Designing gravity
via SymN(C)
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Holographic CFT

A CFT whose dual gravity theory that has a low-energy EFT description.

A few (but not all) properties associated to them are:
o Large central charge (large-N), which leads to a large number of d.o.f. (BHs)
o Sparse spectrum (degeneracy of light operators are not conftrolled by N).

o Factorization of correlation functions, i.e., Generalized Free Fields.(!!)

See, for example:
Heemskerk, J. Penedones, J. Polchinski, and J. Sully 2009
El-Showk and Papadodimas 2011
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Large central charge (large-N), which leads to a large number of d.o.f. (BHs)
Sparse spectrum (degeneracy of light operators are not controlled by N).

Factorization of correlation functions, i.e., Generalized Free Fields.(!!)

How many conditions do | need to impose?
How stringent are the conditions?



Designing AdS; Quantum Gravity

@)

@)

@)

@)

Define gravity via the dual CFT,
ldentify necessary conditions
Determine possible designs we can achieve

Focus on CFT, that we can quantify:
Symmetric Product Orbifolds

Quantum Field Theory

A
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o Implement conditions

o Precise outcomes (with surprises)

A. Belin, J. Gomes, C. Keller, AC, 2016, 2018

A. Belin, C. Keller, B. MOhImann, AC, 2019 (x2)

A. Belin, N. Benjamin, C. Keller and S. Harrison, AC, 2020
N. Benjamin, S. Bintanja, J. Hollander, AC 2022



o New features in the design of AdS/CFT
o Breaking Sym®"(C)

L. Apolo, A. Belin, S. Bintanja, C. Keller, AC
2204.07590 and 2212.07436

Strong
couplingx ‘A Doy coupling




Symmetric Product Orbifolds

N copies of a unitary
C and compact CFT,
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Symmetric Product Orbifolds

N copies of a unitary
C and compact CFT,

C = seed theory

C r N
C C®N

> SymN(C) — w

. J
Orbifold by the permutation group Sy

The orbifold introduces two class of states:
o untwisted sector: it keeps states that are invariant under Sy.

o ftwisted sectors: new states labelled by conjugacy classes of Sy.




Symmetric Product Orbifolds

o Appeal: Mathematical and analytic control, e.g., DMVV formula.
o Familiarity: D1DS CFT.
o Universality: large-N behavior is robust.

o Utility: compelling features for AdS/CFT.




Symmetric Product Orbifolds

@)

@)
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Appeal: Mathematical and analyfic control, e.g., DMVV formula.

Familiarity: D1D5 CFT.
Utility: compelling features for AdS/CFT.

Universality: large-N behavior is robust.

Today: non-universal properties.
Demonstrate that there are different
classes, and their features challenge the
lore of AdS/CFT.




Universal Aspects

All symmetric product orbifolds satisfy:

O

O

O

O

Correlation functions comply with large-N factorization.

[Pakman et.al., Mathur et.al., Belin et.al., Hael et.al., ...]

Hawking-Page transition at large-N.
[Keller 2011; Hartman, Keller, Stoica 2014; Benjamin et.al. 2015]

Higher spin currents due to orbifold structure.

Universal Hagedorn growth of light states.
[Keller 2011]

dy (D) ~ e?™2 where A» 1, A~0O(N% and b ~ O(N?)

ceN
SymMN(C) = —
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Universal Aspects

All symmetric product orbifolds satisfy:

O

O

Correlation functions comply with large-N factorization.

Hawking-Page transition at large-N.

O

O

Higher spin currents due to orbifold structure.

Universal Hagedorn growth of light states.

\_¢

AdS/CFT interpretation: Dual of Sym"(C) looks like
a tensionless string theory (or higher spin gravity).

ceN
SymMN(C) = —



o Higher spin currents due to orbifold structure.

o Universal Hagedorn growth of light states. l’

Question: Which Sym"(C) could admit in their moduli space a dual supergravity pointe

Strategy: Impose necessary conditions. Identify which Sym" (€) comply with them.

YR I Sym™ (C)
{ ‘,) % (weak]

Astring AAdS

coupling

- Astring > Npas
N\

Moduli space: set of exactly marginal deformations
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Some requirements:

'
o Large-N:c = =1
2GN

o Sparse spectrum
o Large gap spectrum
© ococ

At large-N, classify them
according tfo:

o Moduli (deformation)
o BPS spectrum

Strong  ,/

' couplin
o coupllng% A Dy pling \

Moduli space: set of exactly marginal deformation




Neccesary conditions

o Criterion 1: Existence of suitable moduli (single trace, twisted, BPS): A d)%fi‘)”

o Criterion 2: Sparseness condition on the elliptic genera (index that captures '4- BPS states).




Neccesary conditions

o Criterion 1: Existence of suitable moduli (single trace, twisted, BPS): A d)%fi‘)”

Three requirements on this operator d¢{Y" :

o 2-BPS: Supersymmetry protects the deformation everywhere in the conformal manifold.
o Twisted: break the orbifold structure of Sym~(C).

o Single-frace: have an effect at leading order at large-N.




Neccesary conditions

o Criterion 1: Existence of suitable moduli (single trace, twisted, BPS): A d)%fi‘)”

o Criterion 2: Sparseness condition on the elliptic genera (index that captures '4- BPS states).
F_Lo—»% _To— g l
X(1,7,0) = Treg ((~D)F g™ Fe yo g 58) = d(n, g™y
n,l

1
(1 _ qnyle)d(nN,l)

Z(p,7,2) = Z x(7,z; SymN (C))e?™PN =
N n,I,NEZ
N>0

In the NS sector, for Sym¥ (C), we will distinguish them by the growth of light states:

o Slow growth: d(A) ~ e%A” with y < 1 For the regime
A>1, N> 1,
o Fast growth: d(A) ~ ecHA A ~ O(N9)




Neccesary conditions

o Criterion 1: Existence of suitable moduli (single frace, twisted, BPS).

o Criterion 2: Sparseness condition on the elliptic genera (index that captures '4- BPS states).

Based on these two criteria, we will classify SymY (C) theories, and label them as

-
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Type I.
Both criteria

~
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4 )
Type Il:
Only criterion 1
\_ ,

4 )
Type llI;
Neither criteria
\_ ,

4 )
Type IV:
Only criterion 2
g J




Neccesary conditions
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o Criterion 2: Sparseness condition on the elliptic genera (index that captures V-BPS states).

1. We proved that both criteria (independently) imply that seed theory must have
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Neccesary conditions

o Criterion 1: Existence of suitable moduli (single tfrace, twisted, BPS).

o Criterion 2: Sparseness condition on the elliptic genera (index that captures V-BPS states).

1. We proved that both criteria (independently) imply that seed theory must have

1<c¢y <6

2. Criterion 2 can be done systematically and is exhaustive.

3. If Criterion 2 is saftisfied, we proved that one always gets

di,, (A) ~e¥® where A1, A~ O(N°)
4




Classification

- )
Type I: Needles in a haystack.
Both cri’rério —> Comply with necessary conditions compatible with
g ) a holographic CFT.
( )
Type Il Strange and counter-intuitive.
Only criterion 1 Moduli exists, but Hagedorn behavior persists.
L J
Type llI: Generic, most abundant.
Neither criteria They will never lead to a supergravity point in moduli space.
Type IV Unicorns.

Only criterion 2 No unitary example yet. Modular invariance does not rule it out.
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Only criterion 2 No unitary example yet. Modular invariance does not rule it out.
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1 Type | 3 Type I, II, Il 6 Type Il "




Summary

1 Type | 3 Type I, II, Il 6 Type Il "

Comments:

o Only consider CFTs that are unitary and compact.
o Assume that the elliptic genus does not vanish.

o D1DS5 on K3 sits at ¢y = 6.

o Search between 1 < ¢y < 3 is exhaustive: N=2 Minimal Models.

o Search between 3 < ¢y < 6 is not exhaustive (but systematic).




Type |: Examples

Series k untwisted moduli  twisted moduli single trace twisted
A, 1 1 28 1 twist 5, 1 twist 7
As 2 3 26 1 twist 3, 1 twist 4, 1 twist 5
As 4 9 24 1 twist 2, 1 twist 3, 1 twist 4
A1 odd, >3 P(k+2)—2 9 1 twist 3
ko
Appr even, > 6 P(k+2) -2 10+ 3 P(r) 1 twist 2, 1 twist 3 N=2 Virasoro Minimal Models
r=1
D, 4 6 20 1 twist 2, 2 twist 3, 1 twist 4 Co = 3k <3
by K+2
Di,, Omodd, >8 Pt+1)+Pt+1) 8+ P(r) 1 twist 2, 1 twist 3 where k =1,2,..
2 r=1
Di,, 2mod4, >6 P(t+1) 7 1 twist 3
Eg 10 4 5 1 twist 2
E; 16 6 5 1 twist 2
Es 28 6 5 1 twist 2 D
AD
N //&EAD -
- Necessary conditions: . %E
L Criterion 1: Exactly marginal operator
SENEmE Criterion 2: Sparse spectrum for elliptic genera




Mologr Qry, SmmeTic p, %
C /A

At large-N, classify them
according tfo:

o Moduli (deformation):
single trace+twisted
o Sparse BPS spectrum

o c=2%1
2GN

o Few states

(O

Strong ./
coupling %




Type |: Examples

Series k untwisted moduli  twisted moduli
Ay 1 1 28
As 2 3 26
As 4 9 24
Api1 odd, > 3 Pk+2)—2 9
ki2
Akt even, > 6 Pk+2)—2 10+ > P(r)
r=1
D, 4 6 20
2+1
De,, Omod4, >8 P(5+1)+P(;+1) 8—|—TZIP(7“)
Di,, 2mod4, >6 P(s +1) 7
Es 10 4 5
E; 16 6 )
Eg 28 6 )

Responsible of lifting most states.
Breaks higher spin symmetry




Effects of single trace deformation

Turn on deformation (Effec’rs on 2pt function h

= , 1
S 5> S+ AN [d?z d,4(z,2) (0a(2)0a(2"))) = (z — 2/)20tua) (2 — 2/)20 )
\ J \ J

Deformation preserves supersymmetry and conformal symmetry.
Further expectations of this operator:
o toinduce anomalous dimensions on most operators,

o reduce the Hagedorn growth.




Anomalous dimension for spin-2

3k

s €~ &tz L t(2)
5
1 1 -
7
3 20m2M\2 (3N —2)
27(N-1)
& 18772A2(3N—2)
’ 2 - 256(N_1)
5 AN (3N —2)
5(N—1)
9 44732 \2 (9N —5)
) 5 : 243(N—1)
9 39m2\2 (2N —1)
64(N—1)
197222 (2N—1)
! : : 27(N-1)
4 20772 \2(2N —1)
256(N—1)
472 X\2(c2+12¢—9)(cN—1)
5,06,... |[2<c<3 3 e
6,8,... | 2<c<3 2 3m2)2(24+¢)(cN—1)

64c(c—1)(N—-1)

1
A
(0a(2)0a(2))y = (z — 2/)2(h+pa(N) (7 — 2/)2(ﬁ+ﬁa()‘))

o First correction in perturbation theory
o Sensitivity on the twist and central charge.

o Still, currents are lifting. Good sign!

Wa(z) = T(2) — 2(JI)(2) + CN — U Z g
Z#J

=T(2) + m(JJ)(,z) — % Z;(J(i)J(i))(z) :

1=



Type |: Examples

P ——
Series k untwisted moduli  twisted moduli single trace twisted
A, 1 1 28 1 twist 5, 1 twist 7
As 2 3 26 | twist 3, 1 twist 4, 1 twist 5
As 4 9 24 | twist 2, 1 twist 3, 1 twist 4
Api1 odd, > 3 Pk+2)—2 9 1 twist 3
ko
2
Akt even, > 6 Pk+2)—2 10+ > P(r) 1 twist 2, 1 twist 3
r=1
Dy 4 6 20 | twist 2, 2 twist 3, 1 twist 4
2+1
4
Dey, Omodd4, >8 |P(5+1)+P(3+1) 8+ ; P(r) 1 twist 2, 1 twist 3
Di,, 2mod4, >6 P(%+1) 7 1 twist 3
E 10 4 5 1 twist 2
E; 16 6 5 1 twist 2
Eg 28 \ 6 5 / 1 twist 2
" _

Multi-trace deformations.
Explicit example of CFT with these BPS deformations.




Destroy Factorization

Consider any CFT that complies with Large-N and Factorization
(010203>A ~ A

Breaks large-N factorization

Interactions that are not controlled by Gy
Type | theories have these deformations
Argument is general. applies to CFTp

The coupling 4 is independent of N.
This deformation does not affect the large-N limit (observables converge).







Quantify the space of type | theories:
ples

@)

O
O
O

Different from known exam
Systematic and tractable
Infinite family

New possibilities in AdS/CFT

Type | SymY (C)

Conditions:
o Large-N
o Sparse elliptic genera
o Moduli

Conformal Field Theory

HoIerQD/) .
(e

Some requirements:

o Large-N

o Sparse spectrum

o Large gap spectrum

ional



o Which CFTs capture classical (geometric) properties of gravitye

o What are possible theories of quantum gravity that can be
designed?

o What are the materials needed to assemble them?¢
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Next steps:
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o String theory and supergravity description.

o Heavy states. contrast black holes among type |, I and lll.
o Effects of multi-trace deformation.

o Type | vs ll: liffing of generic operators.

o Non-compact CFTs.




EXTRA




Re-cap

Type |

r

.

Type Il:
Only criterion 1

J

Type |, I, 1I ¢ Type Il

Strange and counter-intuitive.
Moduli exists, but Hagedorn behavior persists.



Theory Sparse? | Moduli? Composition
A ® Aar v v (11,88), (22,22)
A7 ® Ags v v (11,55),(22,22)
Ag ® Ay v v (11,44),(22,22)
Ag ® Aqa v v (22,22)
A1 ® A1q v v (11,33),(33,11),(22,22)
Ag @ Dao X X
A7 ® D13 X v (11,55)
Aoz ® Dy X v (55,11)
Ag ® Dy X X
A4 ® Dg X X
A11 ® Dy v v (11,33),(33,11)
Ag ® Er X X
Type |l A1 ® Fg X v (33,11)
T DswDiz | X | v | dLb) |
D7 Q Dy v v (11.33).(33.11)
Type | D7 ® Eg v v (33,11)
E6 0% E6 X X
As ® As ® As v v (11,11,22),(11,22,11)
Ao ® As ® Dy v v (11,22,11)
A ® Dy ® Dy X X
Az ® A3 ® As v v (11,11,22)
A3 ® A3 ® Dy X X

Examples of theories where the seed has ¢y =5

Why are type Il theories scary?




Comparisson

é )

Type I: Needles in a haystack.
Both criteria Comply with necessary conditions to lead to a

. Y, holographic CFT.

é )

Type Il: Strange and counter-intuitive.
Only criterion 1 Moduli exists, but Hagedorn behavior persists.

. J

o We evaluated anomalous dimension of several holomorphic operators (currents).

o Type | and Il theories exhibit no difference at leading order in perturbation theory. @

o What is the key feature that guarantees a supergravity point in moduli space?¢




