Bootstrapping gauge theories (QCD)

Yifei He LPENS CNRS

based on 2309.12402 and WIP with Martin Kruczenski

Low energy physics of asymptotically free gauge theory

asymptotically free gauge theory $SU(N_c)$

chiral symmetry breaking and confinement

massive quarks $m_q \ll \Lambda_{\rm QCD}$ fundamental representation of gauge group N_f

Low energy physics of asymptotically free gauge theory

asymptotically free gauge theory $SU(N_c)$

chiral symmetry breaking and confinement

 N_f massive quarks $m_q \ll \Lambda_{\rm QCD}$ fundamental representation of gauge group

$$
\mathcal{L} = i \sum_{j}^{N_f} \bar{q}_j \mathcal{D} q_j - \sum_{j}^{N_f} m_q \bar{q}_j q_j - \frac{1}{4} G^{\mu\nu}_a G^a_{\mu\nu} + \text{gauge fixing} + \text{ghost}
$$

gauge theory parameters: N_c N_f m_q $\Lambda_{\rm QCD}$

Low energy physics of asymptotically free gauge theory

asymptotically free gauge theory $SU(N_c)$

chiral symmetry breaking and confinement

 N_f massive quarks $m_q \ll \Lambda_{\rm QCD}$ fundamental representation of gauge group

$$
\mathcal{L} = i \sum_{j}^{N_f} \bar{q}_j \mathcal{D} q_j - \sum_{j}^{N_f} m_q \bar{q}_j q_j - \frac{1}{4} G_a^{\mu\nu} G_{\mu\nu}^a + \text{gauge fixing} + \text{ghost}
$$

gauge theory parameters: N_c N_f m_q $\Lambda_{\rm QCD}$

What is the low energy physics?

Pion physics

Pion physics

$$
\text{e.g.} \quad N_f=2 \quad \text{pions} \qquad \pi_0=\pi^3 \quad \pi_{\pm}=\frac{1}{\sqrt{2}}\big(\pi^1\pm i\pi^2\big) \quad \longrightarrow \qquad U=\text{$e^{i\frac{\vec{\tau}\cdot\vec{\pi}}{f_{\pi}}$}-$ \quad \text{pion decay constant}
$$

Pion physics

$$
\text{e.g.} \quad N_f=2 \quad \text{pions} \qquad \pi_0=\pi^3 \quad \pi_{\pm}=\frac{1}{\sqrt{2}}\big(\pi^1\pm i\pi^2\big) \quad \longrightarrow \qquad U\equiv e^{i\frac{\vec{\tau}\cdot\vec{\pi}}{f\pi}} \qquad \text{pion decay constant}
$$

very low energy – effective Lagrangian (lowest order):
\n
$$
\mathcal{L} = \frac{f_{\pi}^2}{4} \left\{ \text{Tr} \left(\partial_{\mu} U \partial^{\mu} U^{\dagger} \right) + m_{\pi}^2 \text{Tr} \left(U + U^{\dagger} \right) \right\}
$$
\n
$$
\mathcal{L}_2^{2\pi} = \frac{1}{2} \partial_{\mu} \vec{\pi} \cdot \partial^{\mu} \vec{\pi} - \frac{1}{2} m_{\pi}^2 \vec{\pi}^2 \qquad \mathcal{L}_2^{4\pi} = \frac{1}{6 f_{\pi}^2} \Big((\vec{\pi} \cdot \partial_{\mu} \vec{\pi})^2 - \vec{\pi}^2 (\partial_{\mu} \vec{\pi} \cdot \partial^{\mu} \vec{\pi}) \Big) + \frac{m_{\pi}^2}{24 f_{\pi}^2} (\vec{\pi}^2)^2 \qquad \dots
$$

compute the S-matrix of pions

compute the S-matrix of pions

rules of the game: chiral symmetry breaking, confinement, gauge theory parameters

as few as possible low energy parameters

can be compared with QCD experimental data

can be compared with QCD experimental data

formalism is general — can be compared with lattice data

partial waves

$$
f^I_\ell(s)\,\,\widetilde{\,}
$$

form factors

 $F_{\ell}^{I}(s)$

2-point functions

 $\Pi^I_\ell(s)$ -

spectral density

control in different regions

analytic function in s

modern S-matrix bootstrap: [Paulos, Penedones, Toledo, van Rees, Vieira, 2016 & 2017]

 $\pi_a(p_1) + \pi_b(p_2) \rightarrow \pi_c(p_3) + \pi_d(p_4)$ in the context of pion scattering:

 $\langle p_1, a; p_2, b | \mathbf{T} | p_3, c; p_4, d \rangle = A(s, t, u) \delta_{ab} \delta_{cd} + A(t, s, u) \delta_{ac} \delta_{bd} + A(u, t, s) \delta_{ad} \delta_{bc}$ *(momentum conservation)*

 $s = (p_1 + p_2)^2$ $t = (p_1 - p_3)^2$ $u = (p_1 - p_4)^2$

modern S-matrix bootstrap: [Paulos, Penedones, Toledo, van Rees, Vieira, 2016 & 2017]

 $\pi_a(p_1) + \pi_b(p_2) \rightarrow \pi_c(p_3) + \pi_d(p_4)$ in the context of pion scattering:

(momentum conservation) $\langle p_1, a; p_2, b | \mathbf{T} | p_3, c; p_4, d \rangle = A(s, t, u) \delta_{ab} \delta_{cd} + A(t, s, u) \delta_{ac} \delta_{bd} + A(u, t, s) \delta_{ad} \delta_{bc}$

 $s = (p_1 + p_2)^2$ *crossing* $A(s,t,u) = A(s,u,t)$ **analyticity** cuts $s, t, u > 4$ $t = (p_1 - p_3)^2$ $m_\pi = 1$ $u = (p_1 - p_4)^2$

modern S-matrix bootstrap: [Paulos, Penedones, Toledo, van Rees, Vieira, 2016 & 2017]

 $\pi_a(p_1) + \pi_b(p_2) \rightarrow \pi_c(p_3) + \pi_d(p_4)$ in the context of pion scattering:

 $\langle p_1, a; p_2, b | \mathbf{T} | p_3, c; p_4, d \rangle = A(s, t, u) \delta_{ab} \delta_{cd} + A(t, s, u) \delta_{ac} \delta_{bd} + A(u, t, s) \delta_{ad} \delta_{bc}$ *(momentum conservation)*

$$
s = (p_1 + p_2)^2
$$

\n
$$
t = (p_1 - p_3)^2
$$

\n
$$
u = (p_1 - p_4)^2
$$

\n
$$
A(s, t, u) = T_0 + \frac{1}{\pi} \int_4^{\infty} \frac{\sigma_1(x)}{x - s} + \frac{1}{\pi} \int_4^{\infty} dx \sigma_2(x) \left[\frac{1}{x - t} + \frac{1}{x - u} \right]
$$

\n
$$
+ \frac{1}{\pi^2} \int_4^{\infty} \int_4^{\infty} \frac{\rho_1(x, y)}{x - s} \left[\frac{1}{y - t} + \frac{1}{y - u} \right] + \frac{1}{\pi^2} \int_4^{\infty} \int_4^{\infty} \frac{\rho_2(x, y)}{(x - t)(y - u)}
$$

\nparameters: T_0 , $\sigma_{\alpha = 1, 2}(x)$, $\rho_{\alpha = 1, 2}(x, y)$

$$
S_{\ell}^{I}(s^{+})| \leq 1, s > 4 \quad \forall \ell, I
$$

unitarity

$$
S_{\ell}^{I}(s^{+})| \leq 1, s > 4 \quad \forall \ell, I
$$

$$
\begin{pmatrix} 1 & S^I_{\ell}(s) \\ S^{I*}_{\ell}(s) & 1 \end{pmatrix} \succeq 0
$$

unitarity positive semidefinite → convex space of amplitudes

convex optimization

Chiral symmetry breaking

 $|s|$

 f_{ℓ}^I

 $\chi_{{\bf P}'}$

EFT gives very good control in the very low energy subthreshold region

interaction:
$$
\mathcal{L}_2^{4\pi} = \frac{1}{6f_\pi^2} \Big((\vec{\pi} \cdot \partial_\mu \vec{\pi})^2 - \vec{\pi}^2 (\partial_\mu \vec{\pi} \cdot \partial^\mu \vec{\pi}) \Big) + \frac{m_\pi^2}{24f_\pi^2} (\vec{\pi}^2)^2
$$

tree-level amplitude:
$$
A(s, t, u) = \frac{4}{\pi} \frac{s - m_\pi^2}{32\pi f_\pi^2}
$$
 [Weinberg, 1966]

Chiral symmetry breaking

 $|s|$

 f_ℓ^I

 $\chi_{\mathbf{P}'}$

EFT gives very good control in the very low energy subthreshold region

interaction:

\n
$$
\mathcal{L}_{2}^{4\pi} = \frac{1}{6f_{\pi}^{2}} \Big((\vec{\pi} \cdot \partial_{\mu} \vec{\pi})^{2} - \vec{\pi}^{2} (\partial_{\mu} \vec{\pi} \cdot \partial^{\mu} \vec{\pi}) \Big) + \frac{m_{\pi}^{2}}{24f_{\pi}^{2}} (\vec{\pi}^{2})^{2}
$$
\ntree-level amplitude:

\n
$$
A(s, t, u) = \frac{4}{\pi} \frac{s - m_{\pi}^{2}}{32\pi f_{\pi}^{2}}
$$
\n[Weinberg, 1966]

\n
$$
f_{0}^{0}(s) = \frac{2}{\pi} \frac{2s - m_{\pi}^{2}}{32\pi f_{\pi}^{2}}, \quad f_{1}^{1}(s) = \frac{2}{\pi} \frac{s - 4m_{\pi}^{2}}{96\pi f_{\pi}^{2}}, \quad f_{0}^{2}(s) = \frac{2}{\pi} \frac{2m_{\pi}^{2} - s}{32\pi f_{\pi}^{2}}
$$
\nSO

\n
$$
P1 \qquad S2
$$

approximate linear subthreshold behavior: input in bootstrap

Chiral symmetry breaking

 $\mathcal{S}_{\mathcal{S}}$

EFT gives very good control in the very low energy subthreshold region

$$
\begin{aligned}\n\text{interaction:} \quad & \mathcal{L}_2^{4\pi} = \frac{1}{6f_\pi^2} \Big((\vec{\pi} \cdot \partial_\mu \vec{\pi})^2 - \vec{\pi}^2 (\partial_\mu \vec{\pi} \cdot \partial^\mu \vec{\pi}) \Big) + \frac{m_\pi^2}{24f_\pi^2} (\vec{\pi}^2)^2 \\
\text{tree-level amplitude:} \quad & A(s, t, u) = \frac{4}{\pi} \frac{s - m_\pi^2}{32\pi f_\pi^2} \quad \text{[Weinberg, 1966]} \\
& f_0^0(s) = \frac{2}{\pi} \frac{2s - m_\pi^2}{32\pi f_\pi^2}, \quad f_1^1(s) = \frac{2}{\pi} \frac{s - 4m_\pi^2}{96\pi f_\pi^2}, \quad f_0^2(s) = \frac{2}{\pi} \frac{2m_\pi^2 - s}{32\pi f_\pi^2} \\
& \text{SO} \qquad P1 \qquad \qquad \text{S2}\n\end{aligned}
$$

approximate linear subthreshold behavior: input in bootstrap

can consider various values of the pion decay constant $\,\,f_\pi\,\,$

approximate linearity to be valid: $\,\lambda_{\rm eff}\sim -\varepsilon_{\rm s}\,$ small in the subthreshold region $\,\,0 < s < 4m_\pi^2 \implies f_\pi/m_\pi\,$ bounded from below

Form factor bootstrap

[Karateev, Kuhn, Penedones, 2019]

an important development in modern S-matrix bootstrap:

$$
|\psi_1\rangle = |p_1, p_2\rangle_{in}, \qquad |\psi_2\rangle = |p_1, p_2\rangle_{out}, \qquad |\psi_3\rangle = \int dx e^{-i(p_1 + p_2) \cdot x} \mathcal{O}(x) |0\rangle
$$

asymptotic states – *IR*
positive semidefinite matrix $\langle \psi_a | \psi_b \rangle = \begin{pmatrix} 1 & S & \mathcal{F} \\ S^* & 1 & \mathcal{F}^* \\ \mathcal{F}^* & \mathcal{F} & \rho \end{pmatrix} \succeq 0$ *state created by local operator* – *UV*

Form factor bootstrap

[Karateev, Kuhn, Penedones, 2019]

an important development in modern S-matrix bootstrap:

$$
|\psi_1\rangle = |p_1, p_2\rangle_{in}, \qquad |\psi_2\rangle = |p_1, p_2\rangle_{out}, \qquad |\psi_3\rangle = \int dx e^{-i(p_1 + p_2) \cdot x} \mathcal{O}(x) |0\rangle
$$

\nasymptotic states – IR
\npositive semidefinite matrix $\langle \psi_a | \psi_b \rangle = \begin{pmatrix} 1 & S & \mathcal{F} \\ S^* & 1 & \mathcal{F}^* \\ \mathcal{F}^* & \mathcal{F} & \rho \end{pmatrix} \succeq 0$
\nstatics
\n2-particle form factor: $\text{out} \langle p_1, p_2 | \mathcal{O}(0) |0\rangle = F(s)$
\nspectral density: $\int \frac{d^4x}{(2\pi)^4} e^{iPx} \langle 0 | \mathcal{O}^\dagger(x) \mathcal{O}(0) |0\rangle = \rho(s)$
\n \therefore support at $s > 4$

Form factor bootstrap

[Karateev, Kuhn, Penedones, 2019]

an important development in modern S-matrix bootstrap:

$$
|\psi_1\rangle = |p_1, p_2\rangle_{in}, \qquad |\psi_2\rangle = |p_1, p_2\rangle_{out}, \qquad |\psi_3\rangle = \int dx e^{-i(p_1 + p_2) \cdot x} \mathcal{O}(x) |0\rangle
$$

\nasymptotic states – IR
\npositive semidefinite matrix $\langle \psi_a | \psi_b \rangle = \begin{pmatrix} 1 & S & \mathcal{F} \\ S^* & 1 & \mathcal{F}^* \\ \mathcal{F}^* & \mathcal{F} & \rho \end{pmatrix} \succeq 0$
\nstatics
\n2-particle form factor: $\text{out} \langle p_1, p_2 | \mathcal{O}(0) |0\rangle = F(s)$
\nspectral density: $\int \frac{d^4x}{(2\pi)^4} e^{iPx} \langle 0 | \mathcal{O}^\dagger(x) \mathcal{O}(0) |0\rangle = \rho(s)$
\n $\text{support at } s > 4$

2d applications: bound UV central charge

allow connection with UV theory

Current correlators from the UV theory

will use form factor bootstrap to connect with UV gauge theory

 $\begin{array}{llll} & \displaystyle \langle \text{in} \rangle_{P,I,\ell} & \displaystyle \langle \text{out} \rangle_{P,I,\ell} & \mathcal{O}_{P,I,\ell} |0\rangle \ \langle \text{out} \vert_{P',I,\ell} & \left(\begin{array}{ccc} 1 & S^I_\ell(s) & \mathcal{F}^I_\ell \\ S^{I*}_\ell(s) & 1 & \mathcal{F}^{I*}_\ell \\ \langle 0 | \mathcal{O}^\dagger_{P',I,\ell} & \mathcal{F}^{I*}_\ell & \mathcal{F}^I_\ell \end{array} \right) \succeq 0 & s > 4 \quad \forall \ell, I \end{array}$

Current correlators from the UV theory

will use form factor bootstrap to connect with UV gauge theory

$$
\langle \text{in} \rangle_{P,I,\ell} \quad \text{out} \rangle_{P,I,\ell} \quad \text{Out} \rangle_{P,I,\ell} \quad \mathcal{O}_{P,I,\ell} |0\rangle
$$
\n
$$
\langle \text{out} \rangle_{P',I,\ell} \quad \left(\begin{array}{ccc} 1 & S^I_{\ell}(s) & \mathcal{F}^I_{\ell} \\ S^{I*}_{\ell}(s) & 1 & \mathcal{F}^{I*}_{\ell} \\ \mathcal{F}^{I*}_{\ell} & \text{in} & \mathcal{F}^{I}_{\ell} \end{array} \right) \succeq 0 \quad s > 4 \quad \forall \ell, I
$$

construct operators from gauge theory with desired *quantum numbers and lowest scaling dimension*

 $\langle 0$

$$
S0 : j_S(x) = m_q(\bar{u}u + \bar{d}d)
$$

e.g.
$$
P1 : j_V^{\mu}(x) = \frac{1}{2}(\bar{u}\gamma^{\mu}u - \bar{d}\gamma^{\mu}d)
$$

Current correlators from the UV theory

 $\begin{array}{llll} &\left.\left|\text{in}\right\rangle_{P,I,\ell} & \left|\text{out}\right\rangle_{P,I,\ell} & \mathcal{O}_{P,I,\ell}|0\rangle\right.\\ &\left.\left\langle\text{out}\right|_{P',I,\ell} & \left(\begin{array}{ccc}1 & S^I_{\ell}(s) & \mathcal{F}^I_{\ell} \\ S^{I*}_{\ell}(s) & 1 & \mathcal{F}^{I*}_{\ell} \\ \mathcal{O}|\mathcal{O}^{\dagger}_{P',I,\ell} & \mathcal{F}^{I*}_{\ell} & \mathcal{F}^{I}_{\ell} & \rho^I_{\ell}(s)\end{array}\right)\right\rangle\succe$

will use form factor bootstrap to connect with UV gauge theory

construct operators from gauge theory with desired quantum numbers and lowest scaling dimension

$$
\rho^I_\ell(s) = 2\,\mathrm{Im}\Pi^I_\ell(x+i\epsilon)
$$

 \mathcal{S}_{0}

$$
SO: \t j_S(x) = m_q(\bar{u}u + \bar{d}d) \t \Pi_0^0(s) = i \int \frac{d^4x}{(2\pi)^4} e^{iPx} \langle 0|\hat{T} \{j_S(x)j_S(0)\} |0\rangle \t \Pi(s)
$$

\n
$$
P1: \t j_V^{\mu}(x) = \frac{1}{2}(\bar{u}\gamma^{\mu}u - \bar{d}\gamma^{\mu}d) \t \Pi_1^1(s) = i \int \frac{d^4x}{(2\pi)^4} e^{iPx} \langle 0|\hat{T} \{j_{\sigma}^{\dagger}(x)j_{\sigma}(0)\} |0\rangle
$$
Current correlators from the UV theory

 $\begin{array}{llll} &\left.\left|\text{in}\right\rangle_{P,I,\ell} & \left|\text{out}\right\rangle_{P,I,\ell} & \mathcal{O}_{P,I,\ell}\right|0\rangle\\ &\left.\left\langle\text{in}\right|_{P',I,\ell} & \left(\begin{array}{ccc}1 & S^I_{\ell}(s) & \mathcal{F}^I_{\ell}\\ S^{I*}_{\ell}(s) & 1 & \mathcal{F}^{I*}_{\ell} \\ \mathcal{O}|\mathcal{O}_{P',I,\ell}^{\dagger} & \mathcal{F}^{I*}_{\ell} & \mathcal{F}^I_{\ell} & \rho^I_{\ell}(s) \end{array}\right)\right\rangle\succeq$

will use form factor bootstrap to connect with UV gauge theory

e.g.

construct operators from gauge theory with desired quantum numbers and lowest scaling dimension

 $\rho_{\ell}^{I}(s) = 2 \operatorname{Im} \Pi_{\ell}^{I}(x + i \epsilon)$

 \mathcal{S}

 $\Pi(s)$

4

$$
S0 : j_S(x) = m_q(\bar{u}u + \bar{d}d) \qquad \Pi_0^0(s) = i \int \frac{d^4x}{(2\pi)^4} e^{iPx} \langle 0|\hat{T} \{j_S(x)j_S(0)\} |0\rangle
$$

\n
$$
P1 : j_V^{\mu}(x) = \frac{1}{2} (\bar{u}\gamma^{\mu}u - \bar{d}\gamma^{\mu}d) \qquad \Pi_1^1(s) = i \int \frac{d^4x}{(2\pi)^4} e^{iPx} \langle 0|\hat{T} \{j_{\sigma}^{\dagger}(x)j_{\sigma}(0)\} |0\rangle
$$

large spacelike momenta — asymptotic free region with pQCD computation

Form factor bootstrap – saturation

positive semidefinite

$$
\begin{pmatrix}\n1 & S & \mathcal{F} \\
S^* & 1 & \mathcal{F}^* \\
\mathcal{F}^* & \mathcal{F} & \rho\n\end{pmatrix} \succeq 0 \qquad \forall I, \ell, s
$$

iff all its principal minors are non-negative

$$
\rho + S^* \mathcal{F}^2 + S(\mathcal{F}^*)^2 - 2|\mathcal{F}|^2 - \rho|S|^2 \ge 0
$$

$$
\rho \ge 0 \qquad |\mathcal{F}|^2 \le \rho \qquad |S|^2 \le 1
$$

Form factor bootstrap – saturation

positive semidefinite

 $\rho = |\mathcal{F}|^2$

$$
\begin{pmatrix}\n1 & S & F \\
S^* & 1 & F^* \\
F^* & F & \rho\n\end{pmatrix} \succeq 0 \qquad \forall I, \ell, s
$$

iff all its principal minors are non-negative $\rho + S^* \mathcal{F}^2 + S(\mathcal{F}^*)^2 - 2|\mathcal{F}|^2 - \rho |S|^2 \geq 0$ $\rho \geq 0$ $|\mathcal{F}|^2 \leq \rho$ $|S|^2 \leq 1$

 $\sqrt{4}$

saturation:

 \mathcal{S} ρ^I_ℓ f_ℓ^I, F_ℓ^I bootstrap

Form factor bootstrap – saturation

positive semidefinite

$$
\begin{pmatrix}\n1 & S & F \\
S^* & 1 & F^* \\
F^* & F & \rho\n\end{pmatrix} \succeq 0 \qquad \forall I, \ell, s
$$

iff all its principal minors are non-negative $\rho + S^* \mathcal{F}^2 + S(\mathcal{F}^*)^2 - 2|\mathcal{F}|^2 - \rho |S|^2 \geq 0$ $\rho \geq 0$ $|\mathcal{F}|^2 \leq \rho$ $|S|^2 \leq 1$

 $\sqrt{ }$

saturation:

$$
|S| = 1 \quad S = \frac{\mathcal{F}}{\mathcal{F}^*}
$$

 $\rho = |\mathcal{F}|^2$

Watson / Muskhelishvili-Omnes

saturation in bootstrap connects quantities controlled by pQCD and chiPT

[Shifman, Vainshtein, Zakharov, 1979]

 $s \to -\infty$ perturbative current correlator, e.g. $\Pi_0^0(s) \simeq \frac{N_c N_f m_q^2}{(2\pi)^4} \frac{(-s)}{8\pi^2} \ln(-\frac{s}{\mu^2})$ $\Pi_1^1(s) \simeq \frac{N_c}{(2\pi)^4} \frac{(-s)}{24\pi^2} \ln(-\frac{s}{\mu^2})$

[Shifman, Vainshtein, Zakharov, 1979]

 $\mathcal{B} \to -\infty$ perturbative current correlator, e.g. $\Pi_0^0(s)$ $\simeq \frac{N_c N_f m_q^2}{(2\pi)^4} \, \frac{(-s)}{8\pi^2} \ln(-\frac{s}{\mu^2})$ $\Pi_1^1(s)$ $\simeq \frac{N_c}{(2\pi)^4} \frac{(-s)}{24\pi^2} \ln(-\frac{s}{\mu^2})$ LO in PT $T\{j(x)j(0)\}=C_{\mathbb{1}}(x)\ \mathbb{1}+\sum_{\mathcal{O}}C_{\mathcal{O}}(x)\ \mathcal{O}(0)$ OPE: \boldsymbol{S}

[Shifman, Vainshtein, Zakharov, 1979]

 $\Pi_0^0(s) \;\; \simeq \;\; \frac{N_c N_f m_q^2}{(2\pi)^4} \; \frac{(-s)}{8\pi^2} \ln(-\frac{s}{\mu^2}) \quad \, \Pi_1^1(s) \;\; \simeq \;\; \frac{N_c}{(2\pi)^4} \frac{(-s)}{24\pi^2} \ln(-\frac{s}{\mu^2})$ $p \rightarrow -\infty$ perturbative current correlator, e.g. LO in PT $T\{j(x)j(0)\}=C_{\mathbb{1}}(x)\ \mathbb{1}+\sum C_{\mathcal{O}}(x)\ \mathcal{O}(0)$ OPE: \boldsymbol{S} $\langle 0|T\{j(x)j(0)\}|0\rangle = C_1(x) + C_{\bar{q}q}(x) \langle 0|j_S(0)|0\rangle$ $s₀$ $+C_{G^2}(x)\langle 0|\frac{\alpha_s}{\pi}G^a_{\mu\nu}G^{a\,\mu\nu}|0\rangle + \dots$ pQCD

[Shifman, Vainshtein, Zakharov, 1979]

 $s \to -\infty$ perturbative current correlator, e.g. $\Pi_0^0(s)$ \simeq $\frac{N_c N_f m_q^2}{(2\pi)^4} \, \frac{(-s)}{8\pi^2} \ln(-\frac{s}{\mu^2})$ $\Pi_1^1(s)$ \simeq $\frac{N_c}{(2\pi)^4} \frac{(-s)}{24\pi^2} \ln(-\frac{s}{\mu^2})$ LO in PT $T\{j(x)j(0)\} = C_1(x) \mathbb{1} + \sum_{\mathcal{O}} C_{\mathcal{O}}(x) \mathcal{O}(0)$ OPE: \boldsymbol{S} $\langle 0|T\{j(x)j(0)\}|0\rangle = C_1(x) + C_{\bar qq}(x)\langle 0|j_S(0)|0\rangle$ quark condensate $s₀$ *gluon condensate* pQCD SB vacuum Π_ℓ^I, F_ℓ^I **pQCD**

[Shifman, Vainshtein, Zakharov, 1979]

$$
s \to -\infty \quad \text{perturbative current correlator,} \quad \text{e.g.} \quad \Pi_0^0(s) \approx \frac{N_c N_f m_q^2}{(2\pi)^4} \frac{(-s)}{8\pi^2} \ln(-\frac{s}{\mu^2}) \quad \Pi_1^1(s) \approx \frac{N_c}{(2\pi)^4} \frac{(-s)}{24\pi^2} \ln(-\frac{s}{\mu^2})
$$
\n
$$
\text{OPE:} \quad T\{j(x)j(0)\} = C_1(x) \, \mathbb{1} + \sum_{\mathcal{O}} C_{\mathcal{O}}(x) \, \mathcal{O}(0)
$$
\n
$$
\langle 0|T\{j(x)j(0)\}|0\rangle = C_1(x) + C_{\overline{q}q}(x) \langle 0|j_S(0)|0\rangle \quad \text{quark condensate}
$$
\n
$$
\text{Fourier}
$$
\n
$$
\text{S B vacuum}
$$
\n
$$
\text{Equation:} \quad \text{S B vacuum}
$$
\n
$$
\text{Equation:} \quad \text{Conversate}
$$
\n
$$
\text{Equation:} \quad \text{Equation:}
$$

connect pQCD with bootstrap at s₀

connect pQCD with bootstrap at s₀

integrate $s^n \Pi(s)$ around contour

$$
\int_{4}^{s_0} \rho(x) x^n dx = -s_0^{n+1} \int_{0}^{2\pi} e^{i(n+1)\varphi} \Pi(s_0 e^{i\varphi}) d\varphi
$$

linear constraints on the bootstrap parameter

connect pQCD with bootstrap at s₀

integrate $s^n \Pi(s)$ around contour

$$
\int_{4}^{s_0} \rho(x) x^n dx = -s_0^{n+1} \int_{0}^{2\pi} e^{i(n+1)\varphi} \Pi(s_0 e^{i\varphi}) d\varphi
$$

linear constraints on the bootstrap parameter

$$
S0: \int_{4}^{s_{0}} \rho_{0}^{0}(x) x^{n} dx = \frac{s_{0}^{n+1} N_{f} m_{q}^{2}}{(2\pi)^{4}} \left\{ \frac{3s_{0}}{4\pi (n+2)} \left(1 + \frac{13}{3} \frac{\alpha_{s}}{\pi} \right) + \delta_{n} \frac{\pi}{4s_{0}} \langle \frac{\alpha_{s}}{\pi} G^{2} \rangle + \delta_{n} \frac{3\pi}{s_{0}} \langle j_{S} \rangle \right\}, \quad n \ge 0
$$

$$
P1: \int_{4}^{s_{0}} \rho_{1}^{1}(x) x^{n} dx = -\frac{s_{0}^{n+1}}{(2\pi)^{4}} \frac{1}{2} \left\{ -\frac{s_{0}}{2\pi (n+2)} \left(1 + \frac{\alpha_{s}}{\pi} \right) + \delta_{n} \frac{\pi}{6s_{0}} \langle \frac{\alpha_{s}}{\pi} G^{2} \rangle + \delta_{n} \frac{2\pi}{s_{0}} \langle j_{S} \rangle \right\}, \quad n \ge -1
$$

QCD parameters in our numerical example

for comparison with

explicit QCD parameters used in our test example:

gauge theory info:
$$
\begin{cases} N_f = 2 & N_c = 3 & \text{for comparison with} \\ s_0 = (1.2 \,\text{GeV})^2, & \alpha_s = 0.4, & m_u = 4 \,\text{MeV} & m_d = 7.3 \,\text{MeV} \end{cases}
$$

QCD parameters in our numerical example

for comparison with

explicit QCD parameters used in our test example:

$$
N_f = 2 \t N_c = 3
$$

\n
$$
S_0 = (1.2 \text{ GeV})^2, \ \alpha_s = 0.4, \quad m_u = 4 \text{ MeV} \quad m_d = 7.3 \text{ MeV}
$$

\n
$$
R \text{ parameters:} \quad \langle \frac{\alpha_s}{\pi} G^2 \rangle \simeq 0.023 \text{ GeV}^4, \ \langle j_S(0) \rangle = m_q \langle \bar{u}u + \bar{d}d \rangle \simeq -(0.1 \text{ GeV})^4
$$

QCD parameters in our numerical example

for comparison with

explicit QCD parameters used in our test example:

gauge theory info:
$$
\begin{cases}\nN_f = 2 & N_c = 3\n\end{cases}
$$
\nfor comparison with
\nexperiments\n
$$
s_0 = (1.2 \text{ GeV})^2, \quad \alpha_s = 0.4, \quad m_u = 4 \text{ MeV} \quad m_d = 7.3 \text{ MeV}
$$
\nIR parameters:
$$
\langle \frac{\alpha_s}{\pi} G^2 \rangle \simeq 0.023 \text{ GeV}^4, \quad \langle j_S(0) \rangle = m_q \langle \bar{u}u + \bar{d}d \rangle \simeq -(0.1 \text{ GeV})^4
$$
\ncan be extracted from lattice computation numerically not significant in our working precision

possible bootstrap target?

analytic & crossing analytic & crossing $A(s,t,u)$ parametrized by symmetric amplitude

 T_0 , $\sigma_{\alpha=1,2}(x)$, $\rho_{\alpha=1,2}(x,y)$

analytic & crossing symmetric amplitud

$$
\begin{array}{llll} \text{assign} & A(s,t,u) & \text{parametrized by} & T_0, & \sigma_{\alpha=1,2}(x), & \rho_{\alpha=1,2}(x,y) \\ & & \hspace{2cm} & \text{discretize} & \\ f_{\ell}^I(s) = \frac{1}{4} \int_{-1}^{+1} \!\!\!\!\! d\mu \, P_{\ell}(\mu) \, T^I(s,t) & \xleftarrow{\text{compute p.w.}} & \{ T_0, \sigma_{\alpha,i}, \rho_{\alpha,ij} \}, & \alpha=1,2 \end{array}
$$

bootstrap variables

analytic & cros. symmetric ampl

$$
\begin{array}{llll}\n\text{c & $\text{crossing} & A(s, t, u) & \text{parametrized by} & T_0, & \sigma_{\alpha=1,2}(x), & \rho_{\alpha=1,2}(x, y) \\
\text{discretize} & & \downarrow & \text{discretize} \\
f_{\ell}^I(s) = \frac{1}{4} \int_{-1}^{+1} d\mu \, P_{\ell}(\mu) \, T^I(s, t) & \xrightarrow{\text{compute p.w.}} & \{T_0, \sigma_{\alpha, i}, \rho_{\alpha, ij}\}, & \alpha = 1, 2 \\
\text{bootstrap variables} & \text{impose unitarity:} & |S_{\ell}^I(s^+)| \le 1, & s > 4 \quad \forall \ell, I \\
\text{evaluate in unphysical region} & & \downarrow & \text{if} \\
f_{\ell}^I(0 < s < 4) & & \text{if} \\
\end{array}$
$$

 $\overline{4}$

linear functionals and chiSB input (next step)

analytic & cross symmetric amplit

$$
\begin{array}{ll}\n\text{c & & crossing \\
\text{tric amplitude} & A(s, t, u) & \text{parametrized by} \\
f_{\ell}^{I}(s) = \frac{1}{4} \int_{-1}^{+1} \frac{d\mu}{\mu} P_{\ell}(\mu) T^{I}(s, t) & \xrightarrow{\text{compute p.w.}} \{T_{0}, \sigma_{\alpha, i}, \rho_{\alpha, ij}\}, \quad \alpha = 1, 2 \\
& \text{bootstrap variables} \\
\text{evaluate in unphysical region} & \text{if } \ell(0 < s < 4) \\
& \text{if } \ell(0 < s < 4) \\
& \text{if } \ell(0 < s < 4) \\
& \text{if } \ell(0 < s < 4) \\
& \text{if } \ell(0 < s < 4) \\
& \text{if } \ell(0 < s < 4) \\
& \text{if } \ell(0 < s < 4) \\
& \text{if } \ell(0 < s < 4) \\
& \text{if } \ell(0 < s < 4) \\
& \text{if } \ell(0 < s < 4) \\
& \text{if } \ell(0 < s < 4) \\
& \text{if } \ell(0 < s < 4) \\
& \text{if } \ell(0 < s < 4) \\
& \text{if } \ell(0 < s < 4) \\
& \text{if } \ell(0 < s < 4) \\
& \text{if } \ell(0 < s < 4) \\
& \text{if } \ell(0 < s < 4) \\
& \text{if } \ell(0 < s < 4) \\
& \text{if } \ell(0 < s < 4) \\
& \text{if } \ell(0 < s < 4) \\
& \text{if } \ell(0 < s < 4) \\
& \text{if } \ell(0 < s < 4) \\
& \text{if } \ell(0 < s < 4) \\
& \text{if } \ell(0 < s < 4) \\
& \text{if } \ell(0 < s < 4) \\
& \text{if } \ell(0 < s < 4) \\
& \text{if } \ell(0 < s <
$$

linear functionals and chiSB input (next step)

project out space of amplitudes symmetry, analyticity, crossing, unitarity

 \overline{f}

boundary: non-perturbative computation of amplitudes

requires p.w. in subthreshold region to match weakly coupled EFT

\underline{f}_l^I	$\underline{f}_0^2(s)$	$\leq \frac{3(2-s)}{s-4}$	$\frac{f_0^0(s)}{f_1^1(s)} \approx \frac{3(2s-1)}{s-4}$
\underline{f}_ℓ^I	impose ratios at a few points in unphysical very low energy region		

requires p.w. in subthreshold region to match weakly coupled EFT

\underline{f}_l^1	$\underline{f}_0^2(s)$	$\geq \frac{3(2-s)}{s-4}$	$\frac{f_0^0(s)}{f_1^1(s)} \approx \frac{3(2s-1)}{s-4}$
\underline{f}_ℓ^1	impose ratios at a few points in unphysical very low energy region		
selecting pion scattering with various \overline{f}_{π} not too small			

Form factor bootstrap + SVZ sum rules

Form factor bootstrap + SVZ sum rules

form factor bootstrap problem parameterized by:
\n
$$
T_0, \ \sigma_{\alpha=1,2}(x), \ \rho_{\alpha=1,2}(x,y), \ \text{Im} F_{\ell}^I(x), \ \rho_{\ell}^I(x) \qquad F_{\ell}^I(s) = 1 + \frac{1}{\pi} \int_4^{\infty} dx \left(\frac{1}{x-s} - \frac{1}{x} \right) \text{Im} F_{\ell}^I(x)
$$
\namplitude part
\n
$$
\left\{ T_0, \sigma_{\alpha,i}, \rho_{\alpha,ij}, \text{Im} F_{\ell,i}^I, \rho_{\ell,i}^I \right\} \quad \text{impose positive semidefinite:} \begin{pmatrix} 1 & S_{\ell,i}^I & \mathcal{F}_{\ell,i}^I \\ S_{\ell,i}^{I*} & 1 & \mathcal{F}_{\ell,i}^{I*} \\ \mathcal{F}_{\ell,i}^{I*} & \mathcal{F}_{\ell,i}^I & \rho_{\ell,i}^I \end{pmatrix} \succeq 0
$$

inputting QCD parameters in the FESR for S0, P1:

$$
\frac{1}{s_0^{n+2}} \int_4^{s_0} \rho_0^0(x) x^n dx \approx 3.09 \times 10^{-8} \left\{ \frac{27.38}{n+2} + 0.61 \delta_n \right\}
$$

$$
\frac{1}{s_0^{n+2}} \int_4^{s_0} \rho_1^1(x) x^n dx \approx -4.34 \times 10^{-6} \left\{ -\frac{13.26}{n+2} + 0.41 \delta_n \right\}
$$

can be done for higher pw in general

Form factor bootstrap + SVZ sum rules

inputting QCD parameters in the FESR for S0, P1:

$$
\frac{1}{s_0^{n+2}} \int_4^{s_0} \rho_0^0(x) x^n dx \approx 3.09 \times 10^{-8} \left\{ \frac{27.38}{n+2} + 0.61 \delta_n \right\}
$$

$$
\frac{1}{s_0^{n+2}} \int_4^{s_0} \rho_1^1(x) x^n dx \approx -4.34 \times 10^{-6} \left\{ -\frac{13.26}{n+2} + 0.41 \delta_n \right\}
$$

can be done for higher pw in general

discretize integral **2 sum rules/p.w.** impose with tolerance

too loose: uv info does not enter

too tight: infeasible

numerically: tune down before bootstrap becomes infeasible

Asymptotic behavior of form factor

need control of asymptotic behavior of form factors

e.g. more precisely for electromagnetic FF from pQCD

at large s
$$
|F_{\pi}(s)| \sim \frac{|q|}{|s|R_{\pi}^2}
$$
 $F_{\pi}(s) \simeq -\frac{16\pi \alpha_s(s)f_{\pi}^2}{s}$ [Peter Lepage, Brodsky, 1979]

 $\vert \mathbf{a} \vert$
Asymptotic behavior of form factor

need control of asymptotic behavior of form factors

e.g. more precisely for electromagnetic FF from pQCD

 $|F_{\pi}(s)| \sim \frac{|q|}{|s|R_{\pi}^2|}$ at large s $F_{\pi}(s) \simeq -\frac{16\pi\alpha_s(s)f_\pi^2}{s}$ [Peter Lepage, Brodsky, 1979]

in practical numerical implementation, only require smallness above $s = s₀$

factor due to charges $\mathcal{L}_{\mathcal{L}_{\mathcal{L}}}$, and the set of the field of the field of a set of $\mathcal{L}_{\mathcal{L}_{\mathcal{L}}}$

S0, P1:
$$
||\mathcal{F}_0^0(s_i)||^2 \lesssim 2m_q^2 \epsilon^{FF}, \qquad ||\mathcal{F}_1^1(s_i)||^2 \lesssim \frac{1}{2} \epsilon^{FF}, \quad s_i > s_0
$$

Asymptotic behavior of form factor

need control of asymptotic behavior of form factors

e.g. more precisely for electromagnetic FF from pQCD

 $|F_{\pi}(s)| \sim \frac{|q|}{|s|R_{\pi}^2|}$ at large s $F_{\pi}(s) \simeq -\frac{16\pi\alpha_s(s)f_\pi^2}{s}$ [Peter Lepage, Brodsky, 1979]

in practical numerical implementation, only require smallness above $s = s₀$

Factor due to charges

\nSo, P1:
$$
||\mathcal{F}_0^0(s_i)||^2 \lesssim 2m_q^2 \epsilon^{FF}, \quad ||\mathcal{F}_1^1(s_i)||^2 \lesssim \frac{1}{2} \epsilon^{FF}, \quad s_i > s_0
$$

\nOrder of magnitude can be estimated

\n
$$
\mathcal{O}(10^{-2}) \lesssim |F_\pi(s \ge s_0)| \lesssim \mathcal{O}(10^0)
$$
\norder of magnitude can be estimated

\n
$$
|\mathcal{F}|^2 \leq \rho
$$

underestimate from asymptotics FF overestimate from spectral density

Conclusions

• Combining old and new techniques: using only N_c N_f m_q $\Lambda_{\rm QCD}$ f_π m_π *gauge theory parameters low energy parameters*

computed the pion S-matrix in the strongly coupled regime of QCD

Numerical test find good agreement with experiments

Conclusions

• Combining old and new techniques: using only N_c N_f m_q $\Lambda_{\rm QCD}$ f_π m_π *gauge theory parameters low energy parameters*

computed the pion S-matrix in the strongly coupled regime of QCD

Numerical test find good agreement with experiments

Results show:

strongly coupled QCD is computable with bootstrap

Conclusions

• Combining old and new techniques: using only N_c N_f m_q $\Lambda_{\rm QCD}$ f_π m_π *gauge theory parameters low energy*

computed the pion S-matrix in the strongly coupled regime of QCD

parameters

Numerical test find good agreement with experiments

Results show:

strongly coupled QCD is computable with bootstrap

● Further developments \longrightarrow deep understanding of low energy QCD

Thank you!