln(b|b̄, �b) (28)

where b (✏) is the actual value for the background yield (the e�ciency), b̄ (✏̄) is its expected

value, and �b (�✏) the associated error; Ln(x|m, �) is a log-normal function for x with mean

13

m and variance �; n is the observed yield, L is the available luminosity (for which we neglect

the ⇠ 4% error) and � is the signal cross section. In the case of the razor analysis, the actual

posterior is obtained as the product of the posteriors in each of the bins provided in [34].

We verified that taking L = ✏ = 1 we can reproduce the limit on the signal strength for the

two analyses. The 95%-probability limit is obtained integrating the posterior from 0 up to

the value �
UP

such that R �UP
0

P (�)d�
R1
0

P (�)d�
= 0.95. (29)

The left plot of fig. 8 shows the 95%-probability limit on the signal cross section as a

function of the stop mass for both the analyses, fixing the mass split at 30GeV and 100GeV

(with the stop decayed to t⇤N). The sensitivity of the monojet analysis is limited by the

tight selection on jets and missing transverse energy. The limit is worse for larger splitting

because of the veto on any third jet with pT > 30GeV. At the contrary, the razor analysis

is more e�cient for this signature and more performant for larger splitting, since no veto is

applied. One should also consider that at large values of the mass splitting the five leptonic

boxes could further improve the sensitivity.

The right plot of fig. 8 shows the limit in the stop mass vs neutralino mass plane. This

plot shows the same qualitative features as the 1D limit plot. At large splits, the limit from

the razor analysis is found to be consistent with (and slightly worse than) the o�cial limit on

stop pair production [29]. Both the 1D and 2D limits were obtained comparing the excluded

cross section with the NLO+NLL t̃t̃⇤ cross section at 7 TeV taking the decoupling limit for

the other SUSY particles [37].

3.3 Dedicated analyses

The existing limit is interesting, considering how challenging this signature is. This study

also shows once more that the inclusive searches by ATLAS and CMS are much more general

than the signal signatures they have been designed for. While a dedicated search could do

better for a specific scenario, the inclusive searches are a good assurance policy for unexpected

signatures. Repeating the analysis at 8 TeV with more data will certainly push the sensitivity

further. On the other hand, we think it is interesting to imagine how the analyses could be

changed to improve the sensitivity.

One could certainly gain by using looser kinematic requirements. The limiting factor

is related to the triggers. For example, it was pointed out extending the razor analysis at

the tail of R2 for low MR could improve the sensitivity to DM production [36]. The same

14

Derived posterior probability on 
cross section from likelihood

32Wednesday, January 23, 13



Javier Duarte
Caltech

Recap of Uses
BayesFITS combination of Razor 
with Higgs, Bs→μμ, etc. to derive 
posterior probabilities in CMSSM

10

(a) (b)

Figure 2: Marginalized posterior pdf in (a) the (m
0

, m
1/2

) plane and (b) the (A
0

, tan �) plane of the CMSSM,
constrained by the experiments listed in Table III. The solid black line shows the CMS razor 95% CL exclusion

bound.

contribution. The approximately rectangular region bounded by m
0

⇠ 500 � 2000 GeV and m
1/2
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is now cut out at the 95% CL. Notice that in our previous papers [25, 26] the same part of parameter space was
included in the 95% credible region.
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Figure 4: ATLAS and CMS exclusions on FV mode (left) and 4B
mode (right). The two straight, diagonal lines correspond to m

t̃

= m
�

0
1
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per, FV), m
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0
1
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b

(upper, 4B), and m
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W

(lower,
both). The upper lines are the kinematic limits for these modes, while below
the lower line we expect the 3B channel to take over.
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• 2 isolated leptons, first lepton pT > 20 GeV,

second lepton pT > 10 GeV

• RelIso< 0.1 for pT > 20 GeV

and IsoSum< 2GeV for pT < 20 GeV

• 2 reconstructed jets, pT > 30 GeV

• Emiss

T > 30 GeV (ee and µµ)

or Emiss

T > 20 GeV (eµ)
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Figure 8: Left: predicted cross section and experimental limits as functions of the lightest stop
mass. Right: excluded regions in the (m

˜t1
,M

DM

) plane from ATLAS analyses (dotted regions
shaded in yellow), CMS analyses (dot-dashed regions shaded in green), our re-analysis (red).

conclusion applies to compressed stop-neutralino spectra, since the signature in the razor

Had box is the same.

A change in the lepton selection could further increase the sensitivity of these analyses.

The left plot on Fig. 9 shows the distribution of the muon pT for W+jets events selected

by the CMS monojet analysis, before applying the muon veto and the isolated track veto.

This is compared to the equivalent distribution obtained for events with pair-produced stops,

decaying to W ⇤bN , with at least one of the two W ⇤ producing a µ⌫ pair. We consider two

values of the stop mass (m
˜t = 150 GeV and m

˜t = 270 GeV) for �M = 15 GeV. Requiring

one muon with pT < 15 GeV corresponds to reducing the Z(⌫⌫)+jets background to a

negligible level, and to rejecting ⇠ 92% of the other backgrounds.

To evaluate the potential improvement due to this change, we applied the monojet anal-

ysis to the generated stop-stop samples, and we separate the selected events in two boxes

(as for the razor analysis): the Muon box, including all the events with one muon with

pT < 15 GeV; the Had box, with all the other events. We then distribute the background

in the two boxes as follows: all the Z(⌫⌫)+jets background to the Had box; 8% (92%) of

the other background in the Mu (Had) box. We then evaluate the potential sensitivity of

this modified analysis on a sample of pair-produced stop decays, decaying to W ⇤bN , 20% of

which produce at least one muon in stop decay.
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1 Introduction1

Interactions at an energy scale much lower than the mass of the mediating particle can be mod-2

eled by contact interactions (CI) [1–4] governed by a single mass scale conventionally denoted3

by L. A search for contact interactions is therefore a search for interactions whose detailed4

characteristics become manifest only at higher energies. Contact interactions can affect the5

jet angular distributions as well as the jet transverse momentum (pT) spectra, particularly for6

central jets. Lower limits on L have been set by the CDF [5], DØ [6], and ATLAS [7] collabo-7

rations. The Compact Muon Solenoid (CMS) collaboration has previously measured the dijet8

angular distribution [8] using a data set of
p

s = 7 TeV proton-proton collisions corresponding9

to an integrated luminosity of 2.2 fb�1, and found L > 8.4 TeV and L > 11.7 TeV at 95 %10

confidence level (CL), for models with destructively and constructively interfering amplitudes,11

respectively.12

The inclusive jet pT spectrum, i.e., the spectrum of jets in p + p ! jet + X events, where X13

can be any collection of particles, is generally considered to be less sensitive to the presence14

of contact interactions than the jet angular distribution. This perception is due to the jet pT15

spectrum’s greater dependence on the jet energy scale (JES) and on the parton distribution16

functions (PDF), which are difficult to determine accurately. However, considerable progress17

has been made by the CMS collaboration in understanding the JES [9]. The understanding of18

PDFs has also improved greatly at high parton momentum fraction [10–12], in part because of19

the important constraints on the gluon PDF provided by measurements at the Tevatron [13, 14].20

These developments have made the jet pT spectrum a competitive observable to search for21

phenomena described by contact interactions, reprising the method that was used in searches22

by CDF [15] and DØ [16].23

In this paper, we report the results of a search for a deviation in the jet production cross sec-24

tion from the next-to-leading-order (NLO) quantum chromodynamics (QCD) prediction of25

centrally-produced jets with transverse momenta > 500 GeV. The analysis is based on a 7 TeV26

proton-proton data sample corresponding to an integrated luminosity of 5.0 fb�1, collected27

with the CMS detector at the Large Hadron Collider (LHC).28

2 Theoretical models29

The experimental results are interpreted in terms of a CI model described by the effective La-
grangian [3, 17]

L = z
2p

L2 (q̄LgµqL)(q̄LgµqL), (1)

where qL denotes a left-handed quark field and z = +1 or �1 for destructively or constructively
interfering amplitudes, respectively. The amplitude for jet production can be written as

a = aSM + l aCI

where aSM and aCI are the standard model (SM) and contact interaction amplitudes, respec-
tively. Since the amplitude is linear in l = 1/L2, the cross section sk in the kth jet pT bin is
given by

sk = ck + bk l + ak l2, (2)

where ck, bk, and ak are jet-pT-dependent coefficients.30

We use models characterized by the cross section QCDNLO +CI(L), where QCDNLO = ck is the31

inclusive jet cross section computed at next-to-leading order, and CI(L) = bk l+ ak l2 parame-32

terizes the deviation of the inclusive jet cross section from the QCD prediction arising from the33
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PDFs has also improved greatly at high parton momentum fraction [10–12], in part because of19

the important constraints on the gluon PDF provided by measurements at the Tevatron [13, 14].20

These developments have made the jet pT spectrum a competitive observable to search for21

phenomena described by contact interactions, reprising the method that was used in searches22

by CDF [15] and DØ [16].23

In this paper, we report the results of a search for a deviation in the jet production cross sec-24

tion from the next-to-leading-order (NLO) quantum chromodynamics (QCD) prediction of25

centrally-produced jets with transverse momenta > 500 GeV. The analysis is based on a 7 TeV26

proton-proton data sample corresponding to an integrated luminosity of 5.0 fb�1, collected27

with the CMS detector at the Large Hadron Collider (LHC).28

2 Theoretical models29

The experimental results are interpreted in terms of a CI model described by the effective La-
grangian [3, 17]

L = z
2p

L2 (q̄LgµqL)(q̄LgµqL), (1)

where qL denotes a left-handed quark field and z = +1 or �1 for destructively or constructively
interfering amplitudes, respectively. The amplitude for jet production can be written as

a = aSM + l aCI

where aSM and aCI are the standard model (SM) and contact interaction amplitudes, respec-
tively. Since the amplitude is linear in l = 1/L2, the cross section sk in the kth jet pT bin is
given by

sk = ck + bk l + ak l2, (2)

where ck, bk, and ak are jet-pT-dependent coefficients.30

We use models characterized by the cross section QCDNLO +CI(L), where QCDNLO = ck is the31

inclusive jet cross section computed at next-to-leading order, and CI(L) = bk l+ ak l2 parame-32

terizes the deviation of the inclusive jet cross section from the QCD prediction arising from the33

}
⇒ effective 4-fermion interaction
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Table 2: The observed jet count for each jet pT bin in the range 507 � 2116 GeV.

Bin pT (GeV) Jets Bin pT (GeV) Jets
1 507-548 73792 11 1032-1101 576
2 548-592 47416 12 1101-1172 384
3 592-638 29185 13 1172-1248 243
4 638-686 18187 14 1248-1327 100
5 686-737 11565 15 1327-1410 66
6 737-790 7095 16 1410-1497 34
7 790-846 4413 17 1497-1588 15
8 846-905 2862 18 1588-1684 9
9 905-967 1699 19 1684-1784 1
10 967-1032 1023 20 1784-2116 3
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Figure 5: The data compared with model spectra for different values of L for models with
destructive interference (left). The ratio of these spectra to the NLO QCD jet pT spectrum
(right).

In the search region, the inclusive jet spectrum has a range of five orders of magnitude, which106

causes the limits on L to be sensitive to the choice of the normalization factor and the size of the107

data sets. We have found that a few percent change in the normalization factor can cause limits108

to change by as much as 50%. Therefore, for the purpose of computing limits, we have chosen109

to sidestep the issue of normalization by considering only the shape of the jet pT spectrum. This110

we achieve by using a multinomial distribution, which is the probability to observe K counts,111

Nj, j = 1, · · · , K, given the observation of a total count N = ÂK
j=1 Nj. The likelihood is then112

defined by113

p(D|l, w) =
N!

N1! · · · NK!

K

’
j=1

✓
sj

s

◆Nj

, (5)

where K = 20 is the number of bins in the search region, Nj is the jet count in the jth jet pT114

bin, D ⌘ N1, · · · , NK, s = ÂK
j=1 sj and N are the total cross section and total observed count,115

2 2 Theoretical models

hypothesized contact interactions. The QCDNLO cross section is calculated with version 2.1.0-34

1062 of the fastNLO program with scenario table fnl2332y0.tab [18] using the NLO CTEQ6.635

PDFs [19]. We do not unfold the observed inclusive jet pT spectrum. Instead, the NLO QCD36

jet pT spectrum is convolved with the CMS jet response function [20], where the jet energy37

resolution (JER) spT is given by38

spT = pT

s
n2

p2
T
+

s2

p1�m
T

+ c2, (3)

with n = 5.09, s = 0.512, m = 0.325, c = 0.033, and compared directly with the observed39

spectrum using a likelihood function. For brevity, we shall refer to the smeared spectrum as40

the NLO QCD jet pT spectrum.41

The signal term CI(L) is modeled by subtracting the leading-order (LO) QCD jet cross section42

(QCDLO) from the LO jet cross section computed with a contact term. The leading-order jet43

pT spectra are computed by generating events with and without a CI term using the program44

PYTHIA 6.422, the Z2 underlying event tune [17, 21], and the same CTEQ PDFs used to calculate45

QCDNLO. The generated events are processed with the full CMS detector simulation program,46

based on GEANT4 [22]. Interactions between all quarks are included (Appendix A) and we47

consider models both with destructive and constructive interference between the QCD and48

CI amplitudes. We note that NLO corrections to the contact interaction model have recently49

become available [23], and we plan to use these results in future studies. These corrections are50

expected to change the results by less than 5%.51

The jet pT dependence of CI(L) is modeled by fitting the ratio f = [QCDNLO +CI(L)]/QCDNLO
simultaneously to four PYTHIA CI models with L = 3, 5, 8, and 12 TeV. The fit is performed in
this manner in order to construct a smooth interpolation over the four cross section ratios. Sev-
eral functional forms were investigated, which gave satisfactory fits. We chose the simplest
ansatz [24]:

f = 1 + p1

⇣ pT

100 GeV

⌘p2
✓

l

1 TeV�2

◆
+ p3

⇣ pT

100 GeV

⌘p4
✓

l

1 TeV�2

◆2
. (4)

The results of a fit to models with destructive interference are shown in Figure 1. The fit shown52

in Fig. 1 uses the central values of the JES, JER, and PDF parameters and the renormalization53

(µr) and factorization (µf) scales set to µr = µf = jet pT. Models with constructive interference54

are obtained by reversing the sign of the parameter p1. The fit parameters are given in Table 1.55

Figures 2 and 3 show model spectra for different values of L in the jet pT range 500  pT 

Table 1: The fit parameters associated with Fig. 1. The first row lists the values of the parame-
ters p1, p2, p3, and p4, while the remaining rows list the elements of the associated covariance
matrix.

p1 p2 p3 p4
�1.5 ⇥ 10�3 3.6 1.9 ⇥ 10�3 5.23

p1 1.4 ⇥ 10�6 3.6 ⇥ 10�4 �3.4 ⇥ 10�7 6.8 ⇥ 10�5

p2 3.6 ⇥ 10�4 9.2 ⇥ 10�2 �8.4 ⇥ 10�5 1.7 ⇥ 10�2

p3 �3.4 ⇥ 10�7 �8.4 ⇥ 10�5 1.0 ⇥ 10�7 �2.0 ⇥ 10�5

p4 6.8 ⇥ 10�5 1.7 ⇥ 10�2 �2.0 ⇥ 10�5 4.1 ⇥ 10�3

56

2000 GeV. Figure 2 shows that the jet production cross section is enhanced at sufficiently high57
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Figure 1: The cross section ratios, f = [QCDNLO + CI(L)]/QCDNLO, with L = 3, 5, 8, and 12
TeV. The points with error bars are the theoretical values of the cross section ratios. The curves
are the results of a fit of Eq. (4) simultaneously to the four cross section ratios. The NLO QCD
jet pT spectrum is calculated using the nominal values of the JES, JER, PDF, renormalization
and factorization scales for models with destructive interference. The values of the parameters
of the fit are given in Table 1.

jet pT. However, for interactions that interfere destructively, the cross section can decrease58

relative to the NLO QCD prediction. For example, for L = 10 TeV, the QCDNLO+CI cross59

section is lower than the QCDNLO cross section for jet pT < 1.3 TeV. Figure 3 shows the contact60

interaction signal, CI(L), as a function of jet pT.61

3 Experimental setup62

The CMS coordinate system is right-handed with the origin at the center of the detector, the63

x axis directed toward the center of the LHC ring, the y axis directed upward, and the z axis64

directed along the counterclockwise proton beam. We define f to be the azimuthal angle, q65

to be the polar angle, and the pseudorapidity to be h ⌘ � ln(tan q
2 ). The central feature of66

the CMS apparatus is a superconducting solenoid of 6 m internal diameter, operating with a67

magnetic field strength of 3.8 T. Within the field volume are the silicon pixel and strip trackers68

and the barrel and endcap calorimeters with |h| < 3. Outside the field volume, in the forward69

region, there is an iron/quartz-fiber hadron calorimeter (3 < |h| < 5). Further details about70

the CMS detector may be found elsewhere [25].71

Jets are built from the five types of reconstructed particles: photons, neutral hadrons, charged72

hadrons, muons, and electrons, using the CMS particle-flow reconstruction method [26] and73

the anti-kT algorithm with a distance parameter of 0.7 [27–29]. The jet energy scale correction74

is derived as a function of the jet pT and h, using a pT-balancing technique [9], and applied to75

parameters are estimated 
in a simultaneous fit

5

jet pT spectrum is divided into 20 pT bins in the search region 507  pT  2116 GeV, where the85

bin width is approximately equal to the jet resolution spT given in Eq. (3). No jets are observed86

above 2000 GeV transverse energy.87

4 Results88

In Figure 4 we compare the observed inclusive jet pT spectrum with the NLO QCD jet pT spec-89

trum, which is normalized to the total observed jet count in the search region using the normal-90

ization factor 4.007± 0.009 (stat.) fb�1 (Section 5). The normalization is the ratio of the observed91

jet count to the predicted cross section in the search region. The data and the prediction are in92

good agreement as indicated by two standard criteria, the Kolmogorov-Smirnov probability93

Pr(KS) of 0.66 and the c2 per number of degrees of freedom (NDF) of 23.5/19. Table 2 lists94

the observed jet counts. Figure 5 compares the observed jet pT spectrum in the search region95

with model spectra for different values of L, for models with destructive interference. Figure 696

compares the data with models with constructive interference.97
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Figure 4: The observed jet pT spectrum compared with the NLO QCD jet pT spectrum (left). The
bands represent the total uncertainty in the prediction and incorporate the uncertainties in the
PDFs, jet energy scale, jet energy resolution, the renormalization and factorization scales, and
the modeling of the jet pT dependence of the parameters in Eq. (4). The ratio of the observed
to the predicted spectrum (right). The error bars represent the statistical uncertainties in the
expected bin count.

5 Statistical analysis98

Since there are no significant deviations between the observed and predicted spectra, the re-99

sults are interpreted in terms of lower limits on the CI scale L using the models described in100

Section 2. The dominant sources of systematic uncertainties are associated with the JES, the101

PDFs, the JER, the renormalization (µr) and factorization (µf) scales, and the modeling param-102

eters of Eq. (4). Non-perturbative corrections are less than 1% for transverse momenta above103

⇠ 400 GeV [20], are negligible compared with other uncertainties, and are therefore not applied104

to our analysis.105

Data: no significant deviations

Multinomial Dist. Model

Analytic model of the signal for any

1

1 Introduction1

Interactions at an energy scale much lower than the mass of the mediating particle can be mod-2

eled by contact interactions (CI) [1–4] governed by a single mass scale conventionally denoted3

by L. A search for contact interactions is therefore a search for interactions whose detailed4

characteristics become manifest only at higher energies. Contact interactions can affect the5

jet angular distributions as well as the jet transverse momentum (pT) spectra, particularly for6

central jets. Lower limits on L have been set by the CDF [5], DØ [6], and ATLAS [7] collabo-7

rations. The Compact Muon Solenoid (CMS) collaboration has previously measured the dijet8

angular distribution [8] using a data set of
p

s = 7 TeV proton-proton collisions corresponding9

to an integrated luminosity of 2.2 fb�1, and found L > 8.4 TeV and L > 11.7 TeV at 95 %10

confidence level (CL), for models with destructively and constructively interfering amplitudes,11

respectively.12

The inclusive jet pT spectrum, i.e., the spectrum of jets in p + p ! jet + X events, where X13

can be any collection of particles, is generally considered to be less sensitive to the presence14

of contact interactions than the jet angular distribution. This perception is due to the jet pT15

spectrum’s greater dependence on the jet energy scale (JES) and on the parton distribution16

functions (PDF), which are difficult to determine accurately. However, considerable progress17

has been made by the CMS collaboration in understanding the JES [9]. The understanding of18

PDFs has also improved greatly at high parton momentum fraction [10–12], in part because of19

the important constraints on the gluon PDF provided by measurements at the Tevatron [13, 14].20

These developments have made the jet pT spectrum a competitive observable to search for21

phenomena described by contact interactions, reprising the method that was used in searches22

by CDF [15] and DØ [16].23

In this paper, we report the results of a search for a deviation in the jet production cross sec-24

tion from the next-to-leading-order (NLO) quantum chromodynamics (QCD) prediction of25

centrally-produced jets with transverse momenta > 500 GeV. The analysis is based on a 7 TeV26

proton-proton data sample corresponding to an integrated luminosity of 5.0 fb�1, collected27

with the CMS detector at the Large Hadron Collider (LHC).28

2 Theoretical models29

The experimental results are interpreted in terms of a CI model described by the effective La-
grangian [3, 17]

L = z
2p

L2 (q̄LgµqL)(q̄LgµqL), (1)

where qL denotes a left-handed quark field and z = +1 or �1 for destructively or constructively
interfering amplitudes, respectively. The amplitude for jet production can be written as

a = aSM + l aCI

where aSM and aCI are the standard model (SM) and contact interaction amplitudes, respec-
tively. Since the amplitude is linear in l = 1/L2, the cross section sk in the kth jet pT bin is
given by

sk = ck + bk l + ak l2, (2)

where ck, bk, and ak are jet-pT-dependent coefficients.30

We use models characterized by the cross section QCDNLO +CI(L), where QCDNLO = ck is the31

inclusive jet cross section computed at next-to-leading order, and CI(L) = bk l+ ak l2 parame-32

terizes the deviation of the inclusive jet cross section from the QCD prediction arising from the33

Data are the counts in 
each pT bin
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B.1.2 Generating the JES/JER ensembles291

In the JES/JER ensembles, the JES and JER parameters are sampled simultaneously for the five292

model spectra QCDLO, and (QCD + CI)LO with L = 3, 5, 8, and 12 TeV, yielding ensembles293

of correlated shifts from the central JES, JER, and PDF values of the QCDLO and (QCD+CI)LO294

spectra. For example, we compute the spectral residuals ds = QCD0 �QCDcentral, where QCD0
295

is the shifted jet pT spectrum and QCDcentral is the jet pT spectrum computed using the central296

values of the JES, JER, and PDF parameters. Coherent shifts of the jet energy scale are calculated297

for every jet in every simulated event. The jet pT is shifted by xd for each component of the298

jet energy scale uncertainty, of which there are sixteen, where x is a Gaussian variate of zero299

mean and unit variance, and d is a jet-dependent uncertainty for a given component. The300

contributions from all uncertainty components are summed to obtain an overall shift in the jet301

pT. From studies of dijet asymmetry and photon+jet pT balancing, the uncertainty in the jet302

energy resolution is estimated to be 10% in the pseudorapidity |h| < 0.5 [20]. We sample the303

jet energy resolution using a procedure identical to that used to sample the jet energy scale, but304

using a single Gaussian variate.305

B.1.3 Generating the JES/JER/PDF ensemble306

Another ensemble is created, from the PDF ensembles and the JES/JER ensembles, that ap-307

proximates simultaneous sampling from the JES, JER, PDF, renormalization, and factorization308

parameters. We pick at random a correlated set of six spectra from the PDF ensembles, and309

a correlated set of five spectral residuals from the JES/JER ensembles. The JES/JER spec-310

tral residuals ds are added to the corresponding shifted spectrum from the PDF ensembles,311

thereby creating a spectrum in which the JES, JER, PDF, µr, and µf parameters have been ran-312

domly shifted. The NLO QCD spectrum (from the PDF ensembles) is shifted using the LO QCD313

JES/JER spectral residuals in order to approximate the effect of the JES and JER uncertainties314

in this spectrum.315

The result of the above procedure is an ensemble of sets of properly correlated spectra QCDNLO +316

CI(L) with L = 3, 5, 8, and 12 TeV, in which the JES, JER, PDF, µr and µf parameters vary317

randomly. The ansatz in Eq. (4) is then fitted to the quartet of ratios [QCDNLO + CI(L)] /318

QCDNLO as described in Section 5.1 to obtain parameter values for p1, p2, p3, and p4. Five hun-319

dred sets of these parameters are generated, constituting a discrete approximation to the prior320

p(w) ⌘ p(p1, p2, p3, p4).321

B.2 CLs calculation322

Since CLs is a criterion rather than a method, it is necessary to document exactly how a CLs
limit is calculated. Such a calculation requires two elements: a test statistic Q that depends on
the quantity of interest and its sampling distribution for two different hypotheses, here l > 0,
which we denote by Hl, and l = 0, which we denote by H0. Hl is the signal plus background
hypothesis while H0 is the background-only hypothesis. For this study, we use the statistic

Q(l) = t(D, l) ⌘ �2 ln[p(D|l)/p(D|0)], (7)

where p(D|l) is the marginal likelihood323

p(D|l) =
Z

p(D|l, w)p(w) dw, (8)

⇡ 1
M

M

Â
m=1

p(D|l, wm),
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Table 2: The observed jet count for each jet pT bin in the range 507 � 2116 GeV.

Bin pT (GeV) Jets Bin pT (GeV) Jets
1 507-548 73792 11 1032-1101 576
2 548-592 47416 12 1101-1172 384
3 592-638 29185 13 1172-1248 243
4 638-686 18187 14 1248-1327 100
5 686-737 11565 15 1327-1410 66
6 737-790 7095 16 1410-1497 34
7 790-846 4413 17 1497-1588 15
8 846-905 2862 18 1588-1684 9
9 905-967 1699 19 1684-1784 1
10 967-1032 1023 20 1784-2116 3
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Figure 5: The data compared with model spectra for different values of L for models with
destructive interference (left). The ratio of these spectra to the NLO QCD jet pT spectrum
(right).

In the search region, the inclusive jet spectrum has a range of five orders of magnitude, which106

causes the limits on L to be sensitive to the choice of the normalization factor and the size of the107

data sets. We have found that a few percent change in the normalization factor can cause limits108

to change by as much as 50%. Therefore, for the purpose of computing limits, we have chosen109

to sidestep the issue of normalization by considering only the shape of the jet pT spectrum. This110

we achieve by using a multinomial distribution, which is the probability to observe K counts,111

Nj, j = 1, · · · , K, given the observation of a total count N = ÂK
j=1 Nj. The likelihood is then112

defined by113

p(D|l, w) =
N!

N1! · · · NK!

K

’
j=1

✓
sj

s

◆Nj

, (5)

where K = 20 is the number of bins in the search region, Nj is the jet count in the jth jet pT114

bin, D ⌘ N1, · · · , NK, s = ÂK
j=1 sj and N are the total cross section and total observed count,115
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Table 2: The observed jet count for each jet pT bin in the range 507 � 2116 GeV.
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1 507-548 73792 11 1032-1101 576
2 548-592 47416 12 1101-1172 384
3 592-638 29185 13 1172-1248 243
4 638-686 18187 14 1248-1327 100
5 686-737 11565 15 1327-1410 66
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Figure 5: The data compared with model spectra for different values of L for models with
destructive interference (left). The ratio of these spectra to the NLO QCD jet pT spectrum
(right).

In the search region, the inclusive jet spectrum has a range of five orders of magnitude, which106

causes the limits on L to be sensitive to the choice of the normalization factor and the size of the107

data sets. We have found that a few percent change in the normalization factor can cause limits108

to change by as much as 50%. Therefore, for the purpose of computing limits, we have chosen109

to sidestep the issue of normalization by considering only the shape of the jet pT spectrum. This110

we achieve by using a multinomial distribution, which is the probability to observe K counts,111

Nj, j = 1, · · · , K, given the observation of a total count N = ÂK
j=1 Nj. The likelihood is then112

defined by113

p(D|l, w) =
N!

N1! · · · NK!

K

’
j=1

✓
sj

s

◆Nj

, (5)

where K = 20 is the number of bins in the search region, Nj is the jet count in the jth jet pT114

bin, D ⌘ N1, · · · , NK, s = ÂK
j=1 sj and N are the total cross section and total observed count,115
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Table 2: The observed jet count for each jet pT bin in the range 507 � 2116 GeV.
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2 548-592 47416 12 1101-1172 384
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Figure 5: The data compared with model spectra for different values of L for models with
destructive interference (left). The ratio of these spectra to the NLO QCD jet pT spectrum
(right).

In the search region, the inclusive jet spectrum has a range of five orders of magnitude, which106

causes the limits on L to be sensitive to the choice of the normalization factor and the size of the107

data sets. We have found that a few percent change in the normalization factor can cause limits108

to change by as much as 50%. Therefore, for the purpose of computing limits, we have chosen109

to sidestep the issue of normalization by considering only the shape of the jet pT spectrum. This110

we achieve by using a multinomial distribution, which is the probability to observe K counts,111

Nj, j = 1, · · · , K, given the observation of a total count N = ÂK
j=1 Nj. The likelihood is then112

defined by113

p(D|l, w) =
N!

N1! · · · NK!

K

’
j=1

✓
sj

s

◆Nj

, (5)

where K = 20 is the number of bins in the search region, Nj is the jet count in the jth jet pT114

bin, D ⌘ N1, · · · , NK, s = ÂK
j=1 sj and N are the total cross section and total observed count,115
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B.1.2 Generating the JES/JER ensembles291

In the JES/JER ensembles, the JES and JER parameters are sampled simultaneously for the five292

model spectra QCDLO, and (QCD + CI)LO with L = 3, 5, 8, and 12 TeV, yielding ensembles293

of correlated shifts from the central JES, JER, and PDF values of the QCDLO and (QCD+CI)LO294

spectra. For example, we compute the spectral residuals ds = QCD0 �QCDcentral, where QCD0
295

is the shifted jet pT spectrum and QCDcentral is the jet pT spectrum computed using the central296

values of the JES, JER, and PDF parameters. Coherent shifts of the jet energy scale are calculated297

for every jet in every simulated event. The jet pT is shifted by xd for each component of the298

jet energy scale uncertainty, of which there are sixteen, where x is a Gaussian variate of zero299

mean and unit variance, and d is a jet-dependent uncertainty for a given component. The300

contributions from all uncertainty components are summed to obtain an overall shift in the jet301

pT. From studies of dijet asymmetry and photon+jet pT balancing, the uncertainty in the jet302

energy resolution is estimated to be 10% in the pseudorapidity |h| < 0.5 [20]. We sample the303

jet energy resolution using a procedure identical to that used to sample the jet energy scale, but304

using a single Gaussian variate.305

B.1.3 Generating the JES/JER/PDF ensemble306

Another ensemble is created, from the PDF ensembles and the JES/JER ensembles, that ap-307

proximates simultaneous sampling from the JES, JER, PDF, renormalization, and factorization308

parameters. We pick at random a correlated set of six spectra from the PDF ensembles, and309

a correlated set of five spectral residuals from the JES/JER ensembles. The JES/JER spec-310

tral residuals ds are added to the corresponding shifted spectrum from the PDF ensembles,311

thereby creating a spectrum in which the JES, JER, PDF, µr, and µf parameters have been ran-312

domly shifted. The NLO QCD spectrum (from the PDF ensembles) is shifted using the LO QCD313

JES/JER spectral residuals in order to approximate the effect of the JES and JER uncertainties314

in this spectrum.315

The result of the above procedure is an ensemble of sets of properly correlated spectra QCDNLO +316

CI(L) with L = 3, 5, 8, and 12 TeV, in which the JES, JER, PDF, µr and µf parameters vary317

randomly. The ansatz in Eq. (4) is then fitted to the quartet of ratios [QCDNLO + CI(L)] /318

QCDNLO as described in Section 5.1 to obtain parameter values for p1, p2, p3, and p4. Five hun-319

dred sets of these parameters are generated, constituting a discrete approximation to the prior320

p(w) ⌘ p(p1, p2, p3, p4).321

B.2 CLs calculation322

Since CLs is a criterion rather than a method, it is necessary to document exactly how a CLs
limit is calculated. Such a calculation requires two elements: a test statistic Q that depends on
the quantity of interest and its sampling distribution for two different hypotheses, here l > 0,
which we denote by Hl, and l = 0, which we denote by H0. Hl is the signal plus background
hypothesis while H0 is the background-only hypothesis. For this study, we use the statistic

Q(l) = t(D, l) ⌘ �2 ln[p(D|l)/p(D|0)], (7)

where p(D|l) is the marginal likelihood323

p(D|l) =
Z

p(D|l, w)p(w) dw, (8)

⇡ 1
M

M

Â
m=1

p(D|l, wm),

Likelihood is marginalized discretely by creating ensemble 
of correlated background and signal spectra, in which 
parameters vary randomly

jet energy scale
jet energy resolution

PDFs
renormalization scale

factorization scale

Refit resulting distributions 500 times, 
arrive at a discrete approximation of 

marginal model

5

jet pT spectrum is divided into 20 pT bins in the search region 507  pT  2116 GeV, where the85

bin width is approximately equal to the jet resolution spT given in Eq. (3). No jets are observed86

above 2000 GeV transverse energy.87

4 Results88

In Figure 4 we compare the observed inclusive jet pT spectrum with the NLO QCD jet pT spec-89

trum, which is normalized to the total observed jet count in the search region using the normal-90

ization factor 4.007± 0.009 (stat.) fb�1 (Section 5). The normalization is the ratio of the observed91

jet count to the predicted cross section in the search region. The data and the prediction are in92

good agreement as indicated by two standard criteria, the Kolmogorov-Smirnov probability93

Pr(KS) of 0.66 and the c2 per number of degrees of freedom (NDF) of 23.5/19. Table 2 lists94

the observed jet counts. Figure 5 compares the observed jet pT spectrum in the search region95

with model spectra for different values of L, for models with destructive interference. Figure 696

compares the data with models with constructive interference.97
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Figure 4: The observed jet pT spectrum compared with the NLO QCD jet pT spectrum (left). The
bands represent the total uncertainty in the prediction and incorporate the uncertainties in the
PDFs, jet energy scale, jet energy resolution, the renormalization and factorization scales, and
the modeling of the jet pT dependence of the parameters in Eq. (4). The ratio of the observed
to the predicted spectrum (right). The error bars represent the statistical uncertainties in the
expected bin count.

5 Statistical analysis98

Since there are no significant deviations between the observed and predicted spectra, the re-99

sults are interpreted in terms of lower limits on the CI scale L using the models described in100

Section 2. The dominant sources of systematic uncertainties are associated with the JES, the101

PDFs, the JER, the renormalization (µr) and factorization (µf) scales, and the modeling param-102

eters of Eq. (4). Non-perturbative corrections are less than 1% for transverse momenta above103

⇠ 400 GeV [20], are negligible compared with other uncertainties, and are therefore not applied104

to our analysis.105
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Figure 7: The likelihood functions assuming a model with either destructive (left) or construc-
tive (right) interference. The dashed curve is the likelihood function including statistical uncer-
tainties only and the central values of all nuisance parameters. The solid curve is the likelihood
marginalized over all systematic uncertainties.

5.2 Lower limits on L143

We use the CLs criterion [31, 32] to compute upper limits on l. For completeness, we give the144

details of these calculations in Appendix B.2. Using the procedure described in the Appendix,145

we obtain 95% lower limits on L of 9.9 TeV and 14.3 TeV for models with destructive and146

constructive interference, respectively. These more stringent limits supersede those published147

by CMS based on a measurement of the dijet angular distribution [8]. The current search is148

more sensitive than the earlier dijet search as evidenced by the expected limits, which for this149

analysis are 9.5 ± 0.6 TeV and 13.6 ± 1.6 TeV, respectively, obtained using 5 fb�1 of data.150

Limits are also computed with a Bayesian method (Appendix B.3) using the marginal likeli-151

hood p(D|l) and two different priors for l: a prior flat in l and a reference prior [33–35].152

Using a flat prior, we find lower limits on L of 10.6 TeV and 14.6 TeV for models with destruc-153

tive and constructive interference, respectively. The corresponding limits using the reference154

prior are 10.1 TeV and 14.1 TeV, respectively.155

6 Summary156

The inclusive jet pT spectrum of 7 TeV proton-proton collision events in the range 507  pT 157

2116 GeV and |h| < 0.5 has been studied using a data set corresponding to an integrated158

luminosity of 5.0 fb�1. The observed jet pT spectrum is found to be in agreement with the159

jet pT spectrum predicted using perturbative QCD at NLO when the predicted spectrum is160

convolved with the CMS jet response function and normalized to the observed spectrum in the161

search region. Should additional interactions exist that can be modeled as contact interactions162

with either destructive or constructive interference, their scale L is above 9.9 TeV and 14.3 TeV,163

respectively, at 95% confidence level.164

It is noteworthy that the limits reported in this paper, which are the most sensitive limits pub-165

lished to date, have been obtained reprising the classic method to search for contact interac-166

Set 95% lower limits of 9.9 TeV 
(destructive) and 14.3 TeV (constructive) 
using ratio of marginal model and CLs

L(N |s, b) = (s+ b)

N
e

�(s+b)

N !

⇡(s, b) = ⇡s(s)⇡b(b) ⇡s(s) ⇡b(b)

Z sup

0

p(s|N)ds = 0.95

�2 log

✓
p(x|�)
p(x|0)

◆
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• CMS BSM searches use a variety of likelihoods and 
handle nuisances / compute limits in different ways

• Bayesian (Marginalize), Frequentist (Profile), Hybrid 

• Several analyses provide public likelihoods and details 
for generator-level study of your own BSM model

• Even in cases where full model are not provided, one 
can derive an approximate likelihood

• Working to provide public likelihoods in future CMS 
BSM analyses

• Razor Analysis will provide full details and code to 
implement binned likelihood in python

Summary and Outlook
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