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Introduction



Motivation

[A. Huss’s talk]

• LHC today is a precision machine

• 20x more data to be taken at HL-LHC, future colliders

• Theoretical understanding of SM predictions is key to interpret data

• At least NNLO QCD and NLO EW corrections (⊕ parton shower, resummation, . . . ) must be

included to achieve percent level theory uncertainties
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NNLO QCD multiplicity frontier
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Analytic multi-loop amplitude calculations
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Setup of the computation



Integral topologies & kinematics
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Previous work

5/18



Canonical differential equations



Pure integrals and canonical differential equations

6/18



The alphabet
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How to solve DE?
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How to solve DE?

8/18



How to solve DE?
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Function basis



Chen’s iterated integrals

[Chen ’77] (see also “Iterated integrals in QFT” [Brown ’11])

ϵ-factorized DE can be readily solved through Chen’s iterated integrals [Chen ’77], along a

path γ ∈ P (phase space) connecting s0 and s,

g⃗(s) = P exp

[
ϵ

∫
γ
A

]
g⃗(s0) = g⃗(0)(s0) +

∑
i

ϵig⃗(i)(s),

g⃗(n) are linear combinations of g
(n1)
i (s0) · [ωi1 , . . . , ωin2

]γ , n1 + n2 = n.

Let ω1, . . . , ωn be differential 1-forms on P , and path γ : [0, 1] → P. Pull the forms back on

the path ωi(s)
γ⋆

−−→ wi(t) dt. Iterated integrals are

[ω1, . . . , ωn]γ =

∫ 1

0
wn(tn) dtn . . .

∫ t2

0
w1(t1) dt1 (ii)

Here we need only logarithmic forms ωi = d logWi.

Weight = number of integrations = order of ϵ
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Properties of iterated integrals

Linear independence

Iterated integrals with distinct words [ω1, . . . , ωn] are Q-linear independent (if {ωi} are).

=⇒ graded vector space

Shuffle product

[ω1, . . . , ωr]γ [ωr+1, . . . , ωn]γ =
∑

i∈{1,...,r}�{r+1,n}
[ωi1 , . . . , ωin ]γ (�)

=⇒ graded algebra

Symbol map S

Let dF =
∑

i d logWi Fi

(recall d[ω1, . . . , ωn]γ = ωn [ω1, . . . , ωn−1]γ)

S(F ) =
∑
i

S(Fi)⊗Wi,

S([ωi]γ) = Wi.

Effectively discards initial values and path in DE solution.
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Pentagon functions construction
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Promoting symbol-level basis

Full functions are defined by iterated integrals, including terms with transcendental constants

(initial values χ⃗ := g⃗(s0))

g⃗(w) =

∫
γ
A · · ·

∫
γ
A χ⃗(0)

︸ ︷︷ ︸
w integrations (symbol)

+

w−1∑
w′=0

∫
γ
A · · ·

∫
γ
A︸ ︷︷ ︸

w′ integrations

χ⃗(w−w′)

We want to work in a vector space =⇒ we must know all algebraic identities between

χ⃗(w−w′).

This turns out to be difficult [Chicherin, VS, Zoia ’21] (need very high precision χ⃗ for PSLQ).

New approach

1. Use relation of f
(w)
i to g⃗ to define lifts of f

(w)
i to functions (as iterated integrals).

2. Insist that symbol-level decomposition of g⃗ through polynomials of f
(w)
i also holds as

functions, modulo ζ values.

3. This is possible if χ⃗(w−w′) satisfy certain algebraic identities.

We check (numerically) that they indeed do!
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Basis construction: a toy example

->

d'g = =A g-
-

X = g(So)
W

,
8 O ⑧

-

A = I j W O ( -(d)
= =(X

W
,

W
,

W
,

W G W2

-> (0)
+

(1)i()
= SAXg
f

i (2) SAXY + SAY" + **

f
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Basis construction: a toy example

g17 x"
Weight I-

& - (p - 52)) F

-

[w
,
] /symbol level basis

f

- , -> (1) ( fl &= g =

-fi_5
f
,

") lift possible if

!F I& !
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Basis construction: a toy example

Weight 2

->
(2)
_

202
, 22] + XY"[W2]I

(w
,
w
, ] + X

,
"[w

, ]

Ig 2[w ,, w. ] - [v , 22]-5[vw]+X ,
"[W] + X [W] + Xi[w] + * h

(w
,,
w, ] + [W, , Wa] "2[on

,
wa] + X

,"[Wis +X" (w2] + Xw2]

(2) 12)
h

1
,
2
, 3
: 91 , 2 , 3 , =sb-Bhe" - 43
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Basis construction: a toy example
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Basis construction: a toy example
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Features of the function space



Anomalous thresholds in massless scattering?

Consider iterated integral along γ : t ∈ [0, 1] → Pphys, and Wi(t
⋆) = 0,∫

γ

d logWi h =

∫
γ

dWi

Wi

h
t→t⋆−−−−→ W ′(t)

t − t⋆

(
h
(0)

+ h
(1)

(t − t
⋆
) + O

(
(t − t

⋆
)
2
))

Planar scattering

Only linear or quadratic letters vanish in Pphys, poles always canceled, i.e. h(0) = 0

New feature of nonplanar scattering

Square roots of quartic polynomials
√
Σ5 can vanish in Pphys =⇒ new types of divergences

1. Integrable square root: d log
a+

√
Σ5

a−
√

Σ5

Σ5→0−−−−→ dΣ5
a
√

Σ5

t→t⋆−−−−→ C√
t−t⋆

+ . . .

2. Uncompensated poles: d log
√
Σ5

Σ5→0−−−−→ dΣ5
2Σ5

t→t⋆−−−−→ C
t−t⋆

+ . . . =⇒ log divergence!

• Choose basis functions to localize non-analytic behavior

• Functions with type 2 divergence cancel out in physical results?

• Numerical evaluation more challenging
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Basis structure
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Basis structure
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Numerical evaluation



Numerical evaluation
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Numerical performance
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Conclusions



Conclusions & Outlook

Conclusions

• Basis of special functions for two-loop five-point one-mass processes is available.

Hopefully exciting phenomenology in near future!

• Existence of the basis “mysteriously” implies algebraic identities between initial values.

• Interesting feature discovered: anomalous thresholds in nonplanar massless scattering.

• All we need is iterated integrals with nice kernels.

Outlook

• Ideas generally useful for multi-scale problems with many square roots,

e.g. EW corrections and (quantum) gravity amplitudes.

• Dream: extension beyond d log forms.
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Backup



Numerical performance: Σ5 split
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Weight 3: one-fold integral representation

Weight 3 functions are one-fold integrals of weight 2 functions by definition

f
(3)
i (X) =

∑
j,k

ci,j,k

∫ 1

0
d logWj(t)h

(2)
k (t) + τ

(3)
i

Integrands analytic on the integration domain =⇒ integration well-defined.

• Efficient numerical integration possible

• Some care to avoid numerical cancellations if d log(Wj) can vanish along the path



Weight 4: one-fold integral representation

Change order of integration [Caron-Huot, Henn ’14]

Iγ [ω1, . . . , ωn] =∫ 1

0
(γ⋆ ◦ ωn)(t)

∫ t

0
(γ⋆ ◦ ωn−1)(u) Iγ(u)[ω1, . . . , ωn−2]

=

∫ 1

0
(γ⋆ ◦ ωn−1)(u)

(∫ 1

u
(γ⋆ ◦ ωn)(t)

)
Iγ(u)[ω1, . . . , ωn−2]

For logarithmic forms the last integration is trivial∫ 1

u
(γ⋆ ◦ ωn)(t) =

∫ 1

u
d log (Wn(t)) = log(Wn(1))− log(Wn(u))



DE reconstruction strategy



Physical region geometry

• Nontrivial geometry due to degree 4

polynomial boundary ∆5 = 0

• Not convex

• Not star shaped

• Positivity properties of the alphabet important for deriving well-defined functions in

physical region

• Can be established by expressing through Gram determinants

• Non-sign-definite letters =⇒ spurious singularities



Initial values identities: the old way

[Chicherin, VS, Zoia ’21]
We choose an initial point X0 ∈ P+

45,

X0 :=
(
p21 = 1 , s12 = 3 , s23 = 2 , s34 = −2 , s45 = 7 , s15 = −2

)
,

which satisfies the following requirements:

1. X0 introduces the minimal number of distinct prime factors.

2. X0 is invariant under the exchanges of momenta 2 ↔ 3 and 4 ↔ 5 (automorphisms of

P45).

3. The four linear letters which have indefinite sign vanish at X0.

Algebraic relations between initial

values required.

• Numerical evaluation of available

GPL expressions

[Canko, Papadopoulos, Syrrakos ’20],

[Syrrakos ’20] to 3000 digits

• Relations from PSLQ =⇒
generating set

Linear span

(⊕ products)
Irreducible

Weight Re Im Re Im

1 4∗ 1 4∗ 1

2 12 4 5 0

3 67 23 23 7

4 305 135 90 40

Pushing the limits of most advanced PSLQ algorithms [Bailey, Broadhurst ’01]

[Bailey, Borwein, Kimberley, Ladd ’17]
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