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Twisting Supersymmetric QFTs

® Twisting SQFT is the procedure of passing to a cohomology of a supercharge:

Q,¢]=0 (Q-closed)
o~ ¢+ (Q, Y (modulo Q-exact)

® Physics motivation:

» Produces a consistent subsector of SQFT
» Restricts to protected (BPS) quantities
» Correlation functions independent of some coordinates:

{QQy~P
Eg. topological or holomorphic twist

® Twisted holography: holographic duals of these twists
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Twisted Holography

Example: protected subsector of AdS5 /CFT4 [Costello, Gaiotto *18]:

Q

N =4 SYM with U(N) type IIB on AdS5 x S°

twisted
“Q + S” twist strings/SUGRA
[Beem et al.] [Costello, Li]

2d chiral algebra Ay~ B-model on SL(2,C) ~ AdS3 x S*
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Twisted Holography

Example: protected subsector of AdS5 /CFT4 [Costello, Gaiotto *18]:

Q

N =4 SYM with U(N) type IIB on AdS5 x S°

. twisted
Q + S twist strings/SUGRA
[Beem et al.] [Costello, Li]

2d chiral algebra Ay~ B-model on SL(2,C) ~ AdS3 x S*

Motivation:
® Many simplifications occur

® Connections to math
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In this talk

Review the duality [Costello, Gaiotto 18]

2d chiral algebra Ax <+ topological B-model on SL(2,C) ‘

Correspondence between determinants and Giant Gravitons

» Match saddles of determinant correlation functions with D1-brane
configurations

» Spectral curve construction

Extend the duality to hon-conformal vacua of the chiral algebra

Future directions:
» “Bootstraping” to AdSs x S°
» LLM type geometries
» Holomorphic twist of N' = 4 SYM
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Twisted Holography

Twisted holography example: [Costello, Gaiotto "18]

chiral algebra An
gauged 3~ system in adj. of U(N) >
(large N expansion of)
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(with coupling N~1)
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Twisted Holography

Twisted holography example: [Costello, Gaiotto "18]

chiral algebra An
gauged 3~ system in adj. of U(N) >
(large N expansion of)

B-model on SL(2,C)
(with coupling N~1)

Simplifications:

® Dependence on t’'Hooft coupling drops out
® (Almost) free field theory computations in the chiral algebra Ay

® D1-branes are holomorphic curves in SL(2,C)
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[Beem, Lemos, Liendo, Peelaers, Rastelli, Rees '13]
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Chiral algebra Ay

Any 4d N = 2 SCFT contains a 2d chiral algebra subsector
[Beem, Lemos, Liendo, Peelaers, Rastelli, Rees '13]

The chiral algebra of ' = 4 SYM is a gauged 3~ system:

a c a cc 1 1
Xy (2)Y7(0) ~ 5d5bﬁg

QBRST ~ Nj{Tr (c[X, Y]+ %b[c, c]>

Free theory computations in the chiral algebra (for BRST closed operators)

For the future, define a linear combination:
Z(u;2) = X(2) +uY (2)
We will be interested in correlation functions of determinant operators

det(m + Z(u; 2))
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Topological B-model

® The spacetime theory is Kodaira-Spencer (BCOV) theory on 3d CY

» Holomorphic
» Depends only on the complex structure (part of metric) of X

» Fields are poly-vectorfields

PV (X)) = Q") (x, APTX)  (locally f1dz, ... 0., ...)

m

For example,
B e PVh(x)

is a Beltrami differential which deforms the complex structure

® D-branes wrap holomorphic submanifolds eg. D1-branes are holomorphic
complex lines
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Twisted Holography

1 Consider topological B-model in flat B-model on C3
space X = C3

N D1-branes

2 The chiral algebra Ay is supported
by N D1-branes wrapping C C C3

A

chiral algebra A

3 The stack of branes sources a Beltrami differential which deforms
the complex structure:

C*\C — SL(2,0)

[Costello, Gaiotto '18]

B-model on C* + N D1-branes — B-model on SL(2,C) ~ AdS3 x S*

.T
AN
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Giant Gravitons

® Determinant operators in N = 4 SYM are dual to D3-branes wrapping
R, x S? inside AdS; x S°

/AdS5IR(+ ~ ) Ss

® Determinant operators in chiral algebra A are dual to D1-branes wrapping
C* =R, x S"inside SL(2,C) = AdS; x S°

= O

¢ Determinant operator:
det(m + Z(u; 2)), Z(u;z) = X(z) + uY (2)

» z = position at the boundary of AdS3
» u controls orientation of S* C $3

» m controls size of S* ¢ $°
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Giant Gravitons

® Many possible brane configurations with the same boundary behaviour

SL(2,C)

® We will match saddles p* of correlation functions of determinants with brane
configurations

» m;, Ui, z; control boundary behaviour

» Saddles p will control the shape in the bulk
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Determinant correlation functions

[Jiang, Komatsu, Vescovi '19]
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Determinant correlation functions

[Jiang, Komatsu, Vescovi '19]

® Fermionize determinants

det(m + Z(u;2)) = /[dqzd'l//’] e’d_)(m-‘-Z(u,z))w

® Rewrite correlation function using auxiliary bosonic variables p§- fori # j,

i
Pi =My

k

<Hdet(mi + Z(ui;zi))> ~ /[dp] N Slol

with action

1 Zi—Zj i j
Slpl =5 > ——pjpl +logdet p
i T
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Saddles and branes

® Saddle point equations in the matrix form:

[C.pl+ [p™]=0

where

We will match saddles p to classical brane configurations in B-model on
SL(2,C)

® For each p we will define a spectral curve S, in SL(2,C)

® We check it matches dual Giant Graviton brane

k > 2 would be hard in AdSs x S®°
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Spectral curve

For each saddle p we define a spectral curve S,:

® Define commuting matrices:

B(a)=ap—p, Cla)=al+p ', D(a)=alu+p ‘'n—_p,

® Define spectral curve:

S/J = {(a7 b7 C, d)
s.t. b, c, d are simultaneous eigenvalues of B(a),C(a), D(a)}

® The matrices are defined so that:
» They commute when p satisfies the saddle point equations
» They satisfy
aD(a) — B(a)C(a) =1
» They have the expected boundary behavior
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Holographic checks

® Boundary behaviour ¢ — oo:

S 2
B() _ | N () :( | ) )
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B(a) _ m_T-_ +..., C(a):(ﬂ-, >+
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Holographic checks

® Boundary behaviour ¢ — oo:

m
Ul—Tl z1

mp
a

= spectral curve S, goes to the boundary of SL(2,C) in k points

® Various holographic checks: Tr 7™

» Correlation functions of determinants with
a single-trace [Jiang, Komatsu, Vescovi '19]

» Action S[p] vs S[brane]

» Modifications of determinants / excitations of the brane

14/20



Determinant modifications

® For example

1
det X — ﬁea(X, X, X,...,Y?

“There are also 3 other types of generators but we focus on one tower.

15/20



Determinant modifications

® For example

1
det X — ﬁas(X, X, X,...,Y?

® Employ the global symmetry algebra™ of Ax:

}{z’“ Tz0ize .z, 0<k<n-—2

“There are also 3 other types of generators but we focus on one tower.

15/20



Determinant modifications

® For example

1
det X — ﬁas(X, X, X,...,Y?

® Employ the global symmetry algebra™ of Ax:

?{szrZ“lZiQ..,Zi"), 0<k<n-—2

® For example, the lowest modes are the su(2) generators:

%TrXX, ?{TrXY, %TrYY

“There are also 3 other types of generators but we focus on one tower.

15/20



Determinant modifications

For example

1
det X — ﬁas(X, X, X,...,Y?

Employ the global symmetry algebra™ of Ax:

?{szrZ“lZiQ..,Zi"), 0<k<n-—2

For example, the lowest modes are the su(2) generators:

%TrXX, ?{TrXY, %TrYY

Create modifications by acting with the modes, eg.

fﬂy‘*(z) det X (0) ~ (X, X, X,...,Y*) + ...

“There are also 3 other types of generators but we focus on one tower.

15/20



Determinant modifications

® We computed 2-pt functions of determinant modifications
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Determinant modifications

® We computed 2-pt functions of determinant modifications

P,q»

<[JIE7,2,, det Y (00)][JS), det X(O)]> ‘

N— oo

® There are only two types of determinant modifications:

roo1 o det X —snee(X, X,..., V')

Ty o det X —neg(X, X,..., Y PTI9X)
+nee(X, X,...,0°Y P73
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® (det Y (oc0) det X (0)) has a single nontrivial saddle corresponding to the
brane:
det X

(g 13@) C SL(2,C)

detY

® Holographic global symmetry algebra acts by [Costello, Gaiotto]

holomorphic divergence-free vector fields on SL(2,C)

® There are only two types of brane excitations:

R R

0 1/a
m . (a 0 a 0 =172
Jpptt1 (0 1/a> — (50 1/a>’ oc na

17/20



Coulomb branch geometries

® Duality can be extended to non-conformal vacua of the chiral algebra Ay

18/20



Coulomb branch geometries

® Duality can be extended to non-conformal vacua of the chiral algebra Ay

® Twisted analog of

Coulomb branch of N = 4 SYM «— multi-center solutions

18/20



Coulomb branch geometries

Duality can be extended to hon-conformal vacua of the chiral algebra Ay

Twisted analog of

Coulomb branch of N = 4 SYM «— multi-center solutions

Backreact stack of non-coincident branes
Dual Calabi-Yau geometries are deformations of SL(2,C)

s " N;/N N
I— 2y =+———F—~ n
T @ —w)y—w)

For standard SL(2,C) geometry: Ny

1

20 — Roo = —
Ty
(Zn, yn)

(w1,91)
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Coulomb branch geometr

ies

® Duality can be extended to non-conformal vacua of the chiral algebra Ay

® Twisted analog of

Coulomb branch of N = 4 SYM «— multi-center solutions

® Backreact stack of non-coincident branes

Dual Calabi-Yau geometries are deformations of SL(2

,©)

N;/N

A e T W=

For standard SL(2,C) geometry: Ny
1
20 — Roo = —
Ty

® Holographic check:

» Determinant correlation functions
(with a single-trace) and dual Giant Graviton branes

]\[n

(w1,91)

(#nsyn)
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Future directions

® Spectral curve construction in other examples of twisted or free field
holography

¢ Find SUSY D3-branes in AdS;s x S° that correspond to our B-model
D1-branes

® Mathematical question:

Solutions of matrix equations <= Holomorphic curves
(¢, p]+ [, p"']=0 in SL(2,C)

= Spectral curve construction
< For genus g = 0, we can go back
<« Forgenus g > 0, we don’t know
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geometries

New holomorphic coordinates:

_c 1

Gi=ae PUEHEE . bA0 det X
z 2 n 2

as = a e bl2+lel , 0750

with transition: detY

gr‘ N
N | =
I
™

g
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Future directions

® Consider O(N?) operators eg. (det Z)™, which are dual to backreacted
geometries

New holomorphic coordinates:

_z 1
G1=ae PEEHEE, b#£0 det X
b 1
az =aec [b12+]c|? , ¢ 75 0
with transition: detY
B _
a2

¢ Holographic dual of the holomorphic twist of A = 4 SYM

» Proposed to be topological B-model on C?, in the presence of a certain
background field [Costello, Li'16]
» Maybe useful for "non-multigraviton” cohomology classes?

Thank you!
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Holographic checks

Correlation function of determinants with a single-trace
[Jiang, Komatsu, Vescovi '19]:

<HD(mi;U¢;Z¢)NTTZn>‘ S\ O G
i N—roo ¢—2" lp=p*
We can rewrite it to a form NTxZ",
0 a,
Sp*

where « is a Kodaira-Spencer field sourced by N Tr Z™:

o= 8((1) —wua)"de—, + (2a — 0)7"(5%:“)
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