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Supersymmetric localization has allowed us to find remarkably
simple expressions for observables in select (large N ) QFTs that

are valid for any coupling.

Let me review two of these formulae as a motivation for the
holographic study we will be carrying out for the rest of the

talk.



MOTIVATION

First is the 1/2 BPS (circular) Wilson loop in planar N = 4 SYM
Erickson, Semenoff, Zarembo (2000)

Pestun (2007)

〈W〉 =
2N√
λ
I1

(√
λ
)

+O(1/N) ,

where λ is the ’t Hooft coupling and N is the rank of the gauge
group.
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Similarly a “simple” answer exists for the S3 partition function
of the ABJM theory

Fuji, Hirano, Moriyama (2011), Mariño, Putrov (2011)

ZS3 = C−1/3eAAi
[
C−1/3(N − k

24
− 1

3k
)
]
,

where C = 2/(kπ2), and A is a complicated function of k. This
is the exact perturbative answer.
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ZS3 = C−1/3eAAi
[
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24
− 1

3k
)
]
,

where C = 2/(kπ2), and A is a complicated function of k. This
is the exact perturbative answer.

The Wilson loop (and other observables) can similarly
expressed in terms of the Airy function.
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MOTIVATION

The examples I gave are for holographic QFTs. How do we
reproduce these expression from the string duals?

One approach is to apply supergravity together with higher
derivative corrections to reproduce the strong coupling

expansion of the QFT answers.

Continuing this approach systematically to higher and higher
order seems challenging. Is there another way?

Localization of supergravity?
Dabholkar, Gomes, Murthy, Sen, Gupta, Ito, Jeon, Reys, de Wit, Iliesiu, Turiaci,...

(2010-)

Is there some analogous tool to localization on the string side?
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In this talk we focus on the worldsheet instanton corrections to
supersymmetric free energy of certain SUSY QFTs.

The saddle point expansion of the string partition function is

Zstring ≈
∑

saddles

e−SclZ1-loop .

where Scl is the classical action evaluated at the particular
saddle and Z1-loop is the one-loop partition function around it.

The leading (g = 0) saddle is always provided by the trivial
configuration of a pointlike string. In this case Scl = 0, and the
one-loop partition function features 10 bosonic zero-modes.

The integration over the zero-modes with the contribution of
the non-zero-modes results in the 10D supergravity action

Fradkin-Tseytlin (’85), Tseytlin (’88,’89,’07)

Zstring ≈ −Ssugra +
∑

instantons

e−SclZ1-loop.
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The leading term in this equation reproduces (after
regularization) the holographic free energy FQFT = − logZQFT
which suggests the general expression

FQFT = −Zstring ≈ Ssugra −
∑

instantons

e−SclZ1-loop.

In this talk we will focus on the non-perturbative corrections to
this formula which results from there being non-trivial saddles.
These are classical configurations for the string with non-zero
classical action a.k.a. worldsheet instantons.

It should be noted that there are other (pertubative) corrections
to this formula in both α′ and gs. These are responsible e.g. for
higher derivative corrections to the supergravity action.
Furthermore, we will only focus on the genus 0 partition
function.
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N = 4 SYM ?

The first example we could imagine is N = 4 SYM dual to
AdS5 × S5.

There are no non-trivial saddlepoints for the string in this case,
and so there are no worldsheet instanton corrections (to this
observable).

Instead we will focus on the two canonical M-theory examples:
ABJM and the (2,0) theory in the appropriate type IIA limit.
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LOCALIZATION
Consider the Euclidean maximal SYM in five dimensions on
the sphere. This theory can be localized to a matrix model a la
Pestun which allows us to evaluate the free energy in the large
N limit.

Kim, Kim (2012)
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These are dual to worldsheet instantons.
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Bobev, Bomans, FFG (2018)

The holographic dual is the backreaction of D4 branes on S5. It
was found in six-dimensional supergravity and then uplifted to
10D. Can also be found by dimensionally reducing AdS7 × S4

ds2
10 = `2s(NπeΦ)2/3

[4(dσ2 + dΩ2
5)

sinh2 σ
+ dθ2 + cos2 θdΩ2

2

+
sin2 θ

1− 1
4 tanh2 σ sin2 θ

dφ2
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,
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ξ3/2

Nπ
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.



HOLOGRAPHIC DUAL

Bobev, Bomans, FFG (2018)

The holographic dual is the backreaction of D4 branes on S5. It
was found in six-dimensional supergravity and then uplifted to
10D. Can also be found by dimensionally reducing AdS7 × S4

ds2
10 = `2s(NπeΦ)2/3

[4(dσ2 + dΩ2
5)

sinh2 σ
+ dθ2 + cos2 θdΩ2

2

+
sin2 θ

1− 1
4 tanh2 σ sin2 θ

dφ2
]
,

eΦ =
ξ3/2

Nπ

(
coth2 σ − 1

4 sin2 θ
)3/4

.

The form fields B2, C1, and C3 are all nontrivial.



HOLOGRAPHIC DUAL

Bobev, Bomans, FFG (2018)
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Nπ
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coth2 σ − 1
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.

The form fields B2, C1, and C3 are all nontrivial.

This background exhibits SU(4|2) symmetry just like the QFT.
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IR

UVflat D4

R6

Evaluating the renormalized (6D) supergravity action we
obtain a leading order match with the QFT answer for the free
energy obtained by localization

Bobev, Bomans, FFG, Minahan, Nedelin (2019)

S
reg.
on-shell = −ξN

2

6
.
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Have to extremize the string action

Scl = A± B =
1

2π`2s

∫
√
γ ± i

2π`2s

∫
B2 ,

There is a supersymmetric configuration of the string wrapping
the S2 in the IR of the geometry, and θ = 0. The classical action
is

Scl = A+ B = 2ξ − ξ = ξ .

Wrapping n strings around the same supersymmetric cycle
gives Scl = nξ.

We have found a tower of worldsheet instantons whose
exponential dependence matches the QFT expectation.
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In order to perform a full check we need to perform one-loop
quantization of the a fundamental string around this classical
solution.

Z1-loop = e−SFTC(χ)(Sdet′K)−1/2Zzero-modes .

Here (Sdet′K)−1/2 is the one-loop contribution of the (physical)
quantum fields living on the string excluding zero-modes
which are treated separately. The coupling of the string to the
dilaton is taken into account in

SFT =
1

4π

∫
√
γΦRγ .

The string ghosts are cancelled by longitudinal fluctuation of
the string modes leaving a universal contribution. These
together with other measure factors are collected into the
universal factor C(χ).

Drukker, Gross, Tseytlin (2000), Giombi, Tseytlin (2020)
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We get the following spectrum of fields

Field Degeneracy M2L2

scalars 6 1
4

2 −3
4

fermions 8 −1
4

We have to compute

Sdet′K =

∏
b(det′ L2K)∏
f (det′ LD)

,

where K and D are the standard Klein-Gordon and Dirac
operators on S2 with radius L.

Using ζ-function regularization, we find

(Sdet′K)−1/2 = (SdetK)−1/2 = −4 .
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Recall that the 10D dilaton was

eΦ =
ξ3/2

Nπ

(
coth2 σ − 1

4 sin2 θ
)3/4 → ξ3/2

Nπ
.

Since χ = 2, we have

e−SFT = e−χΦ =
N2π2

ξ3
.
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THE MEASURE FACTOR C(χ)

Determining the measure factor C(χ) from first principles
remains challenging.

Giombi and Tseytlin suggested to determine C(χ) using
holography. The universality of the measure factors means that
once determined (for one background) it can be checked in
other examples. They found for the disc

Giombi, Tseytlin (2020)

C(1) =

√
−A
2π

.

By a comparison to the QFT prediction we find

C(2) =
A

8π2
.

We will verify this answer by performing a separate check.
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SUMMARY

If we collect all pieces we recover the field theory answer for
the rank one instanton

Z1-loop = e−SFTC(χ)(Sdet′K)−1/2Zzero-modes

=
N2π2

ξ3

(2ξ)

8π2
(−4)

= −N
2

ξ2
.

What about higher rank instantons?
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the spectrum of fields has not changed.
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A very similar story occurs for the higher rank Wilson loop in
say AdS5.

Kruczenski, Tirziu (2008), Buchbinder, Tseytlin (2014), Bergamin, Tseytlin (2015),
Forini, Tseytlin, Vescovi (2017)

Despite many attempts, a match with the QFT has not been
reached. Possibly because ghosts play an important role.
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The QFT answer is however very suggestive. It is as if the
orbifold just affects the answer ‘locally’ by a multiplicative
factor:

Z
(n)
1-loop = Z

(1)
1-loopzn =

Z
(1)
1-loop

n3/2
,

(this is for the orbifolded AdS2 case dual to a multiwound
Wilson loop in AdS5.)

For a spherical worldsheet we should then get

Z
(n)
1-loop = Z

(1)
1-loopz

2
n =

Z
(1)
1-loop

n3
.

This is precisely the multiplicative factor we need for the
higher instantons in 5D SYM.

We have checked this conjecture for a number of examples, but
we do not have a proof.
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Now for all worldsheet instantons we have

Z
(n)
string = − N2

ξ2n3
e−nξ .

Summing over the instantons we find a perfect,
non-perturbative match with the QFT

∞∑
n=1

Z
(n)
string = −N

2

ξ2
Li3(e−ξ) .
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dual geometry.
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Kapustin, Willet, Yaakov, Marino, Putrov, Drukker, Hatsuda, Moriyama, Okuyama,

Grassi, Kallen, ... (many many papers)

In the remaining time, we will take a look at instanton
corrections to the ABJ(M) theory (U(N + l)k ×U(N)−k
Chern-Simons theory in 3D) in the type IIA limit (N � 1,
k � 1, λ = N/k =fixed)

The explicit coefficients cm,n can be computed using the
localization matrix model, in particular for (a single)
worldsheet instanton:

F
(1)
inst =

N2

(2πλ)2
cos
(2πl

k

)
e−2π

√
2λ .

Higher rank instantons are given in terms of Gopakumar-Vafa
invariants on P1 × P1.
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where L2 = π`2s
√

2λ and e2Φ = π(2λ)5/2/N2.

The B-field is proportional to J with a coefficient that is
controlled by l.

Aharony, Hashimoto, Hirano, Ouyang (2009)

There is a simple classical configuration for the string wrapping
CP 1 ⊂ CP 3 with classical action

Cagnazzo, Sorokin, Wulff (2009)

Scl = A± B = 2π
√

2λ±
(2πil

k
− iπ

)
.

Note: Both string and antistring is allowed, we should sum
over both.
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1
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2π

∫
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spectrum of fluctuations

Field Degeneracy M2L2 q

scalars 4 0 0
2 −1

2 1
2 −1

2 −1

fermions 4 −1 0
2 0 1
2 0 −1
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In order to compute the one-loop partition function, we need
the spectrum of the monopole operators (monopole spherical
harmonics). Charged fields have opposite statistics.

Along the way find 12 fermion zero-modes and 12 scalar
zero-modes.

Cagnazzo, Sorokin, Wulff (2009)∫
d12xd12θ = (0×∞)12 !?

“A priori this could be infinity, zero, or a finite number. ”
Beasley, Gaiotto, Guica, Huang, Strominger, Yin (2006)

There is an exact cancellation between the non-zero-modes

(Sdet′K)−1/2 = 1 ,
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In order to lift the zero-modes we deform the ABJ(M) theory on
S3 by modifying the R-charge assignment of the bifundamental
chiral multiplets:

R[X1] =
1

2
+2c , R[X2] =

1

2
−2c , R[Y1] =

1

2
−2c , R[Y2] =

1

2
+2c .

This can be thought of as a mass-deformation.

Holographic dual was found by Freedman and Pufu in 2013.
Uplifted to 10D the only thing that happens is that the metric
on CP 3 is squashed preserving SO(4)×U(1).

The worldsheet instantons ‘localize’ to two points in CP 3 and
the full string partition function can be computed. Taking the
limit back to undeformed ABJ(M) we find

Zzero-modes = 2 .

Putting all together (with the measure factor C(2)!) we find an
exact match with the QFT prediction.



SUMMARY AND OUTLOOK

D We have been able to reproduce a large part of the QFT
answer for the S5 free energy:

FS5 = −N2
(ξ

6
− π2

6ξ
+
ζ(3)

ξ2
− Li3(e−ξ)

ξ2

)
+O(N logN)

D The other two terms should be reproduced by higher
derivative terms in supergravity.

D We fixed the measure factor for genus zero string partition
function using holography. We checked this by comparing
with ABJM, but is there a derivation (see Giombi, Tseytlin
(2023))?

D We also conjectured the contribution of orbifolds to our
answer. It passes many tests but we are lacking a proof. A
very similar result is available for the topological string.
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SUMMARY AND OUTLOOK

D For ABJM, we managed to recover exactly the rank 1
worldsheet instanton answer.

D For higher rank instantons we have a partial answer, there
seem to be more intricate solutions at higher rank
involving strings and antistrings.

D We have looked at two generalizations of ABJM,
mass-deformed and orbifolded. There are partial answers
known in the literature, but we plan to return to this.

D Other observables should also receive worldsheet
instanton corrections, in particular AdS4 BH entropy.



Thank you



5D MAXIMAL SYM ON S5

Consider the Euclidean maximal SYM in five dimensions:

L = − 1
2g2YM

Tr
(
|F |2 − |DΦm|2 + Ψ̄ /DΨ− 1

2
[Φm,Φn]2 + Ψ̄Γm[Φm,Ψ]

)
.

We are using 10D language to write down the 5D fermions (Ψ
has 16 components but should be decomposed into a pair of 5D
spinors). The indices are m = 0, 1, . . . , 4 and R-symmetry is
SO(1, 4).
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Consider the Euclidean maximal SYM in five dimensions:

L = − 1
2g2YM

Tr
(
|F |2 − |DΦm|2 + Ψ̄ /DΨ− 1

2
[Φm,Φn]2 + Ψ̄Γm[Φm,Ψ]

)
.

We are using 10D language to write down the 5D fermions (Ψ
has 16 components but should be decomposed into a pair of 5D
spinors). The indices are m = 0, 1, . . . , 4 and R-symmetry is
SO(1, 4).

All fields transform in the adjoint of the gauge group SU(N).

When we place euclidean SYM on S5, we can preserve SUSY by
adding terms to the Lagrangian

Blau (2000)

δL = − 1
R2 Tr

(
3ΦmΦm+ΦaΦ

a
)

+ 1
2RTr

(
Ψ̄Γ012Ψ−8Φ0 [Φ1,Φ2]

)
,

where a = 0, 1, 2. The radius of S5 isR. R-symmetry is broken
to SU(1, 1)×U(1) ∈ SU(4|1, 1).



SUPERSYMMETRIC LOCALISATION

Consider a theory invariant under some Grassmann odd
charge Q and a Grassmann even charge B with

Q2 = B .

Study BPS observables OBPS which obey

QOBPS = 0 .

One can show
Witten

〈OBPS〉 =

∫
[Dϕ]OBPSe

−S[ϕ]−tQPF [ϕ] ,

where PF [ϕ] is a B-invariant fermionic functional.

This integral is independent of t and one can take the limit
t→∞ to localise the path integral to the saddle points of
QPF [ϕ].
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WILSON LOOP IN 5D SYM

The Wilson loop in this theory is arguably the simplest
expression so far,

Kim, Kim, Kim (2012)

〈W〉 =
eξ − 1

2 sinh ξ
2N
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WILSON LOOP IN 5D SYM

The Wilson loop in this theory is arguably the simplest
expression so far,

Kim, Kim, Kim (2012)

〈W〉 =
eξ − 1

2 sinh ξ
2N

.

Notice that in this example there are only few terms of the
perturbative expansion (at leading order in N ) and then

non-perturbative corrections.
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Maximal supersymmetric Yang-Mills in d = 5 is the
worldvolume theory on D4 branes in type IIA string theory.

The holographic dual to 5D SYM is given by the gravitational
geometry around D4 branes

ds2
10 = H−1/2ds2

|| +H1/2ds2
⊥ .

where ds2
||, ds2

⊥ are the metrics on flat 5D spacetimes and H is
harmonic on ds2

⊥.
Since we are interested in Euclidean 5D SYM on S5, we want
ds2
|| = dΩ2

5. We need a spherical brane solution.
For the case at hand there is a quick way to obtain this solution
by uplifting the near-horizon metric around flat D4s to 11D
where one obtaines AdS7 × S4. Then we can change
coordinates and reduce back to 10D carefully making sure
supersymmetry is not broken.



MASS DEFORMED ABJ(M) IN 10D

Uplifting the SO(4)×U(1) invariant solution of Freedman and
Pufu gives

ds2
10 = L2(ds2

AdS4 + 4ds2
6) ,

ds2
AdS4 = dρ2 + sinh2 ρdΩ2

3 ,

ds2
6 = dθ2 +

cos2 θ

4Y1
dΩ2

1 +
sin2 θ

4Y2
dΩ2

2 + sin2 θ cos2 θΣ2

e2Φ =
π(2λ)5/2

N2Y1Y2
,

Σ = dϕ+
1

2
cos θ1 dφ1 −

1

2
cos θ2 dφ2 .

The two functions Y1 and Y2 implement the squashing of the
internal space and take the form

Y1 = 1 + c
cos2 θ

cosh2(ρ/2)
, Y2 = 1− c sin2 θ

cosh2(ρ/2)
.



HIGHER RANK IN ABJ(M)

string theory gives (all strings/antistrings wrapping
CP 1 ⊂ CP 3)
∞∑
n=1

Z
(n)
inst =

N2

2(2πλ)2

(
Li3(−βe−2π

√
2λ) + Li3(−β−1e−2π

√
2λ)
)
,

where β = e−2πil/k. Matrix model result is

Finst =
N2

(4πλ)2

∑
dm=n

∑
d1+d2=d

(−1)n

n3
nd1,d20 β

d2−d1
d

ne−2πn
√

2λ ,

where ni,j0 are Gopakumar-Vafa invariants on P1 × P1.
Restricting to the d1 + d2 = 1 sector of the sum, the two
answers agree.

Clearly more configurations of strings should be possible at
higher rank.


