Designing gravity via Sym^N(C)

Alejandra Castro DAMTP

CERN, June, 2023

CFT_D - AdS_{D+1} Gravity

Holographic CFT

A CFT whose dual gravity theory that has a low-energy EFT description.

A few (but not all) properties associated to them are:

- Large central charge (large-N), which leads to a large number of d.o.f. (BHs)
- Sparse spectrum (degeneracy of light operators are not controlled by N).
- Factorization of correlation functions, i.e., Generalized Free Fields. (!!)

0 ...

Holographic CFT

A CFT whose dual gravity theory that has a low-energy EFT description.

A few (but not all) properties associated to them are:

- Large central charge (large-N), which leads to a large number of d.o.f. (BHs)
- Sparse spectrum (degeneracy of light operators are not controlled by N).
- Factorization of correlation functions, i.e., Generalized Free Fields. (!!)

0 ...

How many conditions do I need to impose? How stringent are the conditions?

Designing AdS₃ Quantum Gravity

- Define gravity via the dual CFT₂
- Identify necessary conditions
- Determine possible designs we can achieve
- Focus on CFT₂ that we can quantify:
 Symmetric Product Orbifolds

Classification of Symmetric Product Orbifolds

Deformations of Symmetric Product Orbifolds

Classification of Symmetric Product Orbifolds

- o Implement conditions
- Precise outcomes (with surprises)

```
A. Belin, J. Gomes, C. Keller, AC, 2016, 2018
```

A. Belin, C. Keller, B. Mühlmann, AC, 2019 (x2)

A. Belin, N. Benjamin, C. Keller and S. Harrison, AC, 2020

N. Benjamin, S. Bintanja, J. Hollander, AC 2022

New features in the design of AdS/CFT

o Breaking $Sym^N(C)$

L. Apolo, A. Belin, S. Bintanja, C. Keller, AC 2204.07590 and 2212.07436

Deformations and New Flavours of AdS/CFT

The orbifold introduces two class of states:

- o untwisted sector: it keeps states that are invariant under S_N .
- o twisted sectors: new states labelled by conjugacy classes of S_N .

- Appeal: Mathematical and analytic control, e.g., DMVV formula.
- o Familiarity: D1D5 CFT.
- Universality: large-N behavior is robust.
- Utility: compelling features for AdS/CFT.

- Appeal: Mathematical and analytic control, e.g., DMVV formula.
- o Familiarity: D1D5 CFT.
- Utility: compelling features for AdS/CFT.
- Universality: large-N behavior is robust.

Today: non-universal properties.

Demonstrate that there are different classes, and their features challenge the lore of AdS/CFT.

Universal Aspects

All symmetric product orbifolds satisfy:

- o Correlation functions comply with large-N factorization.

 [Pakman et.al., Mathur et.al., Belin et.al., Hael et.al., ...]
- Hawking-Page transition at large-N.

[Keller 2011; Hartman, Keller, Stoica 2014; Benjamin et.al. 2015]

- Higher spin currents due to orbifold structure.
- Universal Hagedorn growth of light states.

[Keller 2011]

$$d_{all}(\Delta) \sim e^{2\pi b \Delta}$$
 where $\Delta \gg 1$, $\Delta \sim O(N^0)$ and $b \sim O(N^0)$

$$Sym^N(C) = \frac{C^{\bigotimes N}}{S_N}$$

Universal Aspects

All symmetric product orbifolds satisfy:

- o Correlation functions comply with large-N factorization.
- Hawking-Page transition at large-N.

- Higher spin currents due to orbifold structure.
- Universal Hagedorn growth of light states.

$$d_{all}(\Delta) \sim e^{2\pi b \Delta}$$
 where $\Delta \gg 1$, $\Delta \sim O(N^0)$ and $b \sim O(N^0)$

$$Sym^N(C) = \frac{C^{\bigotimes N}}{S_N}$$

Universal Aspects

All symmetric product orbifolds satisfy:

- o Correlation functions comply with large-N factorization.
- Hawking-Page transition at large-N.
- Higher spin currents due to orbifold structure.
- Universal Hagedorn growth of light states.

AdS/CFT interpretation: Dual of $Sym^N(C)$ looks like a tensionless string theory (or higher spin gravity).

$$Sym^N(C) = \frac{C^{\bigotimes N}}{S_N}$$

- Higher spin currents due to orbifold structure.
- Universal Hagedorn growth of light states.

Question: Which $Sym^N(C)$ could admit in their moduli space a dual supergravity point?

Strategy: Impose necessary conditions. Identify which $Sym^N(C)$ comply with them.

Moduli space: set of exactly marginal deformations

Holographic CA

Some requirements:

• Large-N: $c = \frac{3\ell}{2G_N} \gg 1$

Sparse spectrum

Large gap spectrum

0 ...

symmetric Product Orbitoly

At large-N, classify them according to:

Moduli (deformation)

o BPS spectrum

Weak Strong coupling coupling, $\lambda \Phi_{(1,1)}$ Moduli space: set of exactly marginal deformations

- o Criterion 1: Existence of suitable moduli (single trace, twisted, BPS): $\lambda \Phi_{(1,1)}^{1t.tw.}$
- o Criterion 2: Sparseness condition on the elliptic genera (index that captures 1/4- BPS states).

o Criterion 1: Existence of suitable moduli (single trace, twisted, BPS): $\lambda \Phi_{(1,1)}^{1t.tw.}$

Three requirements on this operator $\Phi_{(1,1)}^{1t.tw.}$:

- ½-BPS: Supersymmetry protects the deformation everywhere in the conformal manifold.
- o Twisted: break the orbifold structure of $Sym^N(C)$.
- Single-trace: have an effect at leading order at large-N.

- o Criterion 1: Existence of suitable moduli (single trace, twisted, BPS): $\lambda \Phi_{(1,1)}^{1t.tw.}$
- o Criterion 2: Sparseness condition on the elliptic genera (index that captures 1/4- BPS states).

$$\chi(\tau, z; C) = \operatorname{Tr}_{RR} \left((-1)^F q^{L_0 - \frac{C}{24}} y^{J_0} \, \overline{q}^{\overline{L}_0 - \frac{C}{24}} \right) = \sum_{n,l} d(n, l) q^n y^l$$

$$Z(\rho, \tau, z) = \sum_{N} \chi(\tau, z; Sym^{N}(C)) e^{2\pi i \rho N} = \prod_{\substack{n,l,N \in \mathbb{Z} \\ N > 0}} \frac{1}{(1 - q^{n} y^{l} p^{N})^{d(nN,l)}}$$

In the NS sector, for $Sym^N(C)$, we will distinguish them by the growth of light states:

• Slow growth: $d(\Delta) \sim e^{c_S \Delta^{\gamma}}$ with $\gamma < 1$

• Fast growth: $d(\Delta) \sim e^{c_H \Delta}$

For the regime $\Delta \gg 1$, $N \gg 1$, $\Delta \sim O(N^0)$

- Criterion 1: Existence of suitable moduli (single trace, twisted, BPS).
- o Criterion 2: Sparseness condition on the elliptic genera (index that captures 1/4- BPS states).

Based on these two criteria, we will classify $Sym^N(C)$ theories, and label them as

Type I: Both criteria Type II: Only criterion 1 Type III: Neither criteria

Type IV:
Only criterion 2

- Criterion 1: Existence of suitable moduli (single trace, twisted, BPS).
- o Criterion 2: Sparseness condition on the elliptic genera (index that captures 1/4-BPS states).
 - 1. We proved that both criteria (independently) imply that seed theory must have

$$1 \le c_0 \le 6$$

- Criterion 1: Existence of suitable moduli (single trace, twisted, BPS).
- \circ Criterion 2: Sparseness condition on the elliptic genera (index that captures $\frac{1}{4}$ -BPS states).
 - 1. We proved that both criteria (independently) imply that seed theory must have

$$1 \le c_0 \le 6$$

2. Criterion 2 can be done systematically and is exhaustive.

- Criterion 1: Existence of suitable moduli (single trace, twisted, BPS).
- o Criterion 2: Sparseness condition on the elliptic genera (index that captures 1/4-BPS states).
 - 1. We proved that both criteria (independently) imply that seed theory must have

$$1 \le c_0 \le 6$$

- 2. Criterion 2 can be done systematically and is exhaustive.
- 3. If Criterion 2 is satisfied, we proved that one always gets

$$d_{\frac{1}{4}BPS}(\Delta) \sim e^{\sqrt{\Delta}}$$
 where $\Delta \gg 1$, $\Delta \sim O(N^0)$

Classification

Needles in a haystack. Type I: Comply with necessary conditions compatible with Both criteria a holographic CFT. Type II: Strange and counter-intuitive. Moduli exists, but Hagedorn behavior persists. Only criterion 1 Type III: Generic, most abundant. They will never lead to a supergravity point in moduli space. Neither criteria

Type IV: Only criterion 2 Unicorns.

No unitary example yet. Modular invariance does not rule it out.

Classification

Type I: Both criteria Needles in a haystack.

Comply with necessary conditions compatible with a holographic CFT.

Type II: Only criterion 1 Strange and counter-intuitive.

Moduli exists, but Hagedorn behavior persists.

Type III: Neither criteria Generic, most abundant.

They will never lead to a supergravity point in moduli space.

Type IV: Only criterion 2 Unicorns.

No unitary example yet. Modular invariance does not rule it out.

Summary

Summary

Comments:

- Only consider CFTs that are unitary and compact.
- Assume that the elliptic genus does not vanish.
- \circ D1D5 on K3 sits at $c_0 = 6$.
- o Search between $1 \le c_0 < 3$ is exhaustive: N=2 Minimal Models.
- o Search between $3 \le c_0 \le 6$ is not exhaustive (but systematic).

Type I: Examples

Series	k	untwisted moduli	twisted moduli	single trace twisted
A_2	1	1	28	1 twist 5, 1 twist 7
A_3	2	3	26	1 twist 3, 1 twist 4, 1 twist 5
A_5	4	9	24	1 twist 2, 1 twist 3, 1 twist 4
A_{k+1}	odd, ≥ 3	P(k+2) - 2	9	1 twist 3
A_{k+1}	even, ≥ 6	P(k+2)-2	$10 + \sum_{r=1}^{\frac{k}{2}+2} P(r)$	1 twist 2, 1 twist 3
D_4	4	6	20	1 twist 2, 2 twist 3, 1 twist 4
$D_{\frac{k}{2}+2}$	$0 \bmod 4, \ge 8$	$P(\frac{k}{2}+1) + P(\frac{k}{4}+1)$	$8 + \sum_{r=1}^{\frac{k}{4}+1} P(r)$	1 twist 2, 1 twist 3
$D_{\frac{k}{2}+2}$	$2 \bmod 4, \ge 6$	$P(\frac{k}{2} + 1)$	7	1 twist 3
E_6	10	4	5	1 twist 2
E_7	16	6	5	1 twist 2
E_8	28	6	5	1 twist 2

N=2 Virasoro Minimal Models

$$c_0 = \frac{3k}{k+2} < 3$$

where $k = 1, 2, ...$

Necessary conditions:

Criterion 1: Exactly marginal operator

Criterion 2: Sparse spectrum for elliptic genera

Holographic Chy $\circ c = \frac{3\ell}{2G_N} \gg 1$ Few states

0 ...

symmetric Product Orbitoly At large-N, classify them according to:

- o Moduli (deformation): single trace+twisted
- o Sparse BPS spectrum

Weak Strong coupling coupling $\lambda \Phi_{(1,1)}$ Moduli space: set of exactly marginal deformations

Type I: Examples

Series	k	untwisted moduli	twisted moduli	single trace twisted
A_2	1	1	28	1 twist 5, 1 twist 7
A_3	2	3	26	1 twist 3, 1 twist 4, 1 twist 5
A_5	4	9	24	1 twist 2, 1 twist 3, 1 twist 4
A_{k+1}	odd, ≥ 3	P(k+2) - 2	9	1 twist 3
A_{k+1}	even, ≥ 6	P(k+2) - 2	$10 + \sum_{r=1}^{\frac{k}{2}+2} P(r)$	1 twist 2, 1 twist 3
D_4	4	6	20	1 twist 2, 2 twist 3, 1 twist 4
$D_{\frac{k}{2}+2}$	$0 \bmod 4, \ge 8$	$P(\frac{k}{2}+1) + P(\frac{k}{4}+1)$	$8 + \sum_{r=1}^{\frac{k}{4}+1} P(r)$	1 twist 2, 1 twist 3
$D_{\frac{k}{2}+2}$	$2 \bmod 4, \ge 6$	$P(\frac{k}{2}+1)$	7	1 twist 3
E_6	10	4	5	1 twist 2
E_7	16	6	5	1 twist 2
E_8	28	6	5	1 twist 2

Responsible of lifting most states. Breaks higher spin symmetry

Effects of single trace deformation

Turn on deformation

$$S \to S + \lambda \sqrt{N} \int d^2 z \, \Phi_{1,1}(z,\bar{z})$$

Effects on 2pt function

$$\langle \mathbb{O}_a(z) \mathbb{O}_a(z') \rangle_{\lambda} = \frac{1}{(z - z')^{2(h + \mu_a(\lambda))} (\bar{z} - \bar{z}')^{2(\bar{h} + \bar{\mu}_a(\lambda))}}$$

Deformation preserves supersymmetry and conformal symmetry.

Further expectations of this operator:

- o to induce anomalous dimensions on most operators,
- o reduce the Hagedorn growth.

Anomalous dimension for spin-2

k	$c = \frac{3k}{k+2}$	n	$\mu_{(2)}$
1	1	5	
1	1	7	
		3	$\frac{20\pi^2\lambda^2(3N-2)}{27(N-1)}$
2	$\frac{3}{2}$	4	$\frac{187\pi^2\lambda^2(3N-2)}{256(N-1)}$
		5	$\frac{4\pi^2\lambda^2(3N-2)}{5(N-1)}$
3	$\frac{9}{5}$	3	$\frac{44\pi^2\lambda^2(9N-5)}{243(N-1)}$
		2	$\frac{39\pi^2\lambda^2(2N-1)}{64(N-1)}$
4	2	3	$\frac{19\pi^2\lambda^2(2N-1)}{27(N-1)}$
		4	$\frac{207\pi^2\lambda^2(2N-1)}{256(N-1)}$
$5,6,\ldots$	2 < c < 3	3	$\frac{4\pi^2\lambda^2(c^2+12c-9)(cN-1)}{27c^2(c-1)(N-1)}$
6, 8,	2 < c < 3	2	$\frac{3\pi^2\lambda^2(24+c)(cN-1)}{64c(c-1)(N-1)}$

$$\langle \mathbb{O}_a(z) \mathbb{O}_a(z') \rangle_{\lambda} = \frac{1}{(z - z')^{2(h + \mu_a(\lambda))} (\bar{z} - \bar{z}')^{2(\bar{h} + \bar{\mu}_a(\lambda))}}$$

- First correction in perturbation theory
- o Sensitivity on the twist and central charge.
- o Still, currents are lifting. Good sign!

$$W_2(z) = T(z) - \frac{3}{2}(JJ)(z) + \frac{3(cN-1)}{2c(N-1)} \sum_{i \neq j}^{N} J^{(i)}(z)J^{(j)}(z)$$
$$= T(z) + \frac{3(c-1)}{2c(N-1)}(JJ)(z) - \frac{3(cN-1)}{2c(N-1)} \sum_{i=1}^{N} (J^{(i)}J^{(i)})(z).$$

Type I: Examples

Series	k	untwisted moduli	twisted moduli	single trace twisted	
A_2	1	1	28	1 twist 5, 1 twist 7	
A_3	2	3	26	1 twist 3, 1 twist 4, 1 twist 5	
A_5	4	9	24	1 twist 2, 1 twist 3, 1 twist 4	
A_{k+1}	odd, ≥ 3	P(k+2) - 2	9	1 twist 3	
A_{k+1}	even, ≥ 6	P(k+2) - 2	$10 + \sum_{r=1}^{\frac{k}{2}+2} P(r)$	1 twist 2, 1 twist 3	
D_4	4	6	20	1 twist 2, 2 twist 3, 1 twist 4	
$D_{\frac{k}{2}+2}$	$0 \bmod 4, \ge 8$	$P(\frac{k}{2}+1) + P(\frac{k}{4}+1)$	$8 + \sum_{r=1}^{\frac{k}{4}+1} P(r)$	1 twist 2, 1 twist 3	
$D_{\frac{k}{2}+2}$	$2 \bmod 4, \ge 6$	$P(\frac{k}{2} + 1)$	7	1 twist 3	
E_6	10	4	5	1 twist 2	
E_7	16	6	5	1 twist 2	
E_8	28	6	5	1 twist 2	

Multi-trace deformations.

Explicit example of CFT with these BPS deformations.

Destroy Factorization

Consider any CFT that complies with Large-N and Factorization

$$\langle O_1 O_2 O_3 \rangle_{\lambda} \sim \lambda$$

- Breaks large-N factorization
- \circ Interactions that are not controlled by G_N
- Type I theories have these deformations
- Argument is general: applies to CFT_D

The coupling λ is independent of N. This deformation does not affect the large-N limit (observables converge).

Outlook

Quantify the space of type I theories:

- Different from known examples
- Systematic and tractable
- Infinite family
- New possibilities in AdS/CFT

Gravitational Theory

Type I $Sym^N(C)$

Conditions:

- Large-N
- Sparse elliptic genera
- o Moduli

Holographic Chi

Some requirements:

- Large-N
- Sparse spectrum
- Large gap spectrum

- Which CFTs capture classical (geometric) properties of gravity?
- What are possible theories of quantum gravity that can be designed?
- What are the materials needed to assemble them?

Next steps:

- String theory and supergravity description.
- Heavy states: contrast black holes among type I, II and III.
- o Effects of multi-trace deformation.
- Type I vs II: lifting of generic operators.
- Non-compact CFTs.

EXTRA

Re-cap

	Theory	Sparse?	Moduli?	Composition	
	$A_6\otimes A_{41}$	√	√	(11,88), (22,22)	
	$A_7 \otimes A_{23}$	✓	✓	(11,55),(22,22)	
	$A_8 \otimes A_{17}$	✓	✓	(11,44),(22,22)	
	$A_9\otimes A_{14}$	✓	✓	(22,22)	
	$A_{11}\otimes A_{11}$	✓	\checkmark	(11,33),(33,11),(22,22)	
	$A_6 \otimes D_{22}$	X	X		
	$A_7 \otimes D_{13}$	Х	✓	(11,55)	
	$A_{23}\otimes D_5$	Х	✓	(55,11)	
	$A_8 \otimes D_{10}$	Х	Х		
	$A_{14} \otimes D_6$	X	X		
	$A_{11}\otimes D_7$	✓	✓	(11,33),(33,11)	
	$A_8 \otimes E_7$	X	Х		
Type II	$A_{11} \otimes E_6$	X	✓	(33,11)	
	$D_5 \otimes D_{13}$	X	✓	(11,55)	
	$D_7 \otimes D_7$	√	√	(11,33),(33,11)	
Type I	$D_7 \otimes E_6$	√	✓	(33,11)	
	$E_6 \otimes E_6$	X	X		
	$A_2 \otimes A_5 \otimes A_5$	\checkmark	\checkmark	(11,11,22),(11,22,11)	
	$A_2 \otimes A_5 \otimes D_4$	✓	\checkmark	(11,22,11)	
	$A_2 \otimes D_4 \otimes D_4$	X	X		
	$A_3 \otimes A_3 \otimes A_5$	✓	\checkmark	(11,11,22)	
	$A_3 \otimes A_3 \otimes D_4$	X	X		

Why are type II theories scary?

Examples of theories where the seed has $c_0=5$

Comparisson

- We evaluated anomalous dimension of several holomorphic operators (currents).
- \circ Type I and II theories exhibit no difference at leading order in perturbation theory. \boxtimes
- o What is the key feature that guarantees a supergravity point in moduli space?