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ABOUT MYSELF 
• PhD Kyoto (1990) a bit old.  

• PD: Supergravitiy study in  heavy top era →　SUSY dark 
matter. One of the author of first Sommerfeld effect in dark 
matter annihilation. (2003) 

• Collider:  

• 1996: JLC study  and Snowmass 

• 2002-2008 LHC BSM study in ATLAS SUSY group.  BSM 
Convener of Les Houches TeV collider workshop twice → 
Jet substructure study → Deep Learning 

• Service: JPS executive board member →member of Science 
Council of Japan(SCJ) working on Diversity Issues .  

• In KEK,  we just had DEI workshop last Dec, and trying 
establish more DEI activities. (https://www2.kek.jp/ipns/en/
news/5320/)

   “a young  mind”,                  
(according to Tilman Plehn)   

but this makes me cry
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The research area "Machine Learning Physics"  wil l  begin

with the aim of  discovering new laws and pioneering new

mater ia ls

Hello. My name is Koji Hashimoto, Professor of Graduate School of Science, Kyoto University. Let me explain about

the "Learning Physics Domain" that we are just now trying to create. This new transformative research area aims to

revolutionize fundamental physics by combining machine learning and physics.

Throughout its long history, physics has provided the most precise testing ground in the natural sciences, solving

problems in various natural hierarchies in collaboration with the mathematical sciences.

On the other hand, the field of machine learning is a major research field, a mathematical system that forms the

foundation of artificial intelligence and has seen explosive progress in recent years due to advances in computational

science. We are launching the transformative research area "Machine Learning Physics" to integrate these two major

fields.

In this area, we will tackle the most important challenges in fundamental physics, such as the discovery of new laws
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How machine Leaning help Collider Analysis 

candidate of four top quark at CMS 

Gavin Salam (CERN) Jets and jet substructure (2) CFHEP, April 2014 13

Add “ghosts”, infinitesimally 
soft particles, to track “area” 

of jet in y–φ plane

y
φ

pt

Jet clustering



Jet classification using ML 

Introduction Neural Network Crash Course A spectral function of jet substructure Spectral Analysis of Jet Substructure: Higgs Spectral Analysis of Jet Substructure: Sgluon Spectral Analysis of Jet Substructure: A Quick Sketch on Top Jets Spectral Analysis of Jet Substructure: Understanding Neural Networks Conclusion

Practical Example with CNN: Image Recognition Techniques with Jet Image
L. Oliveira, M. Kagan, L. Mackey, B. Nachman, A. Schwartzman, (1511.05190)32- -
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Even more non-linearity: Going Deep

Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  

Jet Image
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Local 

Response 
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Feature Layers
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Repeat

Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.

Difference in average 
image between signal 

and background

Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.

Luke de Oliveiraa, Michael Aaron Kaganb, Lester Mackeyc, Benjamin Nachmanb, Ariel Schwartzmanb 

 
aStanford University, Institute for Computational and Mathematical Engineering (ICME), bSLAC National Accelerator Laboratory,  cStanford University, Department of Statistics 

Repeat

Apply deep learning techniques on jet images! [3]

convolutional nets are a standard image 
processing technique; also consider maxout

Basic building unit: 2D convolutional layer
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Reduce number of free parameters by weight and bias sharing.
Specialized in understanding local spatial correlations
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Figure 1: A visualization of the decomposition of an observable via Eq. (1.1). Each particle

in the event is mapped by � to an internal (latent) particle representation, shown here as

three abstract illustrations for a latent space of dimension three. The latent representation is

then summed over all particles to arrive at a latent event representation, which is mapped by

F to the value of the observable. For the IRC-safe case of Eq. (1.2), � takes in the angular

information of the particle and the sum is weighted by the particle energies or transverse

momenta.

where this appears is learning from point clouds, sets of data points in space. For instance, the

output of spatial sensors such as lidar, relevant for self-driving car technologies, is often in the

form of a point cloud. As point clouds share the variable-length and permutation-symmetric

properties with collider events, it is worthwhile to understand and expand upon point cloud

techniques for particle physics applications.

The Deep Sets framework for point clouds, recently developed in Ref. [63], demonstrates

how permutation-invariant functions of variable-length inputs can be parametrized in a fully

general way. In Ref. [63], the method was applied to a wide variety of problems including red-

shift estimation of galaxy clusters, finding terms associated with a set of words, and detecting

anomalous faces in a set of images. The key observation is that summation, which is clearly

symmetric with respect to the order of the arguments, is general enough to encapsulate all

symmetric functions if one is allowed a large enough internal (latent) space.

In the context of a physics observable O that is a symmetric function of an arbitrary

– 3 –
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Therefore a decision needs to be made about how to construct a graph from the set of

inputs. Di↵erent graph construction methods are illustrated in figure 6. Depending on

the task, one might even want to avoid creating any pairwise relationships between

nodes. If the objects have no pairwise conditional dependence — a DeepSet [53]

architecture with only node and global properties might be more suitable. Edges in

the graph serve 3 roles:

(i) The edges are communication channels among the nodes.

(ii) Input edge features can indicate a relationship between objects, and can encode

physics motivated variables about that relationship (such as �R between objects).

(iii) Latent edges store relational information computed during message-passing,

allowing the network to encode such variables it sees relevant for the task.

In cases where the input sets are small (Nv ⇠ O(10) ) the typical and easiest

choice is to form a fully connected graph, allowing the network to learn which object

relationships are important. In larger sets, as the number of edges between all nodes

increases as Ne / (Nv)2, the computational load of using a neural network to create

an edge representation or compute attention weights becomes prohibitive. One possible

(a) (b)

(c)

Figure 6. Di↵erent methods for constructing the graph. (a) Connecting every node
to every other node (b) Connecting neighboring nodes in some predefined feature space
(c) Connecting neighboring nodes in a learned feature space.
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of quarks and gluons were generated as background using the same PYTHIA generator and
center-of-mass energy as for W bosons.

4. Jet images
In order to use image processing and computer vision approaches for jet tagging at the LHC,
a new data representation is introduced: the jet-image [14]. Jet images build on the notion of
a detector as pixels on a digital camera, and jets as images, enabling the connection between
the fields of computer vision and jet substructure and jet physics. Jet images are defined by a
25 ⇥ 25 grid of size (0.1 ⇥ 0.1) in (⌘ ⇥ �) space centered around the axis of R=1.0 anti-kt jets.
The intensity of the pixels given by the transverse momentum pT of the pixel cell. Prior to
the application of computer vision classification techniques, a series of pre-processing steps to
account for the space-time symmetries of jets images are applied. Pre-processing for the specific
case of the identification of 2-prong jets such as those from the decay of W bosons, is defined
by a translation that places the leading pT subjet at the center of jet-image, a rotation such
that the second pT leading subjet is placed down below, and a flip operation such that the right
side of the image has higher total pT than the left. The goal of these pre-processing steps is
to make it easier for image classification algorithms to focus on the important di↵erences in
physics between images. Jet-image pre-processing is illustrated in Figure 3 which shows the
average jet-image of W (signal) and QCD (background) jets in a narrow pT and mass bin before
and after the the pre-processing steps.
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Figure 3. Average jet-image for W jets (top panel) and QCD jets (bottom panel) with
240 < pT < 260 GeV and 65 <mass< 95 GeV before (left) and after (right) pre-processing.

5. Jet tagging using deep neutral networks
The concept of jet-images has enabled the use image classification methods for the identification
(tagging) of boosted W boson and top quarks at the LHC. In the first case, through the use of
Fisher jets [14]: a linear classifier inspired by facial recognition algorithms. In the second case,
by the use of neural networks [15]. An earlier use of image-based event reconstruction from
the OPAL Collaboration at the LEP collider is described in [16]. This paper focuses on the
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Figure 3. Average jet-image for W jets (top panel) and QCD jets (bottom panel) with
240 < pT < 260 GeV and 65 <mass< 95 GeV before (left) and after (right) pre-processing.

5. Jet tagging using deep neutral networks
The concept of jet-images has enabled the use image classification methods for the identification
(tagging) of boosted W boson and top quarks at the LHC. In the first case, through the use of
Fisher jets [14]: a linear classifier inspired by facial recognition algorithms. In the second case,
by the use of neural networks [15]. An earlier use of image-based event reconstruction from
the OPAL Collaboration at the LEP collider is described in [16]. This paper focuses on the
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W jet 
QCD jet 

from  Schwartzman et all 
https://iopscience.iop.org/article/ 
10.1088/1742-6596/762/1/012035 



CONNECTING JET STRUCTURE INFORMATION TO EVENT KINEMATICS   

• Non SM Higgs boson (Two Higgs doublet 
model)  

• pp → H (Heavy Higgs boson) → hh  → 4 bjet  

• mH=600-2000 GeV, mh=125.11GeV  

• Meta stable vaccum of SM → extension of Higgs 
sector  

•  why doing Deep Leaning? 

•  Sensitivity under S/BG~1   scale  by  
with background rejection                 

1/ N
1/N

holds significance, as it allows for the independent extraction of the most relevant informa-
tion from each data set prior to their amalgamation using the cross-attention mechanism.
This characteristic makes the model proficient in analyzing multi-scale data characterized
by intricate structures.

Transformer layers 
(MHSA)

MLP

Transformer layers 
(MHCA)

Transformer layers 
(MHSA)

Transformer layers 
(MHSA)

Add() Layer

Figure 1: Structure of the transformer model used. Here, Pj1, Pj2 are the number of the
leading and second leading jet constituents while the Pm’s are the reconstructed particles,
j1, j2, and H. Also, MHSA stands for multi-heads self-attention layers, and MHCA stands
for multi-heads cross-attention layers. Finally, the Ni’s are the number of the used trans-
former encoders. The transformer layers are stacked and work sequentially, as pointed out
by the black arrow.

3 Physics example

We undertake the analysis of SM-like di-Higgs boson (hh) production at the HL-LHC with
an integrated luminosity of 3000 fb≠1 within the framework of the 2HDM. In the boosted
regime, where the di-Higgs boson is produced from an on-mass-shell heavy Higgs, H, the
final state features two fat jets, as illustrated in Fig. 2 by the two red cones therein.

Figure 2: Feynman diagram for the signal process.
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HOW SIGNAL LOOKS LIKE: KINEMATICAL INPUTS    

beam direction 

color singlet 

ϕ

ηθ

fatjet 1 

fatjet 2

color connection  
to the beam

mj~125GeV 

mj~125GeV 

kinematics • Delphes  pp → H →hh vs pp → 4b, pp →tt 
• Delphes Preselection  

• two fatjets ( radius R=1.0. ) pT cut on the fatjet  >450GeV  > 250GeV.  
• double b tags for each fatjet ( Delphes 80% tagging efficiency)  250GeV >M(J)>50GeV   
• no pileup (theorist job)

PT1 PT2

inspired by ATLAS study” 
 Phys. Rev. D, 105(9):092002, 2022.  



INPUT TO NETWORK : EVENT KINEMATICS 

beam direction 

color singlet 

ϕ

ηθ

fatjet 1 

fatjet 2

color connection  
to the beam

mj~125GeV 

mj~125GeV 

kinematics 

Kinematical inputs (3, 6)  
fatjet 1 =  
fatjet 2 =  

H candidate = 

(m1, η1, ϕ1, pT1, E1), θ1
(m2, η2, ϕ2, pT2, E2), θ2

(m12, η12, ϕ12, pT12, E12), θ12 = 0

NOTE : "5 inputs for 4  momentum" ,  H candidate momentum as  sum of two fat jets, add θ,  



INPUT TO NETWORK: JET SUBSTRUCTURE INFO AS PARTICLE CLOUD    

beam direction 

color singlet 

ϕ

η
θ

jet 1 

jet 2

color connection  
to the beam

mj~125GeV 

mj~125GeV 

up to 50 constituents:  
Regularization speed up the training and reduce 
the required events.  
1.  shift coordinate to (0,0)  
2.  rotate jet based on covariant matrix  
3.  flip  so that E( ) >  E( ) 
4. particles are ordered by pT and we take up to 50 

 → (50, 4) data 

η η̄ > 0 η̄ < 0

pi = (η̄i, ϕ̄i, pTi, log pTi)

η̄ = ϕ̄ = 0



HOW TO COMBINE JET STRUCTURE AND EVENT KINEMATICS 

Naive approach  "simple concatenation" 
2

CNN branch

QCD observable 
(Local)

Kinematic variables 
(Global)

FCN branch

… …
z � a

Concat.

Attention 
Layer

2 M �

M

M

�

Regularization :  

D
eep Learning S

core

flatten

…

2 M �

Conv.… …

D
eep Learning S

core

CNN branch

QCD observable 
(Local)

Kinematic variables 
(Global)

FCN branch

… …

flattenConv.… …

z

Concat.

M

M

(a) (b)

FIG. 2. The schematic plots for neural network structures: (a) conventionally used one in previous studies only with concatenation and (b) our
proposed one with a regularized attention mechanism.

II. OPTIMIZING COMBINATION

To extract information from kinematic variables, we in-
troduce a Fully Connected Network (FCN) that takes multi-
dimensional vector-type data as input. Since the energy de-
posits of these jet particles can be represented as calorimeter
images in the ([, q) plane, we utilize a simple but effective
Convolutional Neural Network (CNN) that takes images as in-
put. We employ the following three models as a comparative
set for our study:

(a) FCN with kinematic variables

(b) FCN + CNN with QCD observables (1) without and (2)
with Attention layer

(c) FCN + CNN with QCD observables after Riemannian
preprocessing 1 (1) without and (2) with Attention layer

We provide schematic diagrams of models (1) without and
(2) with the attention layer in FIG. 2. The FCN model (a)
solely considers kinematic variables. It comprises four fully
connected layers: each of which utilizes ReLU activation and
is interspersed with batch normalization. The model is com-
pleted with an output layer with a sigmoid activation function.
The models (b) and (c), as multi-modal designs, will be de-
tailed in the following.

CNN branch (Local features): The CNN branch accepts 2D
arrays of shape 32◊32◊2 as input. Two channels consist of
images of charged particles and neutral particles, respectively.
This is in accordance with the previous study [28].

FCN branch (Global features): The FCN branch takes a 1D
array of # kinematic variables as inputs.

Merging: In the previous studies [28–32], information from
kinematics and QCD is simply concatenated in classification
models. However, simply concatenating the outputs from the
FCN and CNN branches often results in an imbalance. This

1 We will introduce the Riemannian preprocessing applied in our study in the
following section III C.

concatenation approach often results in a dominance of kine-
matic features derived from the FCN, which can inadvertently
overshadow the valuable contributions of local features, such
as QCD color structures. Also, multi-modal networks gener-
ally do not apply activation in the last layer of each branch to
prevent loss of information. However, this can cause the ex-
tracted layer to be an imbalanced data scale. To resolve these
issues, we introduce additional network structures.

Attention layer: To mitigate this imbalance due to the non-
activated layer, we employ regularization and an attention
mechanism into a multi-modal framework. Specifically, an L2
regularization term is added, governed by a hyperparameter ;2,
to the loss function in the output layer of each individual model
branch. This constraint is essential for preventing any single
branch from dominating the multi-modal model, thereby en-
suring that both local and global features contribute optimally
to the final prediction. This penalizes large weights, thereby
encouraging the multi-modal model to merge as balanced with
the two different types of model. The L2 regularization term
has the form of a lagrangian multiplier as

Regularization term = ;2 ⇥
"’
:=1

,
2
: . (1)

,: denotes the weights of the output of FCN or CNN branch,
and ;2 is a hyperparameter for a regularization.

To resolve the overshadowing problem, we define the atten-
tion score as 0 with the softmax function [24, 33–35]

0(I) = 4
5attn (I)Õ2"

9=1 4
5attn (I) 9

(2)

where the I = [I1:" : I"+1:2" ] is the concatenated layer from
CNN and FCN respectively, and 5attn (G) is a trainable linear
transformation, ,attnG + 1attn. Attention values are calculated
as the element-wise product (I�0) between the attention score
and the concatenated layer. With above additions, our neural
network can learn how to choose important information and
it becomes more transparent by showing its focus on each
branch in classifying a signal and a background. The attention
values are then connected with a fully connected layer for
classification.

a) [Jet momentum (parton momentum) ]+[jet concatenation] does not work.  
because  of imbalance of "importance" of two information → the minor one  can 
be ignored in the training.   
 Pre-training and freeze substructure analysis? 　We would loose the correlation 
to global kinematics. 
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III. EXAMPLE: �� VS CC̄

With the current interests of the LHC is being focused on
the “precision Higgs”, we consider a process ?? ! �� at
the LHC [28, 36–45]. This double Higgs production chan-
nel offers a unique probe into the Higgs boson self-coupling
which is a key parameter in the Higgs potential. Accurate
measurements of the Higgs self-coupling provide insights on
electroweak symmetry breaking, stability of the electroweak
vacuum, (critical) Higgs inflation and the potential for new
physics beyond the Standard Model (SM) [46–49].

Out of various decay modes in the double Higgs channel, we
consider

�
11̄✓✓̄aā

�
mode from � ! 11̄ and � ! ,,

⇤ !
✓ā✓̄a. The dominant background is CC̄ as an irreducible one.
This example serves as an exemplary case study for two rea-
sons: firstly, the kinematic characteristics of the signal and
backgrounds exhibit substantial differences; and secondly, the
QCD radiation patterns from the 11̄-system in both the sig-
nal and backgrounds offer distinctive features attributed to the
disparate (* (3) representations of the � and the top quark.

A. Event Selection

To generate Monte Carlo samples, we use the standard
chain of M��G����5 �MC@NLO [50], PYTHIA 8 [51], and
Delphes [52] for the 14 TeV LHC. Jet reconstruction is per-
formed based on the anti-:) algorithm [53] with a radius
parameter �' = 0.4 and a transverse momentum threshold
?) 9 > 20 GeV. The 1-tagging efficiency is set at n1!1 = 0.7,
with a misidentification rate of n2!1 = 0.2 and n 9!1 = 0.01.
The baseline cuts are applied as follows. The transverse mo-
mentum ?) of the two leading 1-tagged jets is set to be greater
than 30 GeV, and two isolated leptons of opposite charge are
required to have ?) greater than 20 GeV. The missing trans-
verse momentum should exceed 20 GeV. The separation in the
[ � q space for 11̄ pairs, represented by �'11̄, is restricted to
be less than 1.8, while for lepton pairs, �'✓✓ should be under
1.3. The invariant mass of the lepton pairs <✓✓ is constrained
to be less than 65 GeV and the invariant mass of 1-tagged jets
lies between 95 GeV  <11̄  140 GeV. Lastly, the pseudo-
rapidity [ 9 of the jets is capped at 2.5.

B. Kinematic information

We utilize conventional # = 10 kinematic variables [28, 54]

• The magnitude of the missing transverse momentum

• Transverse momentum of each lepton with ?) ordering,

• The angular distance in the ([, q) plane between ✓
� and

✓
+, between 1 and 1̄

• Invariant mass of the (✓�✓+) and (11̄) respectively,

• Transverse momentum of (✓�✓+) and (11̄) respectively,

• The azimuthal angles between the (✓�✓+) and (11̄).
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FIG. 3. The comparison of attention scores 0(I) in G-axis for a
test dataset comprising 20 samples with a data index in H-axis are
evaluated post-training under two distinct neural network models
using two different datasets.

C. QCD information and Decorrelation

There is a distinct difference in the radiation patterns em-
anating from jets produced by color singlet and color octet
particles. QCD shower radiations from a color singlet particle
tend to align more closely with the direction of the other jet
due to color connection and color dipole effects, resulting in
soft radiation that fills the space between the two quark jets.
In contrast, radiations from color octet particles tend to spread
out more broadly as they are predominantly directed toward
the beam axis [13, 15, 18].

To enhance the complementary capabilities of multi-modal
deep learning, we use a Riemannian mapping which is de-
signed to remove the characteristics of the kinematic feature
�'11̄ embedded in the jet image [55]. With this geometric
decorrelation method, one can focus on the color connectivity
without being distracted by the kinematics. We demonstrate
the results of decorrelation with global features using Princi-
pal Component Analysis (PCA) and linear regression methods
in Appendix A. Finally, we take a conventional procedure in
dealing with jet images [14, 28, 30] as in Appendix B 1.

IV. RESULTS

With an Attention layer, we can assess the “importance” of
each contribution in details. We utilize the attention scores
0(I) of eq. (2) from the trained multi-modal model and the
Attention layer across two distinct scenarios: jet images and
kinematic features, utilizing a test dataset of 20 samples in FIG.
3. The left subplots illustrate the score distribution when L2
regularization is not applied, while the right subplots display
the attention scores under the influence of L2 regularization,
considering both pure jet images and Riemannian preprocessed
images respectively. The attention scores are divided with the
red vertical lines along the G-axis into those originating from
jet images (left of the red line) and those from kinematic fea-
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OUR CROSS ATTENSION MODEL 

Physics Example

Leading 

Jet

Sub-leading 

Jet

Data Pre-processing: 

Leading 

Jet

Sub-leading 

Jet

Kinematics

Centering:

Jet contents are shifted  shifted such that the jet axis in the center

Rotation:

Rotate the jet contents in the eta-phi plane such that the jet axis is vertical

Flipping:

Jet contents are re&ected over the vertical axis such that the right side contains the  

hard radiations

After preprocessing Higgs jet exhibits a two prong structure while QCD multi-jets 

process  shows a wide range of radiation. 

Background consists of 90% of QCD and 10% of ttbar

multihead  
cross attention layers 

multihead  
self attention layers 

[substructure ]x[substructure]

[jet kin]  x [jet kin]

transform jet kin by  
cross Att. [substracture]x [jet kin]  

step 1 : Self attention 

step  2 :Cross attention



TAKEAWAYS 

•  use "cross attention" when you combine the “high scale information” 
to the “low energy  scale”, because cross attention layer gives extra 
emphasis to the information linked to the high energy kinematics.  

•  skip connection and Interpretation :   Skip connection helps to 
maintain some connection to the inputs 

• More Physics: Heavy particles decay into colored particles (discovery, 
spin, color structure? )  Cross attention network probably more useful to 
resolve correlation of jet structures.  



d 

n=50

STEP 1 SELF ATTENTION LAYERS 

• ATTENTION Matrix mix all features. Higher 
attention elements indicates important 
correlations 

•  transformation  V → V'  does not change 
the dimension. Structure of V retained for 
the next transformation.  

• We adopt 50x50 self attention for jet and 
3x3 self attention for kinematics, with 
nhead = 5
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Self Attention

Self Attention:

self-attention allows each element in the sequence to 

attend to all other elements, capturing both local and 

global dependencies. This is achieved through the 

calculation of attention scores, which are used to linearly 

combine the values associated with di%erent positions.

Self attention output has the same  

dimension as the input
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For self attention  

Query, Key and Value are the same

It assigning di%erent weights 

 to di%erent elements in the input sequence,  

emphasizing the more relevant parts while 

 downplaying  the less relevant ones
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STEP 2 CROSS ATTENTION LAYERS 

• Choose cross attention  (jet kin) x (jet str. ) 

• Jet momentum : hard physics of partons   Q , V 

• jet substructure: parton shower, hadronization 
K  

• Substructure output  K and  Jet kinematics 
output Q make attention matrix.   The pairs  
update  V (jet Kin)  

• High scale feature relevant for classification 
gives extra weight to the corresponding jets 
though backward propagation 

n nkin

nkin = 3

jet  
kinematics 
(slowpoke)  

K Q

cross  
attention 

matrix  
(exchange 

information)

jet  
structure 
(King's Rock) 

nkin

n

dkin = 6
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dkin
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COMPARISON WITH OTHER APPROACH 

Naive approach  "simple concatenation" 
2

CNN branch

QCD observable 
(Local)

Kinematic variables 
(Global)

FCN branch

… …
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FIG. 2. The schematic plots for neural network structures: (a) conventionally used one in previous studies only with concatenation and (b) our
proposed one with a regularized attention mechanism.

II. OPTIMIZING COMBINATION

To extract information from kinematic variables, we in-
troduce a Fully Connected Network (FCN) that takes multi-
dimensional vector-type data as input. Since the energy de-
posits of these jet particles can be represented as calorimeter
images in the ([, q) plane, we utilize a simple but effective
Convolutional Neural Network (CNN) that takes images as in-
put. We employ the following three models as a comparative
set for our study:

(a) FCN with kinematic variables

(b) FCN + CNN with QCD observables (1) without and (2)
with Attention layer

(c) FCN + CNN with QCD observables after Riemannian
preprocessing 1 (1) without and (2) with Attention layer

We provide schematic diagrams of models (1) without and
(2) with the attention layer in FIG. 2. The FCN model (a)
solely considers kinematic variables. It comprises four fully
connected layers: each of which utilizes ReLU activation and
is interspersed with batch normalization. The model is com-
pleted with an output layer with a sigmoid activation function.
The models (b) and (c), as multi-modal designs, will be de-
tailed in the following.

CNN branch (Local features): The CNN branch accepts 2D
arrays of shape 32◊32◊2 as input. Two channels consist of
images of charged particles and neutral particles, respectively.
This is in accordance with the previous study [28].

FCN branch (Global features): The FCN branch takes a 1D
array of # kinematic variables as inputs.

Merging: In the previous studies [28–32], information from
kinematics and QCD is simply concatenated in classification
models. However, simply concatenating the outputs from the
FCN and CNN branches often results in an imbalance. This

1 We will introduce the Riemannian preprocessing applied in our study in the
following section III C.

concatenation approach often results in a dominance of kine-
matic features derived from the FCN, which can inadvertently
overshadow the valuable contributions of local features, such
as QCD color structures. Also, multi-modal networks gener-
ally do not apply activation in the last layer of each branch to
prevent loss of information. However, this can cause the ex-
tracted layer to be an imbalanced data scale. To resolve these
issues, we introduce additional network structures.

Attention layer: To mitigate this imbalance due to the non-
activated layer, we employ regularization and an attention
mechanism into a multi-modal framework. Specifically, an L2
regularization term is added, governed by a hyperparameter ;2,
to the loss function in the output layer of each individual model
branch. This constraint is essential for preventing any single
branch from dominating the multi-modal model, thereby en-
suring that both local and global features contribute optimally
to the final prediction. This penalizes large weights, thereby
encouraging the multi-modal model to merge as balanced with
the two different types of model. The L2 regularization term
has the form of a lagrangian multiplier as

Regularization term = ;2 ⇥
"’
:=1

,
2
: . (1)

,: denotes the weights of the output of FCN or CNN branch,
and ;2 is a hyperparameter for a regularization.

To resolve the overshadowing problem, we define the atten-
tion score as 0 with the softmax function [24, 33–35]

0(I) = 4
5attn (I)Õ2"

9=1 4
5attn (I) 9

(2)

where the I = [I1:" : I"+1:2" ] is the concatenated layer from
CNN and FCN respectively, and 5attn (G) is a trainable linear
transformation, ,attnG + 1attn. Attention values are calculated
as the element-wise product (I�0) between the attention score
and the concatenated layer. With above additions, our neural
network can learn how to choose important information and
it becomes more transparent by showing its focus on each
branch in classifying a signal and a background. The attention
values are then connected with a fully connected layer for
classification.
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III. EXAMPLE: �� VS CC̄

With the current interests of the LHC is being focused on
the “precision Higgs”, we consider a process ?? ! �� at
the LHC [28, 36–45]. This double Higgs production chan-
nel offers a unique probe into the Higgs boson self-coupling
which is a key parameter in the Higgs potential. Accurate
measurements of the Higgs self-coupling provide insights on
electroweak symmetry breaking, stability of the electroweak
vacuum, (critical) Higgs inflation and the potential for new
physics beyond the Standard Model (SM) [46–49].

Out of various decay modes in the double Higgs channel, we
consider

�
11̄✓✓̄aā

�
mode from � ! 11̄ and � ! ,,

⇤ !
✓ā✓̄a. The dominant background is CC̄ as an irreducible one.
This example serves as an exemplary case study for two rea-
sons: firstly, the kinematic characteristics of the signal and
backgrounds exhibit substantial differences; and secondly, the
QCD radiation patterns from the 11̄-system in both the sig-
nal and backgrounds offer distinctive features attributed to the
disparate (* (3) representations of the � and the top quark.

A. Event Selection

To generate Monte Carlo samples, we use the standard
chain of M��G����5 �MC@NLO [50], PYTHIA 8 [51], and
Delphes [52] for the 14 TeV LHC. Jet reconstruction is per-
formed based on the anti-:) algorithm [53] with a radius
parameter �' = 0.4 and a transverse momentum threshold
?) 9 > 20 GeV. The 1-tagging efficiency is set at n1!1 = 0.7,
with a misidentification rate of n2!1 = 0.2 and n 9!1 = 0.01.
The baseline cuts are applied as follows. The transverse mo-
mentum ?) of the two leading 1-tagged jets is set to be greater
than 30 GeV, and two isolated leptons of opposite charge are
required to have ?) greater than 20 GeV. The missing trans-
verse momentum should exceed 20 GeV. The separation in the
[ � q space for 11̄ pairs, represented by �'11̄, is restricted to
be less than 1.8, while for lepton pairs, �'✓✓ should be under
1.3. The invariant mass of the lepton pairs <✓✓ is constrained
to be less than 65 GeV and the invariant mass of 1-tagged jets
lies between 95 GeV  <11̄  140 GeV. Lastly, the pseudo-
rapidity [ 9 of the jets is capped at 2.5.

B. Kinematic information

We utilize conventional # = 10 kinematic variables [28, 54]

• The magnitude of the missing transverse momentum

• Transverse momentum of each lepton with ?) ordering,

• The angular distance in the ([, q) plane between ✓
� and

✓
+, between 1 and 1̄

• Invariant mass of the (✓�✓+) and (11̄) respectively,

• Transverse momentum of (✓�✓+) and (11̄) respectively,

• The azimuthal angles between the (✓�✓+) and (11̄).
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FIG. 3. The comparison of attention scores 0(I) in G-axis for a
test dataset comprising 20 samples with a data index in H-axis are
evaluated post-training under two distinct neural network models
using two different datasets.

C. QCD information and Decorrelation

There is a distinct difference in the radiation patterns em-
anating from jets produced by color singlet and color octet
particles. QCD shower radiations from a color singlet particle
tend to align more closely with the direction of the other jet
due to color connection and color dipole effects, resulting in
soft radiation that fills the space between the two quark jets.
In contrast, radiations from color octet particles tend to spread
out more broadly as they are predominantly directed toward
the beam axis [13, 15, 18].

To enhance the complementary capabilities of multi-modal
deep learning, we use a Riemannian mapping which is de-
signed to remove the characteristics of the kinematic feature
�'11̄ embedded in the jet image [55]. With this geometric
decorrelation method, one can focus on the color connectivity
without being distracted by the kinematics. We demonstrate
the results of decorrelation with global features using Princi-
pal Component Analysis (PCA) and linear regression methods
in Appendix A. Finally, we take a conventional procedure in
dealing with jet images [14, 28, 30] as in Appendix B 1.

IV. RESULTS

With an Attention layer, we can assess the “importance” of
each contribution in details. We utilize the attention scores
0(I) of eq. (2) from the trained multi-modal model and the
Attention layer across two distinct scenarios: jet images and
kinematic features, utilizing a test dataset of 20 samples in FIG.
3. The left subplots illustrate the score distribution when L2
regularization is not applied, while the right subplots display
the attention scores under the influence of L2 regularization,
considering both pure jet images and Riemannian preprocessed
images respectively. The attention scores are divided with the
red vertical lines along the G-axis into those originating from
jet images (left of the red line) and those from kinematic fea-

(b)  self attention matrix of combined information 

A V  = 
Q(Sub) x K(Sub ) Q(Kin x K(Sub) 

Q(Sub) x K(Kin) Q(Kin) K(Kin) 
V = Q(kin) K(kin) V(kin) +….  ( )

our network kill this term 
 and keep off diagonal part only 
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PHYSICS 
• a jet:   

                    P(hadrons in jets | parton or jet ) =  

• a fatjet  or a jet with substructure 

                                      

• two fatjets in an event      
 

   

P({xi} |y)

P({xi} |{yα})

P({xi}, {x′ j}, {yα}, {y′ β}) ∼ P({xi} |{yα})P({x′ i} |{y′ β}) P({yα}, {y′ β})

P({xi}, {x′ j}, {yα, y′ β}) ∼ P({xi} |{yα, y′ β})P({x′ i} |{yα, y′ β}) P({yα, y′ β})

cross attention jet kinematics 



IMPROVEMENT USING CROSS ATTENTION 
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Figure 6: Left: The Receiver Operating Characteristic (ROC) curves for the four networks
for the signal BP with mH = 1 TeV. Right: 95% upper limit on the total cross section for
the process gg æ H æ hh (having factored out the SM-like h æ bb̄ decays) at the HL-
LHC with integrated Luminosity 3000 fb≠1 for di�erent ML analyses. The band for each
plot represents the upper and lower values for 5 independent training of di�erent randum
number seeds, and the middle line represents the central values. The ATLAS limits are
extracted from the latest analysis in [44] and linearly scaled to the integrated luminosity of
3000 fb≠1.

exclusively on kinematic information. Replacing the cross-attention layer with a simple
concatenation layer results in a degradation of classification performance by approximately
≥ 4%, as depicted by the green line in the plot.

In the right plot, we present the 95% upper limit on the production cross-section at
the HL-LHC for heavy scalar mass ranges between 600 ≠ 2000 GeV. The dashed black line
represents the limit for the ATLAS analysis [44], with linear scaling of the integrated lumi-
nosity to 3000 fb≠1. For lower masses, mH Æ 1 TeV, all the used transformer models show
enhanced performance over the ATLAS analysis, exhibiting over 10 times better sensitivity.
For larger masses, for which the reconstructed kinematics of the signal are faithful to its
true structure with vanishing background events, the performance of the transformer mod-
els saturates. In fact, for the limit, e.g., mH = 2 TeV, the background events can be easily
removed with a simple cut on the reconstructed distributions of the signal events, which
exhibits a clear di�erence from the background distributions. The transformer network
trained on the jet constituents only does not show a large impact with varying the heavy
scalar mass.

The network performance is subject to training uncertainty and the statistical uncer-
tainty coming from limited training and testing samples. For example, the network perfor-
mance can be influenced by the the random partitioning of the training and test data sets,
and the network performance varies when repeating the training and test steps with new
splits. We repeat the experiment for k times and report the results as bands between the
highest and lowest values. In our results, we use k = 5, and the bands represent the values
of the di�erent represented experiments.

As for optimizing the signal-to-background yield, we enforce a cut on the networks
output score to keep only 20 events of the background. With this choice, we alleviate
the statistical errors that may occur for lower background[88]. The optimized signal and
background events are used to derive the upper limit using the following formula [89]

ZA =
C

2
A

(Ns + Nb) ln (Ns + Nb)(Nb + ‡
2
b
)
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2
b
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b
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2
b
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Nb(Nb + ‡
2
b
))

BD1/2
, (14)

with Ns and Nb being the number of signal and background events, respectively, and where

14

factor 5 improvement at the same acceptance. 

Cross attention  improve the  rejection  
efficiency significantly

green: self attention of Jet str. and Kin　 
→ concatenate and MLP　 
red line : cross attention 

Simple estimation of the upper limits 

information. For this purpose, we utilize four di�erent attention based transformer models
which analyze the reconstructed high level kinematics or the jet substructures individu-
ally via transformer encoders with self-attention mechanisms. Alternatively, we adopt two
multi-modals transformer encoders to analyze the combined information of kinematics and
jets substructure. In the latter, we incorporate the di�erent information using a simple
concatenation layer or cross-attention layer. A full description of the used networks is in
Appendix A.
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Figure 6: Left: The Receiver Operating Characteristic (ROC) curves for the four networks
for the signal BP with mH = 1 TeV. Right: Estimated 95% upper limit, with ZA Ø 2 from
Eq. (14), on the total cross section for the process gg æ H æ hh (having factored out the
SM-like h æ bb̄ decays) at the HL-LHC (with an integrated luminosity of 3000 fb≠1) for
di�erent ML analyses. The band for each plot represents the upper and lower values for 5
independent training of di�erent random number seeds.

The classification performance of the utilized networks is presented in Fig. 6. In the
left plot, we showcase the ROC for the employed networks for a signal with mH = 1 TeV.
The multi-modal transformer encoder with cross-attention layers performs best, achieving
an Area Under the Curve (AUC) of 98.8%. In contrast, the transformer encoder trained
solely on the jet substructure information exhibits the lowest performance with an AUC
of 84.4%. It is crucial to highlight the impact of the cross-attention layer, which enhances
performance by 7% over the transformer model trained exclusively on kinematic informa-
tion. Replacing the cross-attention layer with a simple concatenation layer results in a
degradation of classification performance by approximately ≥ 4%, as depicted by the green
line in the plot.

We now illustrate the impact of our classifier on H æ hh exclusion and discovery. In
order to optimize the signal-to-background yield, we enforce a cut on the network output
score by keeping only 20 events of the background. With this choice, we alleviate the
statistical errors that may occur for lower background [89]. The optimized signal and
background events are used to derive the upper limit using the following formula [90]:

ZA =
C

2
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BD1/2
, (14)

with Ns and Nb being the number of signal and background events, respectively, and where
‡b characterizes the uncertainty in the background events chosen to be a conservative value
of 10% [91]. In this approximation, one expects to exclude(discover) regions with a total
significance of ZA > 2(5).

The network performance is subject to both training and statistical uncertainty from
limited training and testing samples. For example, the network performance can be in-
fluenced by the random partitioning of the training and test data sets, and the network
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ROLE OF   θ

Conversely, when the information of the jet constituents is included using the cross-
attention layer, the attention output distributions for background events are broader, and
the signal distributions are narrower. The fact that background jets lack a multi-prong
structure with broader soft radiations influences the attention output for background events,
increasing the output variations in the feature space.

Finally, we include, alongside the described kinematical information, also the rotation
angle ◊ aligning the fat jet axis to the „ direction after shifting the jet ÷ and „ to the center
of the ÷ ≠ „ plane. This information allows the network to reconstruct the full events and
access the correlation of the jet shape to the other fat jet and the beam axis. In Fig. 8,
we show the ROC curve of the network trained without the ◊ inputs (red) compared to
the ROC curve of our coss-attention model (blue). The improvement on the background
rejection is a factor of four for a signal e�ciency of 80%. Therefore, including ◊ results in a
drastically increased performance. The model with ◊ has higher e�ciency at mJ1 ≥ mh and
pT ≥

mH

2 . In short, the model can focus more on the H æ hh kinematics with ◊ inputs.
We also looked for simple correlations among ◊ and the other kinematical variables, such
as ÷J „J , but did not find any apparent ones contributing to the selection improvement.
(The correlations within the internal structures of the jet will be investigated in future
publications.)
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Figure 8: left) The ROC curve and error band of the full model using ◊ input (red) and the
model without ◊ input (blue). The ROC is obtained by using 20,000 signal and background
testing events. The error is estimated as in Fig. 6. The middle(right) plot shows the signal
e�ciency as varying mJ1(pT J1). The ratio is calculated at 80% of the signal e�ciency for
20,000 signal samples. The e�ciency (without) using ◊ is shown by blue(red) bars indicating
statistical errors. The acceptance of the full model is higher than the one without ◊ input
at mJ1 ≥ mh and pJ1 ≥ mH/2.

5 Interpretation of the transformer encoder results

In the following section, we discuss additional methods to interpret and analyze the results
of the transformer encoder with cross-attention, which performs best in Fig. 6 The inter-
pretation methods are generic and can be further applied to other networks to interpret
their results. As attention-based transformer models excel in capturing intricate spatial
relationships and global context within data, their interpretability becomes paramount.
Interpretation methods for attention-based transformers aim to elucidate the visual cues,
features, and regions that contribute significantly to the model’s predictions. Common
Interpretation Methods are

• Attention Maps: Attention maps visualize the focus of the model by highlighting
the particles in the cloud that receive higher attention. These maps provide a direct
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SOME SIGNAL SELECTION EFFICIENCY

Conversely, when the information of the jet constituents is included using the cross-
attention layer, the attention output distributions for background events are broader, and
the signal distributions are narrower. The fact that background jets lack a multi-prong
structure with broader soft radiations influences the attention output for background events,
increasing the output variations in the feature space.

Finally, we include, alongside the described kinematical information, also the rotation
angle ◊ aligning the fat jet axis to the „ direction after shifting the jet ÷ and „ to the center
of the ÷ ≠ „ plane. This information allows the network to reconstruct the full events and
access the correlation of the jet shape to the other fat jet and the beam axis. In Fig. 8,
we show the ROC curve of the network trained without the ◊ inputs (red) compared to
the ROC curve of our coss-attention model (blue). The improvement on the background
rejection is a factor of four for a signal e�ciency of 80%. Therefore, including ◊ results in a
drastically increased performance. The model with ◊ has higher e�ciency at mJ1 ≥ mh and
pT ≥

mH

2 . In short, the model can focus more on the H æ hh kinematics with ◊ inputs.
We also looked for simple correlations among ◊ and the other kinematical variables, such
as ÷J „J , but did not find any apparent ones contributing to the selection improvement.
(The correlations within the internal structures of the jet will be investigated in future
publications.)
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Figure 8: left) The ROC curve and error band of the full model using ◊ input (red) and the
model without ◊ input (blue). The ROC is obtained by using 20,000 signal and background
testing events. The error is estimated as in Fig. 6. The middle(right) plot shows the signal
e�ciency as varying mJ1(pT J1). The ratio is calculated at 80% of the signal e�ciency for
20,000 signal samples. The e�ciency (without) using ◊ is shown by blue(red) bars indicating
statistical errors. The acceptance of the full model is higher than the one without ◊ input
at mJ1 ≥ mh and pJ1 ≥ mH/2.

5 Interpretation of the transformer encoder results

In the following section, we discuss additional methods to interpret and analyze the results
of the transformer encoder with cross-attention, which performs best in Fig. 6 The inter-
pretation methods are generic and can be further applied to other networks to interpret
their results. As attention-based transformer models excel in capturing intricate spatial
relationships and global context within data, their interpretability becomes paramount.
Interpretation methods for attention-based transformers aim to elucidate the visual cues,
features, and regions that contribute significantly to the model’s predictions. Common
Interpretation Methods are

• Attention Maps: Attention maps visualize the focus of the model by highlighting
the particles in the cloud that receive higher attention. These maps provide a direct
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• Deep Learning suffers low 
interpretability and it is always 
annoying.  

• skip connection of attention blocks 
helps connecting input data to 
extracted feature(transformed 
quantity) in some level.

input data 
(particle x feature) 

SELF ATTENTION

MLP FOR FEATURE 

SELF ATTENTION

MLP FOR FEATURE 

skip  
connection 

skip  
connection 

Interpretation and Skip Connection  

Figure 1: The Transformer - model architecture.

The Transformer follows this overall architecture using stacked self-attention and point-wise, fully
connected layers for both the encoder and decoder, shown in the left and right halves of Figure 1,
respectively.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum

3

1706.03762 Vaswani et all “Attention is all you need  



all the mentioned methods, we adopt the attention maps and Grad-CAM to interpret the
learned information using the transformer model.

5.1 Attention maps

Attention maps serve as a bridge between the abstract nature of neural network computa-
tions and the desired interpretability. These maps visualize the attention scores assigned
to each particle token in the input sequence, providing a representation of where the model
focuses its attention during processing.
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Figure 9: Attention maps of the last self-attention transformer layer, which processes the
jet substructure for the signal (top) and backgrounds (bottom) for a 120K test event.
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Figure 10: Cross-attention maps of the cross-attention transformer layer averaged over
the 8 cross-attention heads, which processes the jet substructure and the event kinematics
for the signal (top) and backgrounds (bottom) for a 120K test event. The X-axis shows
the attention score for the first transformed 20th jet contents while the Y-axis shows the
attention score for the transformed reconstructed final state particles.

18

EX. SELF AND CROSS-ATTENTION MAP 

view into which particles are considered most relevant for prediction, facilitating an
intuitive understanding of the model’s decision-making process.

• Grad-CAM It generates class-specific activation maps by weighting the gradients
of the predicted class score with respect to the final transformer layer [91]. This
technique highlights the regions in the feature space that are crucial for the model’s
classification decision and thus can provide a geometrical interpretation, ÷ ≠ „ plane,
of the learned information by the network.

• Saliency Maps Saliency maps for transformer models are a form of interpretabil-
ity technique used to understand and visualize the importance of di�erent parts of
the input sequence concerning the model’s predictions. Saliency maps highlight the
regions of the input that most significantly influence the model’s output, providing
insights into the model’s decision-making process [92–94]. By examining the saliency
map, users can gain insights into which parts of the input sequence are crucial for the
model’s predictions.

• Layer-wise Relevance Propagation (LRP) The primary goal of LRP is to assign
relevance scores to input features, indicating their contribution to the model’s output
[95]. However, it’s worth noting that LRP has limitations, and its e�ectiveness can
vary depending on the specific neural network architecture and the nature of the
task. Di�erent variants of LRP have been proposed to address specific challenges and
improve its applicability to various models.

The interpretation of attention-based transformer models is pivotal for unlocking their
full potential and ensuring their responsible deployment in real-world applications. Among
all the mentioned methods, we adopt the attention maps and Grad-CAM to interpret the
learned information using the transformer model.

5.1 Attention maps

Attention maps serve as a bridge between the abstract nature of neural network computa-
tions and the desired interpretability. These maps visualize the attention scores assigned
to each particle token in the input sequence, providing a clear representation of where the
model focuses its attention during processing.
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Figure 9: Attention maps of the last self-attention transformer layer, which processes the
jet substructure for the signal (top) and backgrounds (bottom) for a 120K test event.
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GRAD-CAM (1610.02391)
• Output of last attension layers (some correlation with original inputs) 

Figure 11: Grad-CAM results for 5000 test events of the transformer model with cross-
attention. Left: pT distribution of the jet constituents when events are predicted as signal
events (top) and background events (bottom). Right: heat-map of the Grad-CAM results.
Note that the asymmetric pattern is due to the flipping transformation in the pre-processing
steps in which all constituents with larger momentum are reflected in the positive ÷ direc-
tion.

are computed during the backward pass. The gradients are then used to calculate the
importance of each activation map. These importance scores are essentially the weights
assigned to each spatial location of the final transformer layer. The weighted sum of the
activation maps is computed, creating the Grad-CAM. This map highlights the regions that
contributed the most to the final prediction. Additionally, upsampling is often employed to
match the Grad-CAM dimensions with the original input features.

To visualize the geometrical interpretation of the learned information from the jet con-
stituents, we utilize Grad-CAM on the final self-attention layer of the jets, specifically, the
Add() Layer depicted in Fig. 1. The results are shown in Fig. 11 for 5000 test images.
The left panel illustrates the pT distribution of the predicted events as signal (top) or back-
ground (bottom). Signal events are considered for the benchmark point with mH = 1 TeV.
The right panel displays the heat map of the Grad-CAM output for the predicted signal
(top) and the predicted background (bottom).

The visualization of the heat map clarifies that the transformer model focuses on the
two-prong structure to classify the input event as a signal. On the other hand, it relies on
the soft-radiation pattern to classify the input event as a background event. Interestingly,
we found that the result highlights that the model focuses on the positive ÷ direction to
make predictions, which is due to the flipping transformation done in the pre-processing
step.

While Grad-CAM has the power to explain the considered regions in the feature space for
the network predictions, one of its drawbacks is that it relies on gradient information from
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models with arbitrary architectures. The primary objective of Grad-CAM is to highlight
the important regions in a transformed input features space, Â÷ ≠ Â„ plane, that contribute
to the prediction of a specific class [92].

Let Fk(Â÷, Â„) represent the activation of the final transformer layer for the k
th event. The

gradient of the predicted class score (Yc) with respect to the activation output is computed
as:

ˆYc

ˆFk
(15)

This gradient is then globally averaged to obtain the importance weights (–) as

–k(Â÷, Â„) = 1
Z

ÿ ˆYc

ˆFk(Â÷, Â„, ÊpT )
(16)

where Z is the size of the feature activations, and the sum runs over the jet constituents.
Â÷, Â„ and ÊpT are the transformed features. The final Grad-CAM heatmap is a weighted sum
of gradients as

Grad-CAM(Â÷, Â„) = 1
k

ÿ

k

–k(Â÷, Â„)Fk(Â÷, Â„, ÊpT ) (17)

This heatmap highlights the regions of the input image that contribute the most to the
prediction of the target class.

Figure 11: Grad-CAM results for 5000 test events of the transformer model with cross-
attention. Left: pT distribution of the jet constituents when events are predicted as signal
events (top) and background events (bottom) in the ÷-„ plane. Note that the asymmetric
pattern is due to the flipping transformation in the pre-processing steps in which all con-
stituents with larger momentum are reflected in the positive ÷ direction. Right: heat-map
of the Grad-CAM results in transformed Â÷-Â„ plane, as in Eq. (4).

In general, it operates by utilizing the gradient information flowing into the final trans-
former layer in the following way: During the forward pass, the neural network processes
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In general, it operates by utilizing the gradient information flowing into the final trans-
former layer in the following way: During the forward pass, the neural network processes
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TAKEAWAYS 

•  use "cross attention" when you combine the “high scale information” 
to the “low energy  scale”, because cross attention layer gives extra 
emphasis to the information linked to the high energy kinematics.  

•  skip connection and Interpretation :   Skip connection helps to 
maintain some connection to the inputs 

• More Physics: Heavy particles decay into colored particles (discovery, 
spin, color structure? )  Cross attention network probably more useful to 
resolve correlation of jet structures.   

• Result looks very good to me and I am still worrying about bugs... 



NEED TO BE IMPROVED

• Current GPU requirement: 2 x NVIDIA RTX A6000 (48GB) with 80% and 30%  
utilization in tensor flow mirror strategy.  96% consumption /card  20min/
training. 

• We definitely have to change “jet substructure part” to simpler one, keeping 
cross attention structure(this part is generic)  

• Ex:  “Modulated Network of HL variables”  

• QCD vs top, Amon Furuichi(Nagoya), Sung Hak Lim(Rutgers) and M. Nojiri   
arXiv  2312.11760[hep-ph]  work as good as Particle Transformer.  

• ......    but are they robust for color connection? 



BACK UP SLIDES



Subjet  
Localized sampling   

 momentum and counting  
for various angular sccale 

R=0.1, 0.2, 0.3  

Jet spectrum  
two point Energy 

correlation  
(unlocalized sampling )

Minkowski Functionals 
geometry of jet cosntituent  

distribution 

pt distribution of constituents  JET High Level variables 

3.3.2 two-point correlation spectrum S2

Top jets often have two or three substructures as they decay into a bottom quark and
two light quarks. Therefore, structure in two-point and three-point energy correlation is
essential to discriminate top jets from QCD jets. We use IRC safe two-point correlation
spectrum, which is defined as follows[9, 20, 32, 33],

S2,ab(R)
def
=

X

i2a

X

j2b
pT,ipT,j�(R�Rij). (3.6)

Here, a and b are labels for subsets of jet constituents, i and j are labels for their constituents
and Rij

def
=

p
(⌘i � ⌘j)2 + (�i � �j)

2. Notably, all EFPn
2 information is included in S2,ab.

The structure indexes a, b 2 {Jtrim,Jc
trim

def
= J � Jtrim} or a, b 2 {Jlead,Jc

lead

def
=

J � Jlead} and we call corresponding S2 inputs as xtrim and xlead. These are collectively
referred to as xS2 . The S2 is binned by �R = 0.1. S2s are compressed compared with
sparse jet images. The correlation involving Jc

trim
and Jc

lead
is formally IRC safe, but it

emphasizes the effect of soft particle distributions.
The module of the networks that further compresses the S2 information is a simple

MLP with two hidden layers. The inputs are combined with xkin as shown in Fig.3a. Two
sets of outputs of dimension five each goes into the final convolution layers ;

ztrim = �
trim

(xtrim, xkin)

zlead = �
lead

(xlead, xkin).

See [9] for the detailed setup of the network.

(a) A schematic diagram of S2 module (b) A schematic diagram of subjet recursive

module

Figure 3

3.3.3 subjet recursive module "subj"

If the moment of the subjet is added as an input, information about the exact location of
the subcluster can be included. The k-th subjet information xsubj,k includes the transverse
momentum of the subjet of radius Ri where Ri is the cone size of the subjet, R = 0.1, 0.2,

– 8 –



NETWORK USING HL INPUTS (ANALYSIS MODEL=AM)
3.3.5 Comparison of the performance of ParT and Analysis model

Figure 5: The analysis model (AM) combining xS2 , xsubj, xcount and xMF

In this subsection, we compare ParT and AM classification performance using PY
and HW samples. The results involving the VIN sample are listed in Appendix.C.1. As
described in section 3.3, the Analysis model uses all HL variables with the simple modulated
network shown in Fig.5. Because of the structure of the AM, One can switch off some of
the features of AM to check the contribution. The required GPU resources are small. For
example, AM requires less than 1GB of GPU memory, while ParT requires 14GB of GPU
memory in our training with a batch size of 1000.

Here AM combines the two-point correlation, subjets(including number of subjet con-
stituents), counting, and MF information (xS2 , xsubj(ex), xcount, xMF) by simple modulated
networks as shown in Fig.5.

We list classification performance of ParT and AM for (PT vs PQ), (HT vs HQ), (PQ vs
PQ), (PT vs HT) in Table2. Here AUC, R50% and R30% are defined in Eq.(2.1) and (2.2).
The performance of the classifier differs significantly between PY and HW samples. The
R50% and R30% numbers differ by about 30%, where PY predicts large performance.

The AM model is consistent with the ParT for the classification tasks except PT vs
HT classification that we discuss later. The R50%, and R30%, AM is slightly worse, but
consistent. The difference is less than 5% (10%) for R50%(30%). The largest difference
occurs for R30% = 372 for ParT, 337 for AM for PT vs PQ classification.

The performances are estimated based on the best training results among ten indepen-
dent training using different seeds. Because our QCD training sample is of the order of 30k,
the number of top-like QCD events that satisfy the condition of R30% is only around 1000.
The naive statistical error of the training and testing sample is 3%. Including the uncer-
tainty coming from the minimization of the loss function, the difference is not statistically
significant. In section 4, we estimate the systematical error using a bootstrapping method.

The gap between AM and ParT is large for PT vs HT classification. We tried several
modifications of the Analysis Model but did not find an extension to fill the gap between
AM and ParT. The modification we tried is as follows; 1) Replacing the recursive network
model for xsubj to the dense model where all subjet information isconcatenated. 2) Adding
MFs at an energy threshold of 16 GeV improves the AUC by 0.607. 3) Increasing the depth
of the hidden layer from two to three and concatenating xkin in each layer improves the AUC
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Figure 2

feature is the color charge of originating parton: color triplet or octet [31, 38, 39]. Such
counting variables are also essential in top jet tagging, as quark vs. gluon jet classification is
needed at the subjet level. Note that the kinematics of subjets are different in top jets and
QCD jets; the quark subjets of top jets tend to have similar starting pT scale, whereas those
of QCD jets do not, due to the kinematics of parton shower. This kinematic difference in
subjets suggests that conditional distributions of the counting variable given jet constituent
pT can be an informative type of variable for capturing those color substructures of subjets.

Figure 3: Average counts of the jet constituents per pT bins for top and QCD jet samples. The
jet constituents are Delphes Eflow objects of QCD or top jets pixellated with the size
� = 0.1⇥ 0.1. The bin boundaries are at pT = [0.1, 0.5⇥ (

p
2)

k (k = 0,..), 512] GeV.

Figure 3 shows the expected count histogram of jet constituent pT over the given
samples. The results from three generators PY, HW, and VIN are represented by solid,
dotted, and dashed lines, respectively. For QCD jets shown in blue lines, HW and VIN
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Figure 6: Distribution of the difference between the classifier outputs of the best model and the
second best model for PQ vs. HQ classification. The red solid line is for ParT, and
the blue dot-dashed line is for AM. The distribution for ParT is significantly broader
than that of AM. Additionally, the green dotted line is for the AM-PIP with only the
morphology analysis module active, and the orange dashed line is for the AM-PIP with
relation network and subjet analysis modules active. These two extra lines are for
demonstrating output variations in simpler models compared to the full AM.

4.2 Comparing the Information Content of Classifiers using Odds Ratio

In this section, we directly compare AM and ParT using an odds ratio, which is useful in
comparing the information content of two classifiers. Let s

I(x) be the classifier output for
given input x, i.e., the posterior being a signal as modeled by classifier I. The odds ratio
ŵ

I/II is defined as the ratio of odds estimated by models I and II, expressed as follows:

ORI/II(x) =
s
I(x)

1 � sI(x)
· 1 � s

II(x)

sII(x)
. (4.2)

An odds ratio greater than 1 indicates that the classifier I is more confident in its signal
prediction by the factor of the odds ratio than the classifier II. If both models are identical,
the odds ratio will be 1.6 Therefore, deviations from 1 in the odds ratio indicate differences
in the predictions of the two classifiers for a given sample.

Note that when there is a clear hierarchy between two models, the odds ratio can also
be interpreted as a likelihood ratio between two classes, using only the features exclusive
to the more expressive model. If the classifier I is more expressive than II, the prediction
s
II(x) in the denominator acts as a normalizer countering information in s

I(x) covered by
the model II, similar to conditional probability. With this odds ratio interpretation, we
can construct a posterior probability that works as a classifier utilizing only the features

6
Note that this reference point 1 may change if you compare classifiers trained using different class priors.

Here, we only consider classifiers trained using class prior probability to 0.5.
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Figure 7: The average ROC curves and their standard deviations for the AM, ParT-best, and
ParT-2nd trained on bootstrap datasets. Additionally, we show the ROC curves for
the odds ratios ORI/II, where I is the ensemble average of ParT-best, and II is AM
or ParT-2nd. The ROC curves shown here are for the following classification prob-
lems: (top left) PT vs. PQ, (top right) HT vs. HQ, (bottom left) PQ vs. HQ, and
(bottom right) PT vs. HT.

jets. Identifying the HLFs exclusive to Pythia to fill this minor gap would be interesting,
particularly in understanding the differences between simulations and calibrating those with
experimental data; we plan to explore this in future studies.

One key advantage of employing simpler classifiers is the reduction in training uncer-
tainty, a direct consequence of the bias-variance tradeoff. We explicitly demonstrated this
behavior in AM through bootstrap methods applied to our jet tagging problems, and our
AM demonstrated much smaller training uncertainty than ParT. Importantly, the smaller
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AM model :1GB GPU memory   on  GeForce 1080Ti GPU(11.3TFLOPS)   
with 35% GPU  utilization.  need  lots of preprocessing 

ParT:  14GB GPU memory  RTX A6000 ( 38.7TFLOPS)  GPU utilization 95%  


