

First Associations of High–Energy Neutrinos and Insights for the Future

Elisa Resconi Technical University of Munich 12.12.2023

Eu**CAPT**

MAX-PLANCK-GESELLSCHAFT

Astronomy with neutrinos What do we hope to 'see'?

Something fundamental and unexpected (e.g., solar neutrinos)

From MeV to > TeV scale

IceCube's First Decade: rigorous experimental work

- Mission accomplished instrumental:
- Building what today is still the only cubic-km neutrino telescope
- Operating it with >99% life time and nearly zero technical troubles over more than a decade
- Mastering the ice optical properties
- Mastering a full MonteCarlo modelling of the detector and event interaction/propagation
- Advancing event reconstructions, achieving good resolutions and minimizing systematic uncertainties (machine learning)

IceCube's First Decade: neutrino topologies

- **Tracks Detection Channel:**
- Capture CC interaction of nu_mu
- Sub-degree Pointing
- Ok energy resolution
- Primarily in the Northern Hemisphere
- **Showers Detection Channel:**
- Captures CC and NC interactions for all flavors
- Several-degree pointing capability
- Good energy resolution
- All-sky coverage (self-containment)

IceCube's First Decade: milestones

Identified

2023

Milky Way Identified

IceCube's First Decade: milestones

Identified

Third Source Milky Way

IceCube's First Decade: Revealing Neutrino Sources

The IceCube Coll., Science 378 (2022)

Elisa Resconi | 12.12.23

Enhanced Neutrino Directional Modeling

Event 10 $\hat{\sigma}: 0.16^{\circ}, \log_{10}(\hat{E}_{\mu}/\text{GeV}) = 2.9$ $\hat{\sigma}^{old}: 0.21^{\circ}, \log_{10}(\hat{E}_{\mu}^{old}/\text{GeV}) = 3.0$ 0.4 0.6 0.8 1.0 1.2 1.4 $\hat{\psi}[\text{deg}]$

ML-Based Energy Reconstruction

 $P(\hat{E}_{\mu}|E_{\mu})$

Evidence of Neutrino Emission from NGC 1068

The IceCube Coll., Science 378 (2022)

Indication of Neutrino Emission other Seyfert Galaxies

The IceCube Coll. (T. Glauch et al.), ICRC'23, https://pos.sissa.it/444/1052/pdf

Global significance 2.7σ

Indication of Neutrino Emission other Seyfert Galaxies

The IceCube Coll. (T. Glauch et al.), ICRC'23, https://pos.sissa.it/444/1052/pdf

Coming up soon: Update with + 4 Years of Additional Statistics

The Multiwavelength Picture of NGC 1068

Elisa Resconi | 12.12.23

Gamma Ray Flux << Neutrino Flux: How?

NGC 1068: An Archetype of Obscured AGN

One of the nearest and most studied Seyfert 2

Circumnuclear disk (CND) ~200 pc in radius

AGN

Bar connecting CND and starburst ring

IceCube can't resolve different emission components

Elisa Resconi | 12.12.23

, Halo

Starburst activity:
 ~2 kpc starburst ring

NASA/JPL-Caltech/Roma Tre Univ.

NGC 1068: An Archetype of Obscured AGN

Usual Question:
Origins of Neutrinos?
Specific:

Locations and Mechanisms of Gamma-ray Absorption?

Emission powers different components

		Scale	Power (erg/s)	L_{γ} (erg/s)	L_{ν} (erg/s)
	Star formation	> Kpc	1044.5	~ 10 ^{40.9}	~ 1040.6
	Jet	~ Kpc	10 ^{42.9±1}	~ 10 ^{41.7} (M87-like) [absorbed]	~ 1041.4
	Outflow	~ 100 pc	10 ^{41.4±1.0}	< 10 ^{39.5}	< 10 ^{39.2}
	BH vicinity	~ 0.03 millipc (~ 50 R _{s)}	1044.7±0.5	?	?

ΠП

P. Padovani et al., submitted

Total: ~ 10^{41.5}

Observed: $10^{40.92 \pm 0.03}$

 $10^{42.1\pm0.2}$

$L_{\nu} = 1.4 \cdot 10^{42} \, \text{erg/s}$

Black Hole vicinity Seyferts: radio quiet AGN

Narrow line radio galaxy

Elisa Resconi | 12.12.23

image from L. Baronchelli

Seyferts = radio quiet Active Galactic Nuclei

jet not dominant

Radio active

QSO

image from L. Baronchelli

The Corona of hot electrons (and protons?)

Compton thick $(N_H > 10^{24} \text{ atoms cm}^{-2})$

Disk: photons at optical and UV wavelengths

Inverse Compton Scattering

19

The 'naive' scenario

see also Y. Inoue et al., ApJL'20, K. Murase et al., PRL'20, B. OSO

<u>Step 1</u>: acceleration of protons (and electrons) <u>Step 2</u>: $p-\gamma$ (also p-p) interaction *e.g.*, *E*_p ~ 100 *TeV* target $\gamma \sim X$ -ray domain (Corona component)

<u>Step 3</u>: mesons production <u>Step 4</u>: γ -ray \rightarrow degraded into MeV region neutrinos stream through <u>Note:</u> the Fermi-LAT component most probably associated to the starburst component

see Eichmann et al., Astrophys. J. 939 (2022)

20

The 'naive' scenario

see also Y. Inoue et al., ApJL'20, K. Murase et al., PRL'20, B. OSO

Step 1: acceleration of protons (and electrons) Step 2: $p-\gamma$ (also p-p) interaction e.g., $E_p \sim 100$ TeV target $\gamma \sim X$ -ray domain (Corona component)

Step 3: mesons productionCorona of hot electrons (X-ray)Step 4: γ -ray \rightarrow degraded into MeV regionCorona of hot electrons (X-ray)neutrinos stream throughCrucial Signature for Neutrino Validation & SearchNote: the Fermi-LAT component most probably associated to the starburst component

see Eichmann et al., Astrophys. J. 939 (2022)

The Corona

see e.g., A.C. Fabian et al., MNRAS '15

- NGC1068 X-ray Emission: Arises from scattered emission along our line of sight.
- Rapid X-ray Variability (2–10 keV): Implies a compact corona near the SMBH.
- Anisotropic Coronae: Influenced by corona position, black hole spin, and disc inclination.
- <u>Coronae Placement</u>: Many of the coronae are positioned within regions where

3) Toroidal corona

4) Spherical corona

image from L. Baronchelli

The 'naive' scenario

see also Y. Inoue et al., ApJL'20, K. Murase et al., PRL'20, B. OSO

Step 1: acceleration of protons (and electrons) Step 2: $p-\gamma$ (also p-p) interaction e.g., $E_p \sim 100$ TeV target $\gamma \sim X$ -ray domain (Corona component)

What if we relax Step 1? anything fundamental and unexpected?

Questions to NGC1068 association

IceCube Connection to NGC1068 & Other Seyfert Galaxies Point to:

- Proton Acceleration near SMBH: Mechanisms?
- Hot Corona's Photon Field: Origin, Composition, & Morphology?
- Gamma-Ray Showering & Implications: Cascade to MeV Range?
- MeV Telescope Gap: How to Overcome Confirmation Challenges?
- Compact, Obscured Region Interactions: General Relativity Corrections?

IceCube's First Decade: milestones

Identified

Third Source Milky Way

The Galactic plane in neutrinos

The IceCube Coll., Science 380 (2023)

26

The Galactic plane in neutrinos

The IceCube Coll., Science 380 (2023)

comparison, the gray hatching shows the IceCube total neu-

trino flux (22), scaled to an all-sky flux by multiplying by 4π , with its 1σ uncertainty.

27

The Galactic plane in neutrinos

The IceCube Coll., Science 380 (2023)

Three models of Galactic diffuse neutrino emission π^0 , KRA γ^5 , and KRA γ^{50}

Diffuse Galactic plane analyses	Flux sensitivity Φ	p-value	Best-fitting flux Φ
π^0	5.98	$1.26 \times 10^{-6} (4.71\sigma)$	$21.8 \stackrel{+5.3}{_{-4.9}}$
$\mathrm{KRA}_{\gamma}^{5}$	0.16×MF	$6.13 \times 10^{-6} (4.37\sigma)$	$0.55^{+0.18}_{-0.15} \times MF$
$_{}$ KRA $_{\gamma}^{5'0}$	$0.11 \times MF$	$3.72 \times 10^{-5} (3.96\sigma)$	$0.37^{+0.13}_{-0.11} \times MF$

Standard 'naive' scenario: Cosmic-ray nuclei interacting with the interstellar gas.

Several models, see e.g. CRINGE (Schwefer et al 2023 ApJ 949 16)

28

Questions to Galactic Plane association

IceCube Connection to GP Point to:

- Proton Acceleration within out Galaxy as expected. What is the role of the GC?
- GC as a PeVastron not strong enough. Role of Fermi Bubbles?
- What can we learn from the GC region vs Seyfert central regions?
- Anything fundamental and unexpected?

29

IceCube's First Decade: milestones

Is there any connection: SgrA*, SMBH (non-jetted AGN), SMBH (jetted AGN)? & region around SMBH standard galaxy

Diffuse emission

2021

Jetted AGN

2018

First Source

TXS 0506+056

Identified

Glashow Resonance Neutrino Identified

Diffuse emission

2022

non-Jetted AGN

Second Source NGC 1068 Identified

2023

Third Source Milky Way Identified

Semi-diffuse (GP)

We need more neutrinos: Expanding the Neutrino Net TI

OCEAN NETWORKS CANADA

Discover the ocean. Understand the planet. https://www.oceannetworks.ca/

> Explorer Plate

> > Endeavour

2300 m

NEPTUNE OBSERVATORY

Clayoquot

Slope 1250 m Middle Valley 2400 m Cabled ocean observatory: 800 km loop of fibre-optic cables in operation

Cascadia

Basin

2660 m

Juan de

Fuca Plate

Bathymetry (50 m contour line

Pacific

Plate

-3500 m

Subduction Zone

Spreading Center

Fault Line

100 km

Bathymetry Data Sources: Saanich Inlet and Straight of Georgia bathymetry from Canadian Hydrographic Service; USGS Cascadia DEM report 99-369; University of Washington (UW), School of Oceanography, R/V Thomas G. Thompson, Multibeam cruise data - funding provided by KECK Foundation and UW; Plate Boundaries: Adapted from Dragert et au. Science May 2001. 33 Map Creation: Center for Environmental Visualization CON UW School of Oceanography

-2660 m

BRITISH COLUMBIA - CANADA VENUS OBSERVATORY VANCOUVER ISLAND Port Alberni Nancouver Primary Node Folger/ sage Saanich Inlet Mooring 100 m Barkley (O CODAR Canyon Ferry Track **P-ONE** 0 m 0 SHINGTON - USA Seattle h American -1660 m Plate

> P-ONE Collaboration, Nature Astron. 4 (2020)

> > An Initiative of the University of Victoria

The Roadmap to P–ONE: Phase 1, Pathfinders

Phase 1, Pathfinders Recovered (Summer '23)

Recovered Modules: biofouling observed on some of them (5 years of operations) - Mitigation strategies under study.

Phase 2, Demonstrator

P-ONE Based on Design Principles of Scalability Target: O(100) Lines

P-ONE Science: Focus on particle and astrophysics with High Energy (HE) and Ultra High Energy (UHE) neutrinos. P-ONE Design & Optimization: Currently underway to ensure optimal science return for investment. Technical Design Report: Under development to provide a comprehensive overview of the project's technical aspects. Funding Scheme: Possible contributions from Canada, USA, and Europe, ensuring a diverse and collaborative financial foundation that does not overlap with KM3NeT funding.

Conclusions, questions and a proposal

IceCube Connections:

- Proton Acceleration near SMBH: Mechanisms? Something Universal Emerging?
 - Hot Corona's Photon Field: Origin, Composition, & Morphology?
 - Gamma-Ray Showering & Implications: Cascade to MeV Range?
 - MeV Telescope Gap: How to Overcome Confirmation Challenges?
 - Compact, Obscured Region Interactions: General Relativity Corrections?
- Need More Neutrinos!! KM3NeT, IceCube-Gen2, P-ONE
- Berezinsky's 1981 Groundwork: Proposal to Label Seyfert Galaxies with Neutrino Component as 'Berezinsky Galaxies'

пп

38

In the example of a massive black hole in a cocoon we encountered a model of a hidden source: an object which contains particles accelerated to high energies, but is not seen in high-energy electromagnetic radiation (X-ray and (or) gamma-ray radiation).

Black hole Accretion disc Gaseous anvelopa

Berezinsky, Ginzburg, MNRAS 1981 Silberberg, Shapiro 1982

Elisa Resconi | 11.09.23

The 'Hidden' source idea

