
Introduction to Tensor Networks

Ema Puljak

Introduction to Tensor Networks 2

TENSOR NETWORKS

|0> X

|0>

0 1

0
1

0
1

1 0

|1>
|0>

| > = |1> |0>efficiently represent quantum states

H

H

Z

T

x

Y

|0>
|1>

|2>
|3>

|4>

C1

H

Z

x|0>
|1>

|2>

c

H simulate quantum circuits

machine learning applications

solve high-dimensional linear systems

Introduction to Tensor Networks 3

i ij ij

k

i i

j

i
j

k

Vector

Vi

Introduction to Tensor Networks 4

i ij ij

k

i i

j

i
j

k

Vector Matrix

MijVi

Introduction to Tensor Networks 5

i ij ij

k

i i

j

i
j

k

Vector Matrix 3-order tensor

MijVi Tijk

Transposition

i j
= ij

T = ij jiA Ai j
= ij

Introduction to Tensor Networks 7

Contraction
i

V - V =A BA B C ∑
i

AiBi

Introduction to Tensor Networks 8

Contraction
i

ij

V - V

M - V

=

=

A BA B C ∑
i

AiBi

CA BA B ij ij
∑

i

AjiBi

Introduction to Tensor Networks 9

Contraction
i

ij

ij j21

V - V

M - V

M - M

=

=

=

A BA B C ∑
i

AiBi

CA B

A B

A B

A B

jj
∑

i

AjiBi

C ij ijij j21 ij j21

∑
i

Aj1iBij2

Introduction to Tensor Networks 10

Contraction
i

ij

ij j21

V - V

M - V

M - M

=

=

=

A BA B C ∑
i

AiBi

CA B

A B

A B

A B

ij ij
∑

i

AjiBi

C ij ijij j21 ij j21

∑
i

Aj1iBij2

Introduction to Tensor Networks 11

Trace

ii
tr(A) = ∑

i

Aii

Introduction to Tensor Networks 12

Contraction complexity
iD D D1 2 3𝒪(D1)

Introduction to Tensor Networks 13

Contraction complexity
i

ij

D D D1 2 3

D D D1 2 3D D D1 2 3

𝒪(D1)

Introduction to Tensor Networks 14

Contraction complexity
i

ij

D D D1 2 3

D D D1 2 3D D D1 2 3

𝒪(D1)

Introduction to Tensor Networks 15

Contraction complexity
i

ij

D D D1 2 3

D D D1 2 3D D D1 2 3

𝒪(D1)

𝒪(D1D2)

Introduction to Tensor Networks 16

Contraction complexity
i

ij

ij j21

D D D1 2 3

D D D1 2 3D D D1 2 3

D D D1 2 3 D D D1 2 3D D D1 2 3

𝒪(D1)

𝒪(D1D2)

Introduction to Tensor Networks 17

Contraction complexity
i

ij

ij j21

D D D1 2 3

D D D1 2 3D D D1 2 3

D D D1 2 3 D D D1 2 3D D D1 2 3

𝒪(D1)

𝒪(D1D2)

Introduction to Tensor Networks 18

Contraction complexity
i

ij

ij j21

D D D1 2 3

D D D1 2 3D D D1 2 3

D D D1 2 3 D D D1 2 3D D D1 2 3

𝒪(D1)

𝒪(D1D2)

𝒪(D1D2D3)

Eigendecomposition

=A V V-1E

Eigendecomposition

Singular Value Decomposition

=A V V-1E

=A SU V

l l

Tensor Networks

...
Tree 1D 2D

Quantum state

....

ψ

N-rank tensor of dimension dN

d

Quantum state

....

ψ

N-rank tensor of dimension dN

d

|ψ⟩ =
d−1

∑
{i1,i2...iN}=0

Ci1,i2...iN | i1, i2 . . . iN⟩

|0> X

|0>

0 1

0
1

0
1

1 0

|1>
|0>

| > = |1> |0>

|0> X

|0>

0 1

0
1

0
1

1 0

|1>
|0>

| > = |1> |0>

|0> X

|0>

0 1

0
1

0
1

1 0

|1>
|0>

| > = |1> |0>

|0> X

|0>

0 1

0
1

0
1

1 0

|1>
|0>

| > = |1> |0>

|0> X

|0>

0 1

0
1

0
1

1 0

|1>
|0>

| > = |1> |0>

|0> X

|0>

0 1

0
1

0
1

1 0

|1>
|0>

| > = |1> |0>

|0> X

|0>

0 1

0
1

0
1

1 0

|1>
|0>

| > = |1> |0>|1> |0>

d=2

0
10

1

|0> X

|0>

0 1

0
1

0
1

1 0

|1>
|0>

| > = |1> |0>|1> |0>

d=2

0
10

1

|1> |0>

d=2

0
10

1

|1> |0>

d=2

0
10

1

|1> |0>

d=2

0
10

1

|1> |0>

d=2

0
10

1

|1> |0>
A B

|1> |0>

d=2

0
10

1

|1> |0>

d=2

0
10

1

|1> |0>
A B

|0> X

|0>

0 1

0
1

0
1

1 0

|1>
|0>

| > = |1> |0>

|0> X

|0>

0 1

0
1

0
1

1 0

|1>
|0>

| > = |1> |0>

|1> |0>
A B

Product State

𝒪(Nd)
Number of parameters

|1> |0>
A B

Product State

N=2
d=2

𝒪(Nd)
Number of parameters

|1> |0>
A B

𝒪(Nd)

|1> |0>

d=2

0
10

1

|1> |0>

d=2

0
10

1

Product State

N=2
d=2

N=2
d=2 Number of parameters

|1> |0>
A B

Number of parameters

|1> |0>

d=2

0
10

1

|1> |0>

d=2

0
10

1

Product State

N=2
d=2

N=2
d=2

4

Product State

...
d d d d d d

Product State

...
d d d d d d

physical dimension

Product State

|ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩ ⊗ . . . ⊗ |ψN⟩

...
d d d d d d

Product State

|ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩ ⊗ . . . ⊗ |ψN⟩

...
d d d d d d

Product State

|ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩ ⊗ . . . ⊗ |ψN⟩

...
d d d d d d
|0> X

|0>

0 1

0
1

0
1

1 0

|1>
|0>

| > = |1> |0>

|0> X

|0>

0 1

0
1

0
1

1 0

|1>
|0>

| > = |1> |0>

Product State

|ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩ ⊗ . . . ⊗ |ψN⟩

...
d d d d d d
|0> X

|0>

0 1

0
1

0
1

1 0

|1>
|0>

| > = |1> |0>

|0> X

|0>

0 1

0
1

0
1

1 0

|1>
|0>

| > = |1> |0>0
1 0

10 + 1xx

|0> X

|0>

0 1

0
1

0
1

1 0

|1>
|0>

| > = |1> |0>

Product State

|ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩ ⊗ . . . ⊗ |ψN⟩

...
d d d d d d
|0> X

|0>

0 1

0
1

0
1

1 0

|1>
|0>

| > = |1> |0>

|0> X

|0>

0 1

0
1

0
1

1 0

|1>
|0>

| > = |1> |0>0
1 0

10 + 1xx

|0> X

|0>

0 1

0
1

0
1

1 0

|1>
|0>

| > = |1> |0>

Product State

|ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩ ⊗ . . . ⊗ |ψN⟩

...
d d d d d d
|0> X

|0>

0 1

0
1

0
1

1 0

|1>
|0>

| > = |1> |0>

|0> X

|0>

0 1

0
1

0
1

1 0

|1>
|0>

| > = |1> |0>0
1 0

10 + 1xx

|0> X

|0>

0 1

0
1

0
1

1 0

|1>
|0>

| > = |1> |0>
0
1 0

10+1 xx

Product State

|ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩ ⊗ . . . ⊗ |ψN⟩

...
d d d d d d
|0> X

|0>

0 1

0
1

0
1

1 0

|1>
|0>

| > = |1> |0>

|0> X

|0>

0 1

0
1

0
1

1 0

|1>
|0>

| > = |1> |0>0
1 0

10 + 1xx

|0> X

|0>

0 1

0
1

0
1

1 0

|1>
|0>

| > = |1> |0>
0
1 0

10+1 xx

Product State

|ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩ ⊗ . . . ⊗ |ψN⟩

=
d−1

∑
{i1,i2...in}=0

ci1
1 ci2

2 . . . ciN
N | i1, i2 . . . iN⟩

product of scalars

...
d d d d d d

Product State

|ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩ ⊗ . . . ⊗ |ψN⟩

=
d−1

∑
{i1,i2...in}=0

ci1
1 ci2

2 . . . ciN
N | i1, i2 . . . iN⟩

2=

...
d d d d d d

|0>
|0>

H CNOTsuperposition

|0>
|0>

H CNOT

entanglement

|0>
|0>

H CNOT

| > = |11>|00>1
2 +Bell state

|0>
|0>

H|0>
|0>

H

1
1 -1

11
2

0
1

0
1

|0>
|0>

H

1
1 -1

11
2

0
1

0
1

0
0
0

0
0

0
0
0

0
0

1
1

1
1

0

0

|0>
|0>

H 1
1
2

1

0
0

1
1
2

1

0
0

1
1
2

1

0
0

11
2 1

0
0

reshape

coefficient matrix

1
1
2

1

0
0

11
2 1

0
0

|00>
|01>
|10>
| >1 1

1 x
0 x

reshape

coefficient matrix

1
1
2

1

0
0

11
2 1

0
0

|00>
|01>
|10>
| >1 1

1 x
0 x

|00>
|01>
|10>
| >1 1

1 x
0 x

reshape

coefficient matrix

1 x
0 x1

1
2

1

0
0

11
2 1

0
0

|00>
|01>
|10>
| >1 1

1 x
0 x

|00>
|01>
|10>
| >1 1

1 x
0 x

|00>
|01>
|10>
| >1 1

reshape

coefficient matrix

1 x
0 x

1 x
0 x1

1
2

1

0
0

11
2 1

0
0

|00>
|01>
|10>
| >1 1

1 x
0 x

|00>
|01>
|10>
| >1 1

|00>
|01>
|10>
| >1 1

|00>
|01>
|10>
| >1 11 x

0 x

reshape

coefficient matrix

1 x
0 x

1 x
0 x1

1
2

1

0
0

11
2 1

0
0

|00>
|01>
|10>
| >1 1

1 x
0 x

|00>
|01>
|10>
| >1 1

|00>
|01>
|10>
| >1 1

|00>
|01>
|10>
| >1 1

reshape

coefficient matrix

basis states

1 x
0 x

1
1
2

1

0
0

11
2 1

0
0 | > = |11>|00>1

2 +

coefficient matrix Bell state

11
2 1

0
0

SVD

=A SU V

l l

11
2 1

0
0

11
2 1

0
0

11
2 1

0
01 x

0 x
1 x
0 x

11
2 1

0
0

SVD

=A SU V

l l

11
2 1

0
0

11
2 1

0
0

11
2 1

0
01 x

0 x
1 x
0 x

11
2 1

0
0

SVD 11
2 1

0
0

11
2 1

0
0

11
2 1

0
01 x

0 x
1 x
0 x

singular values

=A SU V

l l

11
2 1

0
0

SVD 11
2 1

0
0

11
2 1

0
0

11
2 1

0
01 x

0 x
1 x
0 x

singular values

= 1
2i

11
2 1

0
0

SVD 11
2 1

0
0

11
2 1

0
0

11
2 1

0
01 x

0 x
1 x
0 x

singular values

= 1
2i D=2

max entanglement

11
2 1

0
0

SVD 11
2 1

0
0

11
2 1

0
0

11
2 1

0
01 x

0 x
1 x
0 x

singular values

= 1
2i D=2

max entanglement

log = D
2
dHilbert space dimension

11
2 1

0
0

SVD 11
2 1

0
0

11
2 1

0
0

11
2 1

0
01 x

0 x
1 x
0 x

singular values

= 1
2i D=2

max entanglement

log = D
2
dHilbert space dimension

BOND DIMENSION

11
2 1

0
0

11
2 1

0
0

11
2 1

0
01 x

0 x
1 x
0 x

A BD=2

d=2 d=2

Matrix Product State

A BD=2

d=2 d=2

Matrix Product State

Number of parameters

𝒪(NdD2)

A BD=2

d=2 d=2

Matrix Product State

Number of parameters

𝒪(NdD2)

N=2
d=2

A BD=2

d=2 d=2

Matrix Product State

Number of parameters

N=2
d=2

16

|ψ⟩ =
d−1

∑
{i1,i2...iN}=0

Ci1,i2...iN | i1, i2 . . . iN⟩

Matrix Product State

...
d d d d d d

D D D D D D

|ψ⟩ =
d−1

∑
{i1,i2...iN}=0

Ci1,i2...iN | i1, i2 . . . iN⟩

Matrix Product State

...
d d d d d d

D D D D D D

physical dimension

|ψ⟩ =
d−1

∑
{i1,i2...iN}=0

Ci1,i2...iN | i1, i2 . . . iN⟩

Matrix Product State

...
d d d d d d

D D D D D D

physical dimension

bond dimension

|ψ⟩ =
d−1

∑
{i1,i2...iN}=0

Ci1,i2...iN | i1, i2 . . . iN⟩

Matrix Product State

product of matrices

...
d d d d d d

D D D D D D

Matrix Product State

....

ψ

N-rank tensor

params = dN

Matrix Product State

....

ψ

N-rank tensor

SVD

params = dN

Matrix Product State

....

ψ

N-rank tensor

...
d d d d d d

D D D D D D
SVD

params = dN

Matrix Product State

....

ψ

N-rank tensor

...
d d d d d d

D D D D D D
SVD

params = # params = dN NdD2

Matrix Product State

....

ψ

N-rank tensor

...
d d d d d d

D D D D D D
SVD

params = # params = dN >> NdD2

Singular Value Decomposition
...

d dN-1

d x d N-1

Singular Value Decomposition
...

d dN-1

d x d N-1

Singular Value Decomposition
...

d dN-1

...

d dN-2

A1 S1V1
ll

d

d x d N-1

S1V1
llA1

D > dl1

Singular Value Decomposition
...

d dN-1

...

d dN-2

A1 S1V1
ll

d

d x d N-1

S1V1
llA1d x D 1 D > dl1

D < dl2

2
D < dl1

D < dl

N/2

Singular Value Decomposition
...

d dN-1

...

d dN-2

A1 S1V1
ll

d

d x d N-1

S1V1
llA1d x D 1 D x d1

N-1 D > dl1

D < dl2

2
D < dl1

D < dl

N/2

Singular Value Decomposition
...

d dN-1

...

d dN-2

A1 S1V1
ll

d

d x d N-1

S1V1
llA1d x D 1 D x d1

N-1 D > dl1

D < dl2

2
D < dl1

D < dl

N/2

Singular Value Decomposition
...

d dN-1

...

d dN-2

A1 S1V1
ll

d

d x d N-1

S1V1
llA1d x D 1 D x d1

N-1 D > dl1

D x d1
N-2d D < dl2

2
D < dl1

D < dl

N/2

Singular Value Decomposition
...

d dN-1

...

d dN-2

A1 S1V1
ll

d

d x d N-1

S1V1
llA1d x D 1 D x d1

N-1 D > dl1

D x d1
N-2d D < dl2

2
D < dl1

D < dl

N/2

Singular Value Decomposition
...

d dN-1

...

d dN-2

A1 S1V1
ll

d

...

d dN-3

A1 S2V2
llA2

dd

d x d N-1

S1V1
llA1d x D 1 D x d1

N-1 D > dl1

D x d1
N-2d

D > dl2
2

D < dl2

2
D < dl1

D < dl

N/2

Singular Value Decomposition
...

d dN-1

...

d dN-2

A1 S1V1
ll

d

...

d dN-3

A1 S2V2
llA2

dd

d x d N-1

S1V1
llA1d x D 1 D x d1

N-1 D > dl1

D x d1
N-2d

D > dl2
2S2V2

llA1A2

D < dl2

2
D < dl1

D < dl

N/2

Singular Value Decomposition
...

d dN-1

...

d dN-2

A1 S1V1
ll

d

...

d dN-3

A1 S2V2
llA2

dd

d x d N-1

S1V1
llA1d x D 1 D x d1

N-1 D > dl1

D x d1
N-2d

D > dl2
2S2V2

llA1A2

D < dl2

2
D < dl1

D < dl

N/2

D < dl2

2
D < dl1

D < dl
N/2

Singular Value Decomposition
...

d dN-1

...

d dN-2

A1 S1V1
ll

d

...

d dN-3

A1 S2V2
llA2

dd

d x d N-1

S1V1
llA1d x D 1 D x d1

N-1 D > dl1

D x d1
N-2d

S2V2
llA1A2

D > dl2
2

D < dl2

2
D < dl1

D < dl

N/2

D < dl2

2
D < dl1

D < dl
N/2

Singular Value Decomposition
...

d dN-1

...

d dN-2

A1 S1V1
ll

d

...

d dN-3

A1 S2V2
llA2

dd

...

d d

A1 A2

dd

A AN-1 N

…

d x d N-1

S1V1
llA1d x D 1 D x d1

N-1 D > dl1

D x d1
N-2d

S2V2
llA1A2

D > dl2
2

…

A1A2
...AN-1AN

D > dl

N/2D > dl

N/2 D > dl

N/2

D < dl2

2
D < dl1

D < dl

N/2

D < dl2

2
D < dl1

D < dl
N/2

∑
ijklmnop

AmiBijpCjknDpklEmnoFol

TNs for CS, Sergio Sanchez Ramirez

∑
ijklmnop

AmiBijpCjknDpklEmnoFol

TNs for CS, Sergio Sanchez Ramirez

∑
ijklnop

αinoBijpCjknDpklFol

TNs for CS, Sergio Sanchez Ramirez

∑
ijklnop

αinoBijpCjknDpklFol

TNs for CS, Sergio Sanchez Ramirez

∑
ijklnp

βinlBijpCjknDpkl

TNs for CS, Sergio Sanchez Ramirez

∑
ijklnp

βinlBijpCjknDpkl

TNs for CS, Sergio Sanchez Ramirez

∑
iklnp

γinpkβinlDpkl

TNs for CS, Sergio Sanchez Ramirez

∑
iklnp

γinpkβinlDpkl

TNs for CS, Sergio Sanchez Ramirez

∑
iln

δinlβinl

TNs for CS, Sergio Sanchez Ramirez

∑
iln

δinlβinl

TNs for CS, Sergio Sanchez Ramirez

ε

TNs for CS, Sergio Sanchez Ramirez

Contraction path

m o j k p i l n

MNIST clasiffication

MNIST clasiffication
2

Representing the weights W of Eq. (1) as an MPS al-
lows us to e�ciently optimize these weights and adap-
tively change their number by varying W locally a few
tensors at a time, in close analogy to the density ma-
trix renormalization group algorithm used in physics
[26, 35]. Similar alternating least squares methods for
tensor trains have also been explored in applied mathe-
matics [36].

This paper is organized as follows: we propose our gen-
eral approach then describe an algorithm for optimizing
the weight vector W in MPS form. We test our approach,
both on the MNIST handwritten digit set and on two-
dimensional toy data to better understand the role of the
local feature-space dimension d. Finally, we discuss the
class of functions realized by our proposed models as well
as a possible generative interpretation.

Those wishing to reproduce our results can find
sample codes based on the ITensor library [37] at:
https://github.com/emstoudenmire/TNML

II. ENCODING INPUT DATA

The most successful use of tensor networks in physics
so far has been in quantum mechanics, where combining
N independent systems corresponds to taking the tensor
product of their individual state vectors. With the goal
of applying similar tensor networks to machine learning,
we choose a feature map of the form

�s1s2···sN (x) = �s1(x1) ⌦ �s2(x2) ⌦ · · · �sN (xN) . (2)

The tensor �s1s2···sN is the tensor product of the same
local feature map �sj (xj) applied to each input xj , where
the indices sj run from 1 to d; the value d is known as
the local dimension. Thus each xj is mapped to a d-
dimensional vector, which we require to have unit norm;
this implies each �(x) also has unit norm.

The full feature map �(x) can be viewed as a vector
in a dN -dimensional space or as an order-N tensor. The
tensor diagram for �(x) is shown in Fig. 2. This type of
tensor is said be rank-1 since it is manifestly the prod-
uct of N order-1 tensors. In physics terms, �(x) has the
same structure as a product state or unentangled wave-
function.

For a concrete example of this type of feature map,
consider inputs which are grayscale images with N pixels,
where each pixel value ranges from 0.0 for white to 1.0
for black. If the grayscale pixel value of the jth pixel
is xj 2 [0, 1], a simple choice for the local feature map
�sj (xj) is

�sj (xj) =
h
cos

⇣⇡

2
xj

⌘
, sin

⇣⇡

2
xj

⌘i
(3)

and is illustrated in Fig. 3. The full image is represented
as a tensor product of these local vectors. From a physics
perspective, �sj is the normalized wavefunction of a sin-
gle qubit where the “up” state corresponds to a white

s1 s2 s3 s4 s5 s6

=
�s1 �s2 �s3 �s4 �s5 �s6

�

FIG. 2. Input data is mapped to a normalized order N tensor
with a trivial (rank 1) product structure.

FIG. 3. For the case of a grayscale image and d = 2, each
pixel value is mapped to a normalized two-component vector.
The full image is mapped to the tensor product of all the local
pixel vectors as shown in Fig. 2.

pixel, the “down” state to a black pixel, and a superpo-
sition corresponds to a gray pixel.

While our choice of feature map �(x) was originally
motivated from a physics perspective, in machine learn-
ing terms, the feature map Eq. (2) defines a kernel which
is the product of N local kernels, one for each compo-
nent xj of the input data. Kernels of this type have been
discussed previously [38, p. 193] and have been argued
to be useful for data where no relationship is assumed
between di↵erent components of the input vector prior
to learning [39].

Though we will use only the local feature map Eq. (3)
in our MNIST experiment below, it would be interesting
to try other local maps and to understand better the role
they play in the performance of the model and the cost
of optimizing the model.

III. MULTIPLE LABEL CLASSIFICATION

In what follows we are interested in multi-class learn-
ing, for which we choose a “one-versus-all” strategy,
which we take to mean generalizing the decision func-
tion Eq. (4) to a set of functions indexed by a label `

f `(x) = W ` · �(x) (4)

and classifying an input x by choosing the label ` for
which |f `(x)| is largest.

Since we apply the same feature map � to all input
data, the only quantity that depends on the label ` is
the weight vector W `. Though one can view W ` as a
collection of vectors labeled by `, we will prefer to view
W ` as an order N +1 tensor where ` is a tensor index and

MNIST clasiffication
2

Representing the weights W of Eq. (1) as an MPS al-
lows us to e�ciently optimize these weights and adap-
tively change their number by varying W locally a few
tensors at a time, in close analogy to the density ma-
trix renormalization group algorithm used in physics
[26, 35]. Similar alternating least squares methods for
tensor trains have also been explored in applied mathe-
matics [36].

This paper is organized as follows: we propose our gen-
eral approach then describe an algorithm for optimizing
the weight vector W in MPS form. We test our approach,
both on the MNIST handwritten digit set and on two-
dimensional toy data to better understand the role of the
local feature-space dimension d. Finally, we discuss the
class of functions realized by our proposed models as well
as a possible generative interpretation.

Those wishing to reproduce our results can find
sample codes based on the ITensor library [37] at:
https://github.com/emstoudenmire/TNML

II. ENCODING INPUT DATA

The most successful use of tensor networks in physics
so far has been in quantum mechanics, where combining
N independent systems corresponds to taking the tensor
product of their individual state vectors. With the goal
of applying similar tensor networks to machine learning,
we choose a feature map of the form

�s1s2···sN (x) = �s1(x1) ⌦ �s2(x2) ⌦ · · · �sN (xN) . (2)

The tensor �s1s2···sN is the tensor product of the same
local feature map �sj (xj) applied to each input xj , where
the indices sj run from 1 to d; the value d is known as
the local dimension. Thus each xj is mapped to a d-
dimensional vector, which we require to have unit norm;
this implies each �(x) also has unit norm.

The full feature map �(x) can be viewed as a vector
in a dN -dimensional space or as an order-N tensor. The
tensor diagram for �(x) is shown in Fig. 2. This type of
tensor is said be rank-1 since it is manifestly the prod-
uct of N order-1 tensors. In physics terms, �(x) has the
same structure as a product state or unentangled wave-
function.

For a concrete example of this type of feature map,
consider inputs which are grayscale images with N pixels,
where each pixel value ranges from 0.0 for white to 1.0
for black. If the grayscale pixel value of the jth pixel
is xj 2 [0, 1], a simple choice for the local feature map
�sj (xj) is

�sj (xj) =
h
cos

⇣⇡

2
xj

⌘
, sin

⇣⇡

2
xj

⌘i
(3)

and is illustrated in Fig. 3. The full image is represented
as a tensor product of these local vectors. From a physics
perspective, �sj is the normalized wavefunction of a sin-
gle qubit where the “up” state corresponds to a white

s1 s2 s3 s4 s5 s6

=
�s1 �s2 �s3 �s4 �s5 �s6

�

FIG. 2. Input data is mapped to a normalized order N tensor
with a trivial (rank 1) product structure.

FIG. 3. For the case of a grayscale image and d = 2, each
pixel value is mapped to a normalized two-component vector.
The full image is mapped to the tensor product of all the local
pixel vectors as shown in Fig. 2.

pixel, the “down” state to a black pixel, and a superpo-
sition corresponds to a gray pixel.

While our choice of feature map �(x) was originally
motivated from a physics perspective, in machine learn-
ing terms, the feature map Eq. (2) defines a kernel which
is the product of N local kernels, one for each compo-
nent xj of the input data. Kernels of this type have been
discussed previously [38, p. 193] and have been argued
to be useful for data where no relationship is assumed
between di↵erent components of the input vector prior
to learning [39].

Though we will use only the local feature map Eq. (3)
in our MNIST experiment below, it would be interesting
to try other local maps and to understand better the role
they play in the performance of the model and the cost
of optimizing the model.

III. MULTIPLE LABEL CLASSIFICATION

In what follows we are interested in multi-class learn-
ing, for which we choose a “one-versus-all” strategy,
which we take to mean generalizing the decision func-
tion Eq. (4) to a set of functions indexed by a label `

f `(x) = W ` · �(x) (4)

and classifying an input x by choosing the label ` for
which |f `(x)| is largest.

Since we apply the same feature map � to all input
data, the only quantity that depends on the label ` is
the weight vector W `. Though one can view W ` as a
collection of vectors labeled by `, we will prefer to view
W ` as an order N +1 tensor where ` is a tensor index and

ϕ(xi) = [cos (π
2

xi), sin (π
2

xi)]

MNIST clasiffication
2

Representing the weights W of Eq. (1) as an MPS al-
lows us to e�ciently optimize these weights and adap-
tively change their number by varying W locally a few
tensors at a time, in close analogy to the density ma-
trix renormalization group algorithm used in physics
[26, 35]. Similar alternating least squares methods for
tensor trains have also been explored in applied mathe-
matics [36].

This paper is organized as follows: we propose our gen-
eral approach then describe an algorithm for optimizing
the weight vector W in MPS form. We test our approach,
both on the MNIST handwritten digit set and on two-
dimensional toy data to better understand the role of the
local feature-space dimension d. Finally, we discuss the
class of functions realized by our proposed models as well
as a possible generative interpretation.

Those wishing to reproduce our results can find
sample codes based on the ITensor library [37] at:
https://github.com/emstoudenmire/TNML

II. ENCODING INPUT DATA

The most successful use of tensor networks in physics
so far has been in quantum mechanics, where combining
N independent systems corresponds to taking the tensor
product of their individual state vectors. With the goal
of applying similar tensor networks to machine learning,
we choose a feature map of the form

�s1s2···sN (x) = �s1(x1) ⌦ �s2(x2) ⌦ · · · �sN (xN) . (2)

The tensor �s1s2···sN is the tensor product of the same
local feature map �sj (xj) applied to each input xj , where
the indices sj run from 1 to d; the value d is known as
the local dimension. Thus each xj is mapped to a d-
dimensional vector, which we require to have unit norm;
this implies each �(x) also has unit norm.

The full feature map �(x) can be viewed as a vector
in a dN -dimensional space or as an order-N tensor. The
tensor diagram for �(x) is shown in Fig. 2. This type of
tensor is said be rank-1 since it is manifestly the prod-
uct of N order-1 tensors. In physics terms, �(x) has the
same structure as a product state or unentangled wave-
function.

For a concrete example of this type of feature map,
consider inputs which are grayscale images with N pixels,
where each pixel value ranges from 0.0 for white to 1.0
for black. If the grayscale pixel value of the jth pixel
is xj 2 [0, 1], a simple choice for the local feature map
�sj (xj) is

�sj (xj) =
h
cos

⇣⇡

2
xj

⌘
, sin

⇣⇡

2
xj

⌘i
(3)

and is illustrated in Fig. 3. The full image is represented
as a tensor product of these local vectors. From a physics
perspective, �sj is the normalized wavefunction of a sin-
gle qubit where the “up” state corresponds to a white

s1 s2 s3 s4 s5 s6

=
�s1 �s2 �s3 �s4 �s5 �s6

�

FIG. 2. Input data is mapped to a normalized order N tensor
with a trivial (rank 1) product structure.

FIG. 3. For the case of a grayscale image and d = 2, each
pixel value is mapped to a normalized two-component vector.
The full image is mapped to the tensor product of all the local
pixel vectors as shown in Fig. 2.

pixel, the “down” state to a black pixel, and a superpo-
sition corresponds to a gray pixel.

While our choice of feature map �(x) was originally
motivated from a physics perspective, in machine learn-
ing terms, the feature map Eq. (2) defines a kernel which
is the product of N local kernels, one for each compo-
nent xj of the input data. Kernels of this type have been
discussed previously [38, p. 193] and have been argued
to be useful for data where no relationship is assumed
between di↵erent components of the input vector prior
to learning [39].

Though we will use only the local feature map Eq. (3)
in our MNIST experiment below, it would be interesting
to try other local maps and to understand better the role
they play in the performance of the model and the cost
of optimizing the model.

III. MULTIPLE LABEL CLASSIFICATION

In what follows we are interested in multi-class learn-
ing, for which we choose a “one-versus-all” strategy,
which we take to mean generalizing the decision func-
tion Eq. (4) to a set of functions indexed by a label `

f `(x) = W ` · �(x) (4)

and classifying an input x by choosing the label ` for
which |f `(x)| is largest.

Since we apply the same feature map � to all input
data, the only quantity that depends on the label ` is
the weight vector W `. Though one can view W ` as a
collection of vectors labeled by `, we will prefer to view
W ` as an order N +1 tensor where ` is a tensor index and

ϕ(xi) = [cos (π
2

xi), sin (π
2

xi)]

MNIST clasiffication
2

Representing the weights W of Eq. (1) as an MPS al-
lows us to e�ciently optimize these weights and adap-
tively change their number by varying W locally a few
tensors at a time, in close analogy to the density ma-
trix renormalization group algorithm used in physics
[26, 35]. Similar alternating least squares methods for
tensor trains have also been explored in applied mathe-
matics [36].

This paper is organized as follows: we propose our gen-
eral approach then describe an algorithm for optimizing
the weight vector W in MPS form. We test our approach,
both on the MNIST handwritten digit set and on two-
dimensional toy data to better understand the role of the
local feature-space dimension d. Finally, we discuss the
class of functions realized by our proposed models as well
as a possible generative interpretation.

Those wishing to reproduce our results can find
sample codes based on the ITensor library [37] at:
https://github.com/emstoudenmire/TNML

II. ENCODING INPUT DATA

The most successful use of tensor networks in physics
so far has been in quantum mechanics, where combining
N independent systems corresponds to taking the tensor
product of their individual state vectors. With the goal
of applying similar tensor networks to machine learning,
we choose a feature map of the form

�s1s2···sN (x) = �s1(x1) ⌦ �s2(x2) ⌦ · · · �sN (xN) . (2)

The tensor �s1s2···sN is the tensor product of the same
local feature map �sj (xj) applied to each input xj , where
the indices sj run from 1 to d; the value d is known as
the local dimension. Thus each xj is mapped to a d-
dimensional vector, which we require to have unit norm;
this implies each �(x) also has unit norm.

The full feature map �(x) can be viewed as a vector
in a dN -dimensional space or as an order-N tensor. The
tensor diagram for �(x) is shown in Fig. 2. This type of
tensor is said be rank-1 since it is manifestly the prod-
uct of N order-1 tensors. In physics terms, �(x) has the
same structure as a product state or unentangled wave-
function.

For a concrete example of this type of feature map,
consider inputs which are grayscale images with N pixels,
where each pixel value ranges from 0.0 for white to 1.0
for black. If the grayscale pixel value of the jth pixel
is xj 2 [0, 1], a simple choice for the local feature map
�sj (xj) is

�sj (xj) =
h
cos

⇣⇡

2
xj

⌘
, sin

⇣⇡

2
xj

⌘i
(3)

and is illustrated in Fig. 3. The full image is represented
as a tensor product of these local vectors. From a physics
perspective, �sj is the normalized wavefunction of a sin-
gle qubit where the “up” state corresponds to a white

s1 s2 s3 s4 s5 s6

=
�s1 �s2 �s3 �s4 �s5 �s6

�

FIG. 2. Input data is mapped to a normalized order N tensor
with a trivial (rank 1) product structure.

FIG. 3. For the case of a grayscale image and d = 2, each
pixel value is mapped to a normalized two-component vector.
The full image is mapped to the tensor product of all the local
pixel vectors as shown in Fig. 2.

pixel, the “down” state to a black pixel, and a superpo-
sition corresponds to a gray pixel.

While our choice of feature map �(x) was originally
motivated from a physics perspective, in machine learn-
ing terms, the feature map Eq. (2) defines a kernel which
is the product of N local kernels, one for each compo-
nent xj of the input data. Kernels of this type have been
discussed previously [38, p. 193] and have been argued
to be useful for data where no relationship is assumed
between di↵erent components of the input vector prior
to learning [39].

Though we will use only the local feature map Eq. (3)
in our MNIST experiment below, it would be interesting
to try other local maps and to understand better the role
they play in the performance of the model and the cost
of optimizing the model.

III. MULTIPLE LABEL CLASSIFICATION

In what follows we are interested in multi-class learn-
ing, for which we choose a “one-versus-all” strategy,
which we take to mean generalizing the decision func-
tion Eq. (4) to a set of functions indexed by a label `

f `(x) = W ` · �(x) (4)

and classifying an input x by choosing the label ` for
which |f `(x)| is largest.

Since we apply the same feature map � to all input
data, the only quantity that depends on the label ` is
the weight vector W `. Though one can view W ` as a
collection of vectors labeled by `, we will prefer to view
W ` as an order N +1 tensor where ` is a tensor index and

ϕ(xi) = [cos (π
2

xi), sin (π
2

xi)]

...

d = 2

product state

MNIST clasiffication
2

Representing the weights W of Eq. (1) as an MPS al-
lows us to e�ciently optimize these weights and adap-
tively change their number by varying W locally a few
tensors at a time, in close analogy to the density ma-
trix renormalization group algorithm used in physics
[26, 35]. Similar alternating least squares methods for
tensor trains have also been explored in applied mathe-
matics [36].

This paper is organized as follows: we propose our gen-
eral approach then describe an algorithm for optimizing
the weight vector W in MPS form. We test our approach,
both on the MNIST handwritten digit set and on two-
dimensional toy data to better understand the role of the
local feature-space dimension d. Finally, we discuss the
class of functions realized by our proposed models as well
as a possible generative interpretation.

Those wishing to reproduce our results can find
sample codes based on the ITensor library [37] at:
https://github.com/emstoudenmire/TNML

II. ENCODING INPUT DATA

The most successful use of tensor networks in physics
so far has been in quantum mechanics, where combining
N independent systems corresponds to taking the tensor
product of their individual state vectors. With the goal
of applying similar tensor networks to machine learning,
we choose a feature map of the form

�s1s2···sN (x) = �s1(x1) ⌦ �s2(x2) ⌦ · · · �sN (xN) . (2)

The tensor �s1s2···sN is the tensor product of the same
local feature map �sj (xj) applied to each input xj , where
the indices sj run from 1 to d; the value d is known as
the local dimension. Thus each xj is mapped to a d-
dimensional vector, which we require to have unit norm;
this implies each �(x) also has unit norm.

The full feature map �(x) can be viewed as a vector
in a dN -dimensional space or as an order-N tensor. The
tensor diagram for �(x) is shown in Fig. 2. This type of
tensor is said be rank-1 since it is manifestly the prod-
uct of N order-1 tensors. In physics terms, �(x) has the
same structure as a product state or unentangled wave-
function.

For a concrete example of this type of feature map,
consider inputs which are grayscale images with N pixels,
where each pixel value ranges from 0.0 for white to 1.0
for black. If the grayscale pixel value of the jth pixel
is xj 2 [0, 1], a simple choice for the local feature map
�sj (xj) is

�sj (xj) =
h
cos

⇣⇡

2
xj

⌘
, sin

⇣⇡

2
xj

⌘i
(3)

and is illustrated in Fig. 3. The full image is represented
as a tensor product of these local vectors. From a physics
perspective, �sj is the normalized wavefunction of a sin-
gle qubit where the “up” state corresponds to a white

s1 s2 s3 s4 s5 s6

=
�s1 �s2 �s3 �s4 �s5 �s6

�

FIG. 2. Input data is mapped to a normalized order N tensor
with a trivial (rank 1) product structure.

FIG. 3. For the case of a grayscale image and d = 2, each
pixel value is mapped to a normalized two-component vector.
The full image is mapped to the tensor product of all the local
pixel vectors as shown in Fig. 2.

pixel, the “down” state to a black pixel, and a superpo-
sition corresponds to a gray pixel.

While our choice of feature map �(x) was originally
motivated from a physics perspective, in machine learn-
ing terms, the feature map Eq. (2) defines a kernel which
is the product of N local kernels, one for each compo-
nent xj of the input data. Kernels of this type have been
discussed previously [38, p. 193] and have been argued
to be useful for data where no relationship is assumed
between di↵erent components of the input vector prior
to learning [39].

Though we will use only the local feature map Eq. (3)
in our MNIST experiment below, it would be interesting
to try other local maps and to understand better the role
they play in the performance of the model and the cost
of optimizing the model.

III. MULTIPLE LABEL CLASSIFICATION

In what follows we are interested in multi-class learn-
ing, for which we choose a “one-versus-all” strategy,
which we take to mean generalizing the decision func-
tion Eq. (4) to a set of functions indexed by a label `

f `(x) = W ` · �(x) (4)

and classifying an input x by choosing the label ` for
which |f `(x)| is largest.

Since we apply the same feature map � to all input
data, the only quantity that depends on the label ` is
the weight vector W `. Though one can view W ` as a
collection of vectors labeled by `, we will prefer to view
W ` as an order N +1 tensor where ` is a tensor index and

ϕ(xi) = [cos (π
2

xi), sin (π
2

xi)]

...

d = 2

...

d

bond

MPSPS

MNIST clasiffication
2

Representing the weights W of Eq. (1) as an MPS al-
lows us to e�ciently optimize these weights and adap-
tively change their number by varying W locally a few
tensors at a time, in close analogy to the density ma-
trix renormalization group algorithm used in physics
[26, 35]. Similar alternating least squares methods for
tensor trains have also been explored in applied mathe-
matics [36].

This paper is organized as follows: we propose our gen-
eral approach then describe an algorithm for optimizing
the weight vector W in MPS form. We test our approach,
both on the MNIST handwritten digit set and on two-
dimensional toy data to better understand the role of the
local feature-space dimension d. Finally, we discuss the
class of functions realized by our proposed models as well
as a possible generative interpretation.

Those wishing to reproduce our results can find
sample codes based on the ITensor library [37] at:
https://github.com/emstoudenmire/TNML

II. ENCODING INPUT DATA

The most successful use of tensor networks in physics
so far has been in quantum mechanics, where combining
N independent systems corresponds to taking the tensor
product of their individual state vectors. With the goal
of applying similar tensor networks to machine learning,
we choose a feature map of the form

�s1s2···sN (x) = �s1(x1) ⌦ �s2(x2) ⌦ · · · �sN (xN) . (2)

The tensor �s1s2···sN is the tensor product of the same
local feature map �sj (xj) applied to each input xj , where
the indices sj run from 1 to d; the value d is known as
the local dimension. Thus each xj is mapped to a d-
dimensional vector, which we require to have unit norm;
this implies each �(x) also has unit norm.

The full feature map �(x) can be viewed as a vector
in a dN -dimensional space or as an order-N tensor. The
tensor diagram for �(x) is shown in Fig. 2. This type of
tensor is said be rank-1 since it is manifestly the prod-
uct of N order-1 tensors. In physics terms, �(x) has the
same structure as a product state or unentangled wave-
function.

For a concrete example of this type of feature map,
consider inputs which are grayscale images with N pixels,
where each pixel value ranges from 0.0 for white to 1.0
for black. If the grayscale pixel value of the jth pixel
is xj 2 [0, 1], a simple choice for the local feature map
�sj (xj) is

�sj (xj) =
h
cos

⇣⇡

2
xj

⌘
, sin

⇣⇡

2
xj

⌘i
(3)

and is illustrated in Fig. 3. The full image is represented
as a tensor product of these local vectors. From a physics
perspective, �sj is the normalized wavefunction of a sin-
gle qubit where the “up” state corresponds to a white

s1 s2 s3 s4 s5 s6

=
�s1 �s2 �s3 �s4 �s5 �s6

�

FIG. 2. Input data is mapped to a normalized order N tensor
with a trivial (rank 1) product structure.

FIG. 3. For the case of a grayscale image and d = 2, each
pixel value is mapped to a normalized two-component vector.
The full image is mapped to the tensor product of all the local
pixel vectors as shown in Fig. 2.

pixel, the “down” state to a black pixel, and a superpo-
sition corresponds to a gray pixel.

While our choice of feature map �(x) was originally
motivated from a physics perspective, in machine learn-
ing terms, the feature map Eq. (2) defines a kernel which
is the product of N local kernels, one for each compo-
nent xj of the input data. Kernels of this type have been
discussed previously [38, p. 193] and have been argued
to be useful for data where no relationship is assumed
between di↵erent components of the input vector prior
to learning [39].

Though we will use only the local feature map Eq. (3)
in our MNIST experiment below, it would be interesting
to try other local maps and to understand better the role
they play in the performance of the model and the cost
of optimizing the model.

III. MULTIPLE LABEL CLASSIFICATION

In what follows we are interested in multi-class learn-
ing, for which we choose a “one-versus-all” strategy,
which we take to mean generalizing the decision func-
tion Eq. (4) to a set of functions indexed by a label `

f `(x) = W ` · �(x) (4)

and classifying an input x by choosing the label ` for
which |f `(x)| is largest.

Since we apply the same feature map � to all input
data, the only quantity that depends on the label ` is
the weight vector W `. Though one can view W ` as a
collection of vectors labeled by `, we will prefer to view
W ` as an order N +1 tensor where ` is a tensor index and

ϕ(xi) = [cos (π
2

xi), sin (π
2

xi)]

...

d = 2

...

= #classes

d

bond

l

PS MPS

MNIST clasiffication
2

Representing the weights W of Eq. (1) as an MPS al-
lows us to e�ciently optimize these weights and adap-
tively change their number by varying W locally a few
tensors at a time, in close analogy to the density ma-
trix renormalization group algorithm used in physics
[26, 35]. Similar alternating least squares methods for
tensor trains have also been explored in applied mathe-
matics [36].

This paper is organized as follows: we propose our gen-
eral approach then describe an algorithm for optimizing
the weight vector W in MPS form. We test our approach,
both on the MNIST handwritten digit set and on two-
dimensional toy data to better understand the role of the
local feature-space dimension d. Finally, we discuss the
class of functions realized by our proposed models as well
as a possible generative interpretation.

Those wishing to reproduce our results can find
sample codes based on the ITensor library [37] at:
https://github.com/emstoudenmire/TNML

II. ENCODING INPUT DATA

The most successful use of tensor networks in physics
so far has been in quantum mechanics, where combining
N independent systems corresponds to taking the tensor
product of their individual state vectors. With the goal
of applying similar tensor networks to machine learning,
we choose a feature map of the form

�s1s2···sN (x) = �s1(x1) ⌦ �s2(x2) ⌦ · · · �sN (xN) . (2)

The tensor �s1s2···sN is the tensor product of the same
local feature map �sj (xj) applied to each input xj , where
the indices sj run from 1 to d; the value d is known as
the local dimension. Thus each xj is mapped to a d-
dimensional vector, which we require to have unit norm;
this implies each �(x) also has unit norm.

The full feature map �(x) can be viewed as a vector
in a dN -dimensional space or as an order-N tensor. The
tensor diagram for �(x) is shown in Fig. 2. This type of
tensor is said be rank-1 since it is manifestly the prod-
uct of N order-1 tensors. In physics terms, �(x) has the
same structure as a product state or unentangled wave-
function.

For a concrete example of this type of feature map,
consider inputs which are grayscale images with N pixels,
where each pixel value ranges from 0.0 for white to 1.0
for black. If the grayscale pixel value of the jth pixel
is xj 2 [0, 1], a simple choice for the local feature map
�sj (xj) is

�sj (xj) =
h
cos

⇣⇡

2
xj

⌘
, sin

⇣⇡

2
xj

⌘i
(3)

and is illustrated in Fig. 3. The full image is represented
as a tensor product of these local vectors. From a physics
perspective, �sj is the normalized wavefunction of a sin-
gle qubit where the “up” state corresponds to a white

s1 s2 s3 s4 s5 s6

=
�s1 �s2 �s3 �s4 �s5 �s6

�

FIG. 2. Input data is mapped to a normalized order N tensor
with a trivial (rank 1) product structure.

FIG. 3. For the case of a grayscale image and d = 2, each
pixel value is mapped to a normalized two-component vector.
The full image is mapped to the tensor product of all the local
pixel vectors as shown in Fig. 2.

pixel, the “down” state to a black pixel, and a superpo-
sition corresponds to a gray pixel.

While our choice of feature map �(x) was originally
motivated from a physics perspective, in machine learn-
ing terms, the feature map Eq. (2) defines a kernel which
is the product of N local kernels, one for each compo-
nent xj of the input data. Kernels of this type have been
discussed previously [38, p. 193] and have been argued
to be useful for data where no relationship is assumed
between di↵erent components of the input vector prior
to learning [39].

Though we will use only the local feature map Eq. (3)
in our MNIST experiment below, it would be interesting
to try other local maps and to understand better the role
they play in the performance of the model and the cost
of optimizing the model.

III. MULTIPLE LABEL CLASSIFICATION

In what follows we are interested in multi-class learn-
ing, for which we choose a “one-versus-all” strategy,
which we take to mean generalizing the decision func-
tion Eq. (4) to a set of functions indexed by a label `

f `(x) = W ` · �(x) (4)

and classifying an input x by choosing the label ` for
which |f `(x)| is largest.

Since we apply the same feature map � to all input
data, the only quantity that depends on the label ` is
the weight vector W `. Though one can view W ` as a
collection of vectors labeled by `, we will prefer to view
W ` as an order N +1 tensor where ` is a tensor index and

ϕ(xi) = [cos (π
2

xi), sin (π
2

xi)]

...

d = 2

f = W Φ(x)

...

l

= #classes

d

bond

l

l

PS MPS

MNIST clasiffication
2

Representing the weights W of Eq. (1) as an MPS al-
lows us to e�ciently optimize these weights and adap-
tively change their number by varying W locally a few
tensors at a time, in close analogy to the density ma-
trix renormalization group algorithm used in physics
[26, 35]. Similar alternating least squares methods for
tensor trains have also been explored in applied mathe-
matics [36].

This paper is organized as follows: we propose our gen-
eral approach then describe an algorithm for optimizing
the weight vector W in MPS form. We test our approach,
both on the MNIST handwritten digit set and on two-
dimensional toy data to better understand the role of the
local feature-space dimension d. Finally, we discuss the
class of functions realized by our proposed models as well
as a possible generative interpretation.

Those wishing to reproduce our results can find
sample codes based on the ITensor library [37] at:
https://github.com/emstoudenmire/TNML

II. ENCODING INPUT DATA

The most successful use of tensor networks in physics
so far has been in quantum mechanics, where combining
N independent systems corresponds to taking the tensor
product of their individual state vectors. With the goal
of applying similar tensor networks to machine learning,
we choose a feature map of the form

�s1s2···sN (x) = �s1(x1) ⌦ �s2(x2) ⌦ · · · �sN (xN) . (2)

The tensor �s1s2···sN is the tensor product of the same
local feature map �sj (xj) applied to each input xj , where
the indices sj run from 1 to d; the value d is known as
the local dimension. Thus each xj is mapped to a d-
dimensional vector, which we require to have unit norm;
this implies each �(x) also has unit norm.

The full feature map �(x) can be viewed as a vector
in a dN -dimensional space or as an order-N tensor. The
tensor diagram for �(x) is shown in Fig. 2. This type of
tensor is said be rank-1 since it is manifestly the prod-
uct of N order-1 tensors. In physics terms, �(x) has the
same structure as a product state or unentangled wave-
function.

For a concrete example of this type of feature map,
consider inputs which are grayscale images with N pixels,
where each pixel value ranges from 0.0 for white to 1.0
for black. If the grayscale pixel value of the jth pixel
is xj 2 [0, 1], a simple choice for the local feature map
�sj (xj) is

�sj (xj) =
h
cos

⇣⇡

2
xj

⌘
, sin

⇣⇡

2
xj

⌘i
(3)

and is illustrated in Fig. 3. The full image is represented
as a tensor product of these local vectors. From a physics
perspective, �sj is the normalized wavefunction of a sin-
gle qubit where the “up” state corresponds to a white

s1 s2 s3 s4 s5 s6

=
�s1 �s2 �s3 �s4 �s5 �s6

�

FIG. 2. Input data is mapped to a normalized order N tensor
with a trivial (rank 1) product structure.

FIG. 3. For the case of a grayscale image and d = 2, each
pixel value is mapped to a normalized two-component vector.
The full image is mapped to the tensor product of all the local
pixel vectors as shown in Fig. 2.

pixel, the “down” state to a black pixel, and a superpo-
sition corresponds to a gray pixel.

While our choice of feature map �(x) was originally
motivated from a physics perspective, in machine learn-
ing terms, the feature map Eq. (2) defines a kernel which
is the product of N local kernels, one for each compo-
nent xj of the input data. Kernels of this type have been
discussed previously [38, p. 193] and have been argued
to be useful for data where no relationship is assumed
between di↵erent components of the input vector prior
to learning [39].

Though we will use only the local feature map Eq. (3)
in our MNIST experiment below, it would be interesting
to try other local maps and to understand better the role
they play in the performance of the model and the cost
of optimizing the model.

III. MULTIPLE LABEL CLASSIFICATION

In what follows we are interested in multi-class learn-
ing, for which we choose a “one-versus-all” strategy,
which we take to mean generalizing the decision func-
tion Eq. (4) to a set of functions indexed by a label `

f `(x) = W ` · �(x) (4)

and classifying an input x by choosing the label ` for
which |f `(x)| is largest.

Since we apply the same feature map � to all input
data, the only quantity that depends on the label ` is
the weight vector W `. Though one can view W ` as a
collection of vectors labeled by `, we will prefer to view
W ` as an order N +1 tensor where ` is a tensor index and

ϕ(xi) = [cos (π
2

xi), sin (π
2

xi)]

...

d = 2

f = W Φ(x)

...

l

= #classes

d

bond

l

l

PS MPS
Supervised Learning with Quantum-Inspired Tensor Networks [1605.05775]

https://arxiv.org/pdf/1605.05775

Different types of TNs

Tree TN

quantum chemistry

ML feature extraction

Different types of TNs

Tree TN

quantum chemistry

ML feature extraction

PEPS (2D) TN

quantum lattice models

classification

Tenet.jl

116

QUESTIONS?
ema.puljak@cern.ch

