Discussion

Question often asked: Is "QGP" formed in small systems?

Before answering this question, how do we define the "QGP" here?

• Collectivity: experimentally, continuous to low N_{ch} (not only for v_n but also radial flow, HBT etc.) and clear evidence of connection to initial geometry.

Theoretically, it is **opacity** instead of **size** that matters

Does "QGP" mean a valid description by hydro?

Is there a line between QGP and no QGP?

Isn't the physics essentially the same all the way down to very low opacity?

Hydro. works quite well, except for (small?) off-equilibrium corrections.?

- Equilibration/thermalization: is it a requirement to define a QGP? What is the evidence (even in AA)?
- <u>Deconfinement:</u> NCQ scaling? Hadronic alone models are insufficient
- <u>Jet quenching:</u> no positive evidence observed yet but isn't it expected due to much smaller opacity for hard probes?

What is qualitatively "new" physics in QGP? - Partonic rescatterings

Wei Li, Rice (wl33@rice.edu)

Effective kinetic theory description

Event-by-event initial conditions from TrENTo model for OO, AuAu, PbPb as in Trajectum Nijs, vdSchee, PRC 106, 054905 (2022)

- OO configurations from QMC with N2LO chiral EFT interactions

Lim, Carlson, Loizides, Lonardoni, Lynn, Nagle, Orjuela Koop, Ouellete PRC 99, 044904 (2019)

Will consider cumulants of energy e_p flow to quantify anisotropic flow

$$\epsilon_p = \frac{\int d^2x_{\perp} T^{xx} - T^{yy} + 2iT^{xy}}{\int d^2x_{\perp} T^{xx} + T^{yy}} \qquad c_2 = \langle \epsilon_p \epsilon_p^* \rangle \qquad \dots$$

which can be directly computed in Kinetic Theory and Hydrodynamics without ambiguities due to freeze-out procedure

Energy correlators in e^+e^-

Data - MC

CMS pp 13 TeV, v_s^{sub}{2}

CMS pp 7 TeV, v₂^{sub}{2}

CMS pp 5 TeV, v^{§ub}{2}

p_T (GeV)

-0.5

Hannah Bossi, Yi Chen, Janice Chen, Yen-Jie Lee

- Archived MC (PYTHIA 6)
- May be interesting to study EEC in different multiplicity intervals to investigate long-range near side excess seen in high multiplicity e^+e^- not seen in Archived MC. [arXiv: 2312.05084]

Energy correlators in e^+e^-

- Large differences seen between MC generators (similar hierarchy to pp case)
 - SHERPA > HERWIG > PYTHIA
- Archived MC (PYTHIA 6) agrees well with data.
- E3C/E2C behavior similar between models

Hannah Bossi, Yi Chen, Janice Chen, Yen-Jie Lee

Non-flow baselines and Parton Cascades

Robin Törnkvist

"Negative" v₂ in small systems:

