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The lattice regularization of QCD K.G. Wilson 1974

Gluon ‘link’ variables:

Uµ(x) = eiag0Aµ(x) ∈ SU(3)

Quarks: on-site Grassmann variables,
ψ1ψ2 = −ψ2ψ1

Action: has exact gauge invariance.

Finite volume: work on L× L× L torus – periodic boundary conditions.

Euclidean path integral: finite number of compact degrees of freedom

Z =

∫
DUµDψ̄Dψ e−SG[U ]−ψ̄D[U ]ψ =

∫
DUµ detD[U ]e−SG[U ]

QCD ↔ 4d statistical mechanics system ⇒ importance sampling Monte-Carlo

Continuum limit: g2
0 ∼ 1/ log(1/a) (asymptotic freedom)



Correlation functions and parameters of lattice QCD

〈
jµ(x)jν(0)

〉
x0>0

=
〈

vac
∣∣∣jµ(0)e−Hx0+i ~P ·~xjν(0)

∣∣∣vac
〉

=
〈
−Tr{S(x, 0)γνS(0, x)γµ}+ Tr{S(x, x)}Tr{S(0, 0)}

〉
SU(3) gauge field

Connected Disconnected diagram

I bare parameters: mu = md, ms and g0

I fix their values by computing amπ, amK and (typically)
calibrate the lattice spacing via a = (amΩ)/mPDG

Ω .

I electromagnetic effects are usually included as a correction:
1st order expansion around isosymmetric QCD
[de Divitiis et al 1303.4896 (PRD)].



Current frontier topics in lattice QCD
(a selection inspired by recent Lattice conferences)

New ideas for handling
the Euclidean path integral:

I simulations in very large volumes

I machine-learning techniques

Hadronic contributions
to precision observables:

I (g − 2)µ

I running of the Standard Model
gauge couplings

I CKM matrix elements, weak
decays

Real-time physics & inverse problems:

I hadronic scattering amplitudes

I nucleon structure from
large-momentum frames
(PDFs, GPDs, . . . )

I quark-gluon plasma
& physics of the Early Universe

Signal-to-noise and sign problem:

I locality and multi-level algorithms

I the sign problem for non-zero
baryon density

I quantum computing



(g − 2)µ: a history of testing the Standard Model

HVP

HLbL
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Figure inspired by [Jegerlehner 1705.00263].



Impact of hadronic vacuum polarisation in aµ = 1
2(g − 2)µ

Grey band = direct measurement of aµ

Precise results for ahvp
µ by two lattice collaborations lead to

a Standard Model prediction in agreement with the experimental world average.

Djukanovic, von Hippel, Kuberski, HM, Miller, Ottnad, Parrino, Risch, Wittig 2411.07969.



Challenges posed by photons in lattice QCD (1)

I Elastic scattering e− hadron(~p)→ e−hadron(~p ′): to O(α),
can be handled by computing form factors at spacelike kinematics.

I Annihilation process e+e− → γ∗ → π+π−: at low energies
√
s . 0.8 GeV,

form factor at timelike kinematics is accessible via finite-volume techniques
(Lüscher, Lüscher-Lellouch) [HM 1105.1892 (PRL)].

At higher energies, one faces an inverse (Laplace) problem.



Challenges posed by photons in lattice QCD (2)

I π0/η/η′ → γγ(∗): handling lightlike kinematics is possible
[Jung, Ji hep-lat/0101014 (PRL)], but numerically challenging:

−
∫
d4x eω1x0−i~q1·~x 〈0|T{Vi(x)Vj(0)}|π(~p)〉 = εijαβq

α
1 q

β
2 Fπ0γ∗γ∗(q

2
1 , q

2
2)

The x0 → +∞ regime must be controlled extremely well.

I Photon emissivity of the quark-gluon plasma: energy moments of the
photon spectrum can be computed without involving an inverse problem
[HM 1807.00781 (EPJA)]. With ωn = 2πTn, n ∈ Z:∫ β

0

dx0

∫
d3x (eiωnx0 − eiωnx2) eωnx3

〈
V1(x)V1(0)

〉
=
ω2
n

π

∫ ∞
0

dω

ω

σ(ω)

ω2 + ω2
n

,

dΓ(ω)

dω
=
α

π

2ω σ(ω)

eω/T − 1
.



Dynamical photons

Two methodological ideas for handling ‘dynamical’ photons in lattice QCD:

I. use coordinate-space methods

? motivation: keep the observable local, not spread over the entire volume

II. where needed, use a Pauli-Villars-type UV cutoff Λ� a−1

on the photon virtuality.

? motivation: simplifies renormalisation, more continuum-like.



I.1 Coordinate-space approach to aHLbL
µ

QED kernel L̄[ρ,σ];µνλ(x, y)

⇒

aHLbL
µ =

me6

3

∫
d4y︸ ︷︷ ︸

=2π2|y|3d|y|

[ ∫
d4x L̄[ρ,σ];µνλ(x, y)︸ ︷︷ ︸

QED

iΠ̂ρ;µνλσ(x, y)︸ ︷︷ ︸
=QCD blob

]
.

iΠ̂ρ;µνλσ(x, y) = −
∫
d4z zρ

〈
jµ(x) jν(y) jσ(z) jλ(0)

〉
.

I L̄[ρ,σ];µνλ(x, y) computed in the continuum & infinite-volume

[Asmussen, Gérardin, Green, HM, Nyffeler 1510.08384; 2210.12263 (JHEP).]



I.1 Status of aHLbL
µ
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 ]

Chao, HM et al. ’21
(charm from Chao et al. ’22)

Blum et al. ’23

Blum et al. ’20

Data-driven, White Paper ’20

Gerardin et al. ’24

I The three most recent lattice calculations use coordinate-space methods in
slightly different variations.

I Given these results, aHLbL
µ is likely to move up by (2÷ 3)× 10−10

in the (g − 2)µ White Paper ’25.



I.2 Pion mass splitting

PDG : mπ± −mπ0 = 4.5936(5) MeV.

To order (α,mu −md), the pion mass splitting is a purely electromagnetic
effect. In lattice QCD, two quark-level diagrams contribute:

Lattice QCD result obtained with infinite volume, continuum photon
propagator:

mπ± −mπ0 = 4.534(42)stat(43)syst MeV.

NB. the intermediate state γ∗π is given special treatment to avoid enhanced
power-law finite-volume effects.

Feng, Jin, Riberdy 2108.05311 (PRL). See also Frezzotti et al 2202.11970 (PRD).



I.3 Hadronic vacuum polarization in (g − 2)µ HM 1706.01139 (EPJC)

⇒

QED kernel Hµν(x) ahvp
µ

ahvp
µ =

∫
d4x Hµν(x)

〈
jµ(x)jν(0)

〉
QCD

,

jµ =
2

3
ūγµu−

1

3
d̄γµd−

1

3
s̄γµs+. . . ; Hµν(x) = −δµνH1(|x|)+xµxν

x2
H2(|x|)

Weight functions Hi are linear combinations of Meijer’s functions.

Kernel Hµν(x) also applicable
to the e.m. corrections to HVP



I.3 Electromagnetic corrections to HVP, ahvp1γ∗
µ

Quark-level Wick-contraction diagrams:

I Current precision target: about 10%.

I Aspect II.: Here the internal photon leads to a renormalisation of the
QCD parameters {mu,md,ms,mc, g0} . . . but some diagrams are finite.

Fig. by J. Parrino from 2411.07969.



Calculation of one of the largest diagrams in ahvp1γ∗
µ

One-photon irreducible diagram:

perturbatively, at least two gluons

must be exchanged between the

two quark loops
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Chiral extrapolation

I Chiral perturbation theory helps control the noisy tail of the correlator.

I This calculation entered the result of our recent preprint 2411.07969.

J. Parrino, HM et al, Lattice’24 and in preparation.



II. Renormalization of QCD parameters due to photons

Focus here on computing to a few permille the (subtracted) vacuum
polarisation Π(q2) = Π(q2)−Π(0).

I Define isoQCD by specific values of (mπ,mK ,mΩ) that differ at most by
O(α,mu −md) from their experimental counterparts.

I Now turn on the coupling of quarks to photons. Work to first order in
(α,mu −md).

I The change Π1γ∗(q
2) = Πfull(q

2)−ΠisoQCD(q2) is an
unambiguous prediction of QCD with electrically charged quarks.

Is there an explicit recipe in the continuum to predict Π1γ∗(q
2)?



Electromag. correction to hadronic vacuum polarization: general idea

= Π4pt(q
2,Λ)

I the leading correction to HVP is expressible in terms of the
forward HLbL amplitude, which by itself is a finite, physical amplitude

I regulating the propagator of the internal photon, e.g. (1/k2−1/(k2 + Λ2))
is sufficient to make the bare e.m. correction to HVP finite

I after adding the contribution of the quark-mass δmf and gauge-coupling
δg counterterms to the HVP, the Λ→∞ limit can be taken.

Π
1γ∗

(q2) = lim
Λ→∞

{
Π4pt(q

2,Λ)+
(
δg(Λ)

∂

∂g
+
∑
fδmf (Λ)

∂

∂mf

)
ΠisoQCD(q2)

}
.



Electromagnetic correction to HVP from forward HLbL amplitude

Master formula:

Π4pt(Q
2,Λ) =

1

6Q4(2π)3

∞∫
0

dK2

[
1

K2

]
Λ︸ ︷︷ ︸

1
K2−

1
K2+Λ2

K2Q2∫
0

dν2

(
K2Q2

ν2
− 1

)1/2

M(ν, K2, Q2)

. . . the relevant forward hadronic light-by-light amplitude being

M(ν, K2, Q2) = gµ1µ3gµ2µ4M
µ1µ2µ3µ4(k, q) = 4MTT−2MLT−2MTL+MLL.

NB. M admits a once-subtracted dispersion relation in the variable ν = k · q,
in terms of γ∗γ∗ → hadrons fusion cross-sections.

Biloshytskyi, HM et al 2209.02149 (JHEP)



Determining the counterterms induced by the photons

Determine the isoscalar counterterms from three conditions such as

Mphys
N −M isoQCD

N

!
= M self

N (Λ) + 1
6
δ(mu +md − 2ms)(Λ)〈N |ūu+ d̄d− 2s̄s|N〉

+ 1
3
δ(mu +md +ms)(Λ)〈N |ūu+ d̄d+ s̄s|N〉+ δg−2(Λ) 〈N | 1

2
Tr{GµνGµν}|N〉

for the average nucleon mass, and (mu −md)(Λ) from the mass splitting.

Forward Compton amplitude
on hadron H
Ti(ν = q · p/m, q2), i = 1, 2:

M self
H (Λ) =

e2

2MH

∫
d4Q

(2π)4

[
1

Q2

]
Λ

(
3Q2T1(iQ0,−Q2) + (2Q2

0 +Q2)T2(iQ0,−Q2)
)

. . . followed by a dispersive representation of the Ti
via the hadron’s structure functions Fi(x = Q2/(2MHν), Q2).

Cottingham, Ann.Phy. 25, 424 (1963); [. . . ]; Gasser, Leutwyler, Rusetsky PLB 814 (2021) 136087.



Lattice calculations reproduce two-loop QED vacuum polarization
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+ 2×

m`oop = mµ

Λ = 3mµ

D. Erb et al LAT’24

a2loop vp
µ = −e

2

2
δµν

∫
x,y,z

Hλσ(z)[G0]Λ(y − x)
〈
V em
σ (z)V em

ν (y)V em
µ (x)V em

λ (0)
〉
,

[G0]Λ(x) = G0(x)− 2GΛ√
2

(x) +GΛ(x), Gm(x) ≡
∫

d4q

(2π)4

eiq·x

q2 +m2
.

The ‘continuum prediction’ was obtained with the help of dispersive techniques.



Idem, in QCD

Last integrand:
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Summary

Photon-hadron interactions are essential in many processes, in
particular for precision physics.

I Photons present particular challenges for lattice QCD:

I Position-space methods help handle the long-distance effects.

I I have argued in favour of taking the continuum limit
at fixed cutoff Λ on the photon virtuality.



Epilogue: where will lattice QCD stand in 10 years time?

I precision frontier: permille level uncertainties on a range of quantities
with impact on phenomenology, including e.m. corrections

I very much larger volumes, together with coordinate-space methods

I method to significantly reduce critical slowing down (via machine-learning
techniques?); reach very small lattice spacings; see non-polynomial
dependence of observables on the lattice spacing.

I signal-to-noise problems, in particular for nucleon observables: modified
importance sampling technique? advanced spectroscopy methods?

I ‘real-time’ problems: mature calculations based on Lüscher’s formalism;
quantum computing applications?



The subset of UV-finite diagrams

Operator-product expansion and power-counting ⇒
about half of the diagrams are UV-finite diagrams.

 For these, the internal photon propagator does not need to be regulated.



Dominant uncertainties in SM prediction for (g − 2)µ

Hadronic vacuum polarisation

HVP: O(α2), about 700 · 10−10

⇒ desirable accuracy: 0.2%

Hadronic light-by-light scattering

HLbL: O(α3), about 10 · 10−10

⇒ desirable accuracy: 10%.

How large are the (overall O(α3)) QED
corrections to the HVP contribution?



Analogy: hadronic vacuum polarization in x-space HM 1706.01139

⇒

QED kernel Hµν(x) ahvp
µ

ahvp
µ =

∫
d4x Hµν(x)

〈
jµ(x)jν(0)

〉
QCD

,

jµ =
2

3
ūγµu−

1

3
d̄γµd−

1

3
s̄γµs+. . . ; Hµν(x) = −δµνH1(|x|)+xµxν

x2
H2(|x|)

Kernel known in terms of Meijer’s functions: Hi(|x|) = 8α2

3m2
µ
fi(mµ|x|) with

f2(z) =

G2,2
2,4

(
z2|

7
2 , 4

4, 5, 1, 1

)
−G2,2

2,4

(
z2|

7
2 , 4

4, 5, 0, 2

)
8
√
πz4

,

f1(z) = f2(z)−
3

16
√
π
·
[
G

2,3
3,5

(
z

2| 1, 3
2 , 2

2, 3,−2, 0, 0

)
−G2,3

3,5

(
z

2| 1, 3
2 , 2

2, 3,−1,−1, 0

)]
.



Lattice implementation aspects

The split-up of the internal photon propagator

1

k2
=

1

k2 + Λ2
+
( 1

k2
− 1

k2 + Λ2

)
can be useful to separate the issue of the UV divergence from the IR effects.

The first term can be implemented by placing the photon on the lattice
(‘standard method’, but with a photon mass Λ ∼ 400 MeV).

The second term can be implemented with coordinate-space methods,
similar to aHLbL

µ ,

Π4pt(Q
2,Λ) = −e

4

2
δµν

∫
x,y,z

Hλσ(z)(G0−GΛ)(y−x)
〈
V em
σ (z)V em

ν (y)V em
µ (x)V em

λ (0)
〉
,

with Hλσ(z) known analytically [1706.01139] and GΛ(x) ≡
∫

d4p
(2π)4

eip·x

p2+Λ2 .

I Natural formulation on large lattices

I Avoids power-law finite-size effects.

2209.02149.



II. Computing isospin-breaking mass splittings

Determine the (mu −md) value that leads to the correct kaon mass splitting:

Mphys

K+ −Mphys

K0

!
= (M self

K+−M self
K0 )(Λ)+(mu−md)(Λ) 〈K+|ūu−d̄d|K+〉 (?)

Then, predict the proton-neutron mass difference: (similar for D, B, Σ, Ξ mass splittings)

Mphys
p −Mphys

n = lim
Λ→∞

{
(M self

p −M self
n )(Λ) + (mu −md)(Λ) 〈p|ūu− d̄d|p〉

}
Eliminate (mu −md) using (?):

Mphys
p −Mphys

n = lim
Λ→∞

{
(M self

p −M self
n )(Λ)−RNK · (M self

K+ −M self
K0 )(Λ)

}
+ RNK ·

(
Mphys

K+ −Mphys

K0

)
,

RNK ≡ 〈p|ūu− d̄d|p〉
〈K+|ūu− d̄d|K+〉

= 0.45(4).

Possible use: compute the quantities in blue in lattice QCD 
constraint on the nucleon structure functions (use same regulator Λ !).



2-loop vacuum polarisation in QED Π(q2) ≡ Π(q2)−Π(0)

The ‘unperturbed’ theory consists of free Dirac fermions of mass mu.

It produces VP Π
(1)

(q2,mu). At the next order:

Π4pt(q
2,Λ) = + 2×

Π
(2)

(q2,m) = lim
Λ→∞

{
Π4pt(q

2,Λ,mu) + δm0(Λ)
∂

∂mu
Π

(1)
(q2,mu)

}
,

On shell mass m = mu +mself(Λ) + δm0(Λ).

On-shell renormalization scheme: keep m constant, mu = m:

δmon shell
0 (Λ) = −mself(Λ) = −3m

α

2π

[
1

4
+ log

Λ

m
+ O(Λ−2)

]
.

Different scheme X: allow the on-shell mass to change by a finite amount ∆m
upon switching on the radiative correction, mu = m−∆m:

δmX
0 (Λ) = δmon shell

0 (Λ) + ∆m.



A test in QED: two-loop VP from one-loop forward LbL amplitude

M(ν,K
2
, Q

2
) = 16α

2
(

6 −
{ 2 log

[
1
2
Q

(√
Q2 + 4 + Q

)
+ 1

]
√
Q2 + 4

×
(
− 4ν

2
Q

2
[(
K

2 − 2
) (
K

2
+ 1

)
Q

4
+
(
K

2
+ 2

) (
7K

2 − 2
)
Q

2
+ 6K

4
+ 52K

2
+ 16

]
+K

2
Q

4
(
K

2
+ Q

2
+ 4

)2 [
K

2
(
Q

2
+ 4

)
− 2Q

2
+ 4

]
+ 96ν

4
)/(

K
4
Q

5
(
K

2
+ Q

2
+ 4

)2
+16ν

4
Q − 4K

2
ν
2
Q

3
[
K

2
(
Q

2
+ 2

)
+ 2

(
Q

2
+ 4

)] )
+
{
K ↔ Q

}}

+

{ 2
√

1 + 4
K2+2ν+Q2 log

[
1
2

(√(
K2 + 2ν + Q2

) (
K2 + 2ν + Q2 + 4

)
+K2 + 2ν + Q2 + 2

)]
K2Q2

(
K2 + Q2 + 2ν + 4

)
− 4ν2

×
(
K

2
Q

2
(K

2
+ Q

2
+ 2ν) − 2(K

2
+ Q

2
)(ν − 1) − (K

4
+ Q

4
) − 2ν(ν + 2)

)

+
(K2 + Q2)2 + 2ν(K2 + Q2) + 2ν(ν − 2) − 4

ν
C0

(
−K2

,−Q2
,−K2 − 2ν − Q2

; 1, 1, 1
)

+
{
ν → −ν

}})
, (lepton mass set to unity)

where C0(p2
1, p

2
2, (p1 + p2)2;m2

1,m
2
2,m

2
3) is the scalar one-loop integral [hep-ph/9807565].

Inserting this expression into the master formula gives the same result for Π
(2)

(Q2) as

Π(Q2) = −
Q2

π

∫ ∞
4m2

`

dt

t(t+Q2)
ImΠ(t)

using the 1955 Källen-Sabry next-to-leading-order spectral function 1
π

ImΠ(t).


