Special Functions for Five-Point One-Mass Scattering in QCD

Vasily Sotnikov

University of Zurich

based on Chicherin, VS, Zoia [\[arXiv:2110.10111\]](https://arxiv.org/abs/2110.10111) Abreu, Chicherin, Ita, Page, VS, Tschernow, Zoia [\[arXiv:2306.15431\]](https://arxiv.org/abs/2306.15431)

QCD meets gravity 2023, **CERN**

15th December 2023

Furnnean Research Council **Exhibition for the Exmosoph Comp**

[Introduction](#page-1-0)

 \sim

Motivation

- LHC today is a precision machine
- 20x more data to be taken at HL-LHC, future colliders
- Theoretical understanding of SM predictions is key to interpret data
- At least NNLO QCD and NLO EW corrections (⊕ parton shower, resummation, . . .) must be included to achieve percent level theory uncertainties

$$
d\sigma_{h_1h_2 \to X}(p_1, p_2) = \sum_{i,j} \int dx_1 dx_2 f_i(x_1, \mu) f_j(x_2, \mu) \underbrace{d\hat{\sigma}_{ij \to X}(x_1 p_1, x_2 p_2, \mu)}_{\text{Intrinsic uncertainty}} + \mathcal{O}(\Lambda_{\text{QCD}}/Q) + \mathcal{O}(\Lambda_{\text{QCD}}/Q)
$$
\n
$$
\downarrow \hat{\sigma}_0 \left(1 + \alpha_s \sigma^{(1,0)} + \alpha_s^2 \sigma^{(2,0)} + \alpha \sigma^{(0,1)} + \alpha_s^3 \sigma^{(3,0)} + \alpha \alpha_s \sigma^{(1,1)} + \dots\right) \underbrace{\alpha_s(M_Z) \sim 0.1}_{\alpha(M_Z) \sim 0.01}
$$

NNLO QCD multiplicity frontier

- NLO QCD, EW conceptually solved, in practice ≤ 8 partons
- NNLO QCD beyond $2 \rightarrow 2$ remarakably challenging

$$
F + X = \sigma_{\text{NLO}}^{F+X} +
$$
\n
$$
\int_{\Phi_F(Q)} d\sigma_{\text{RR}} + \int_{\Phi_{F}} d\sigma_{\text{RV}} + \underbrace{\int_{\Phi_F} d\sigma_{\text{VV}}}_{\text{IN divergence}} + \underbrace{\int_{\Phi_F} d\sigma_{\text{VV}}}_{\text{Two-loop}}.
$$

 σ

This talk:

 $2 \rightarrow 3$ processes with one external mass $pp \rightarrow Vji$, $pp \rightarrow Hji$, $e^+e^- \rightarrow 4i$

Analytic multi-loop amplitude calculations

[Setup of the computation](#page-5-0)

Integral topologies & kinematics

Previous work

planar one-mass
pentagon functions [Chicherin, VS, Zoia '21]

Semi-numerical DE solution

[Hidding, Usovitsch '22]

· Validation

Precious numerical data:

DiffExp [Moriello '19] [Hidding '20]

AMFLOW [Liu, Ma, Wang '17] [Liu, Ma '21] SeaSyde [Armadillo, Bonciani, Devoto, Rana, Vicini '22]

• Initial (boundary) conditions

5/18

[Canonical differential equations](#page-8-0)

Pure integrals and canonical differential equations

Canonical DE very challenging to obtain for multi-scale integrals

other cutting edge examples: [Febres Cordero, Figueiredo, Kraus, Page, Reina '23] [Badger, Becchetti, Chaubey, Marzucca '22] [Henn, Peraro, Xu, Zhang '21]

We succeed in deriving this form for complete set of integrals

The alphabet

.
Hexa-box alphabet [Abreu, Ita, Page, Tschernow '21], no new letters from DP

[Function basis](#page-14-0)

Chen's iterated integrals

[Chen '77] (see also "Iterated integrals in OFT" [Brown '11])

ϵ-factorized DE can be readily solved through Chen's iterated integrals [Chen '77], along a path $\gamma \in \mathcal{P}$ (phase space) connecting s₀ and s,

$$
\vec{g}(\mathbf{s}) = \mathbb{P} \exp \left[\epsilon \int_{\gamma} A\right] \vec{g}(\mathbf{s}_0) = \vec{g}^{(0)}(\mathbf{s}_0) + \sum_{i} \epsilon^{i} \vec{g}^{(i)}(\mathbf{s}),
$$

 $\vec{g}^{(n)}$ are linear combinations of $g_i^{(n_1)}(\mathbf{s}_0) \cdot [\omega_{i_1}, \dots, \omega_{i_{n_2}}]_{\gamma}, n_1 + n_2 = n$.

Let $\omega_1, \ldots, \omega_n$ be differential 1-forms on P, and path $\gamma : [0, 1] \to \mathcal{P}$. Pull the forms back on the path $\omega_i(\mathbf{s}) \stackrel{\gamma^*}{\longrightarrow} w_i(t) \, \mathrm{d}t.$ Iterated integrals are $[\omega_1,\ldots,\omega_n]_{\gamma}=\int^1$ $\int_0^1 w_n(t_n) dt_n \dots \int_0^{t_2} w_1(t_1) dt_1$ (ii)

Here we need only logarithmic forms $\omega_i = d \log W_i$.

Weight = number of integrations = order of ϵ

Linear independence

Iterated integrals with distinct words $[\omega_1, \ldots, \omega_n]$ are Q-linear independent (if $\{\omega_i\}$ are). \implies graded vector space

Symbol map S Let $\mathrm{d}F = \sum_i \mathrm{d}\log W_i$ F_i (recall $d[\omega_1,\ldots,\omega_n]_{\gamma} = \omega_n [\omega_1,\ldots,\omega_{n-1}]_{\gamma}$) $S(F) = \sum S(F_i) \otimes W_i,$ i $S([\omega_i]_{\gamma})=W_i.$ Effectively discards initial values and path in DE solution.

Pentagon functions construction

[Abreu, Chicherin, Ita, Page, VS, Tschernow, Zoia '23] (see also [Chicherin, VS '20] [Badger, Hartanto, Zoia '21] [Chicherin, VS, Zoia '21])

Promoting symbol-level basis

Full functions are defined by iterated integrals, including terms with transcendental constants (initial values $\vec{x} \coloneqq \vec{q}(\mathbf{s}_0)$)

We want to work in a vector space \implies we must know all algebraic identities between $\vec{\chi}^{(w-w')}$.

This turns out to be difficult [Chicherin, VS, Zoia '21] (need very high precision $\vec{\chi}$ for PSLQ).

New approach

- 1. Use relation of $f_i^{(w)}$ to \vec{g} to define lifts of $f_i^{(w)}$ to functions (as iterated integrals).
- 2. Insist that symbol-level decomposition of \vec{g} through polynomials of $f_i^{(w)}$ also holds as functions, modulo ζ values.
- 3. This is possible if $\vec{\chi}^{(w-w')}$ satisfy certain algebraic identities. We check (numerically) that they indeed do!

-> $dg = e A g$ $\check{\chi}$ \overline{Q} $-\frac{7}{9}$
- $9^{\frac{7}{6}}$ $\in 9^{\frac{7}{6}}$
- $9^{\frac{7}{6}}$
- $9^{\frac{7}{6}}$
- $9^{\frac{7}{6}}$ = ω_1 0 0 0 1 χ = $g(S_{\infty})$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \end{array}$ j W ^O ^W , W , $\overrightarrow{\chi}^{(0)}$ = $\frac{1}{x} = \frac{1}{g} (S_0)$
 $\frac{1}{x} = \frac{1}{g} = \begin{pmatrix} 1 \\ 2 \\ -5 \\ -2 \end{pmatrix}$ ω , ω o ω $\overrightarrow{a}^{(1)}$ - \overrightarrow{A} $\overrightarrow{x}^{(6)}$ $\overrightarrow{x}^{(1)}$ $\vec{q}^{(1)} = \int A \cdot \vec{x}$ ð $\overrightarrow{g}^{(2)} = \int A A \overrightarrow{X}^{(0)} + \int A \overrightarrow{X}^{(1)} + \overrightarrow{X}^{(2)}$ d

Weight 2 $\vec{Q}(2) = \begin{pmatrix} 2[\omega_1, \omega_2] & + & \mathcal{X}_2^{\omega}[\omega_2] \\ 0 & -\frac{1}{2}[\omega_1, \omega_2] & \omega_2 \end{pmatrix}$ $\overline{}$ $\lbrack \omega_{\scriptscriptstyle 1} \rbrack , \omega_{\scriptscriptstyle 1} \rbrack$ + $\chi_{\scriptscriptstyle 1}^{\scriptscriptstyle (i)}$ $\lbrack \omega_{\scriptscriptstyle 1} \rbrack$ $\begin{pmatrix} Q^{(2)} = 0 & 0 & 0 \\$ ω_{1}] - [v, ω_{2}] - \sum [ω_{1} , ω_{2}] + $\chi_{i}^{(i)}$ $[\omega_{i}]$ + $\chi_{i}^{(i)}$ $[\omega_{i}]$ + $\chi_{i}^{(i)}$ $[\omega_{i}]$ + $\chi_{i}^{(i)}$ $\lceil\omega_1,\omega_1\rceil + \lceil\omega_1,\omega_2\rceil + \chi [\omega_1,\omega_2] + \chi^{(\alpha}_1[\omega_1] + \chi^{(\alpha)}_2[\omega_2] + \chi^{(\alpha)}_4[\omega_2]$ $h_{1,2,3}$: = $\int_{1,2,3}^{2} f_{2}$, $\int_{2}^{2} f_{3}^{2} = 3h_{1}^{2} - \frac{3}{2}h_{2}^{2} - h_{3}^{2}$

$$
\left(f_{1}^{(1)}\right)^{2} = 2 \left[\omega_{1}, \omega_{1}\right] * 2 \chi_{1}^{(1)} \left[\omega_{1}\right] + \left(\chi_{1}^{(1)}\right)^{2}
$$
\n
$$
\left(f_{2}^{(1)}\right)^{2} = 8 \left[\omega_{2}, \omega_{2}\right] + 4 \chi_{2}^{(1)} \left[\omega_{2}\right] + \left(\chi_{2}^{(1)}\right)^{2}
$$
\n
$$
\left(f_{1}^{(1)}\right)^{2} = 2 \left[\omega_{2}, \omega_{1}\right] * 2 \left[\omega_{1}, \omega_{2}\right] + 2 \chi_{1}^{(1)} \left[\omega_{2}\right] + \chi_{1}^{(2)} \omega_{1}^{(1)} + \chi_{1}^{(2)} \omega_{2}^{(1)}
$$
\n
$$
\frac{1}{\omega_{0}} \text{ (0) (0) (0) (0) (0)} \text{ (0) (0) (0)} \left\{ \left(f_{1}^{(1)}\right)^{2} \left(f_{1}^{(1)}\right)^{2} + \left(f_{1}^{(1)}\right)^{2} \left(f_{1}^{(1)}\right) + \left(f_{1}^{(1)}\right)^{2} \omega_{1}^{2} + \
$$

$$
\frac{\partial^{2}(2)}{\partial} = \begin{pmatrix} \frac{1}{2}(\frac{1}{2})^{2} & & & & \\ \frac{1}{4}(\frac{1}{2})^{2} & & & & \\ \frac{1}{2}(\frac{1}{2})^{2} & & & & \\ \frac{1}{2}(\frac{1}{2})^{2} & -\frac{2}{2}(\frac{1}{2})^{2} & -\frac{1}{2}(\frac{1}{2}) & \frac{1}{2}(\frac{1}{2})^{2} & \frac{1}{2}(\frac{
$$

[Features of the function space](#page-24-0)

Consider iterated integral along $\gamma : t \in [0, 1] \to \mathcal{P}_{\text{phys}}$, and $W_i(t^*) = 0$,

$$
\int_{\gamma} d \log W_i \ h = \int_{\gamma} \frac{d W_i}{W_i} h \xrightarrow{t \to t^*} \frac{W'(t)}{t - t^*} \left(h^{(0)} + h^{(1)}(t - t^*) + \mathcal{O}\left((t - t^*)^2 \right) \right)
$$

Planar scattering

Only linear or quadratic letters vanish in $\mathcal{P}_{\text{phys}}$, poles always canceled, i.e. $h^{(0)}=0$

Consider iterated integral along $\gamma : t \in [0, 1] \to \mathcal{P}_{\text{phys}}$, and $W_i(t^*) = 0$,

$$
\int_{\gamma} d\log W_i \ h = \int_{\gamma} \frac{dW_i}{W_i} h \xrightarrow{t \to t^*} \frac{W'(t)}{t - t^*} \left(h^{(0)} + h^{(1)}(t - t^*) + \mathcal{O}\left((t - t^*)^2 \right) \right)
$$

Planar scattering

Only linear or quadratic letters vanish in $\mathcal{P}_{\text{phys}}$, poles always canceled, i.e. $h^{(0)}=0$

New feature of nonplanar scattering Square roots of quartic polynomials $\sqrt{\Sigma_5}$ can vanish in $\mathcal{P}_{\sf phys} \implies$ new types of divergences 1. Integrable square root: $\frac{a+\sqrt{\Sigma_5}}{a-\sqrt{\Sigma_5}} \xrightarrow{\Sigma_5 \to 0} \frac{d\Sigma_5}{a\sqrt{\Sigma_5}} \xrightarrow{t \to t^*} \frac{C}{\sqrt{t-t^*}} + \dots$ 2. Uncompensated poles: d $\log \sqrt{\Sigma_5} \xrightarrow{\Sigma_5 \to 0} \frac{d\Sigma_5}{2\Sigma_5} \xrightarrow{t \to t^*} \frac{C}{t - t^*} + \dots \implies \log \text{divergence}$

- Choose basis functions to localize non-analytic behavior
- Functions with type 2 divergence cancel out in physical results?
- Numerical evaluation more challenging

Permutation closed
 $\sigma\left(f_i^{(w)}\right) \to \sum_j c_{ij} f_j^{(w)} + \dots$

[Numerical evaluation](#page-29-0)

Numerical evaluation

Weights 1 and 2

Well-defined combinations of log , $Li₂$ functions

$$
f_{13}^{(2)} = \text{Li}_2 \left(1 - \frac{s_{15} - s_{23} - s_{34}}{s_{15}} \right) \n \times \left(\frac{s_{15} - s_{23} - s_{34}}{s_{15}} \right) \n \times 0
$$

Weights 3 and 4

- · Numerical one-fold integration [Caron-Huot, Henn '14] of analytic integrands \implies exponential convergence [Takahasi, Mori '73]
- No crossing of physical thresholds \implies no analytic continuation needed
- Dedicated series expansions around (spurious) singularities

Numerical performance

- Sample over physical phase space for NLO Wjj production at the LHC
- Evaluate all functions on each point, plot the worst accuracy per point
- · Timing for all functions on one CPU

Available in PentagonFunctions++ gitlab.com/pentagon-functions/PentagonFunctions-cpp

[Conclusions](#page-32-0)

Conclusions

- Basis of special functions for two-loop five-point one-mass processes is available. Hopefully exciting phenomenology in near future!
- Existence of the basis "mysteriously" implies algebraic identities between initial values.
- Interesting feature discovered: anomalous thresholds in nonplanar massless scattering.
- All we need is iterated integrals with nice kernels.

Outlook

- Ideas generally useful for multi-scale problems with many square roots, e.g. EW corrections and (quantum) gravity amplitudes.
- Dream: extension beyond d log forms.

This work has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme grant agreement 101019620 (ERC Advanced Grant TOPUP).

Established by the European Commission

Backup

Weight 3 functions are one-fold integrals of weight 2 functions by definition

$$
f_i^{(3)}(X) = \sum_{j,k} c_{i,j,k} \int_0^1 d \log W_j(t) h_k^{(2)}(t) + \tau_i^{(3)}
$$

Integrands analytic on the integration domain \implies integration well-defined.

- Efficient numerical integration possible
- Some care to avoid numerical cancellations if $d \log(W_i)$ can vanish along the path

Change order of integration [Caron-Huot, Henn '14]
\n
$$
I_{\gamma}[\omega_1, ..., \omega_n] = \int_0^1 (\gamma^* \circ \omega_n)(t) \int_0^t (\gamma^* \circ \omega_{n-1})(u) I_{\gamma(u)}[\omega_1, ..., \omega_{n-2}]
$$
\n
$$
= \int_0^1 (\gamma^* \circ \omega_{n-1})(u) \left(\int_u^1 (\gamma^* \circ \omega_n)(t) \right) I_{\gamma(u)}[\omega_1, ..., \omega_{n-2}] \qquad 0
$$

For logarithmic forms the last integration is trivial

$$
\int_u^1 (\gamma^* \circ \omega_n)(t) = \int_u^1 d \log(W_n(t)) = \log(W_n(1)) - \log(W_n(u))
$$

DE reconstruction strategy

Hope: the result is pure functions of uniform transcendentality [Henn '13]

Physical region geometry

- Nontrivial geometry due to degree 4 polynomial boundary $\Delta_5 = 0$
- Not convex
- Not star shaped

- Positivity properties of the alphabet important for deriving well-defined functions in physical region
- Can be established by expressing through Gram determinants
- Non-sign-definite letters \implies spurious singularities

[Chicherin, VS, Zoia '21]

We choose an initial point $X_0 \in \mathcal{P}^+_{45}$,

$$
X_0 := (p_1^2 = 1, s_{12} = 3, s_{23} = 2, s_{34} = -2, s_{45} = 7, s_{15} = -2)
$$

which satisfies the following requirements:

- 1. X_0 introduces the minimal number of distinct prime factors.
- 2. X_0 is invariant under the exchanges of momenta $2 \leftrightarrow 3$ and $4 \leftrightarrow 5$ (automorphisms of \mathcal{P}_{45}).

3. The four linear letters which have indefinite sign vanish at X_0 .

Pushing the limits of most advanced PSLQ algorithms [Bailey, Broadhurst '01]

[Bailey, Borwein, Kimberley, Ladd '17]