

Insertion Devices

Axel Bernhard | 2023-12-01

www.kit.edu

- Magnet in an insertion
- not being part of the lattice

Undulator radiation

FEL/Phase requirements

- Magnet in an insertion
- not being part of the lattice
- typically a periodic array with
 - period length $\lambda_{\rm u}$
 - number of periods N_u
 - length $L_u = N_u \lambda_u$
 - zero net deflection: $x'(-L_u/2) = x'(L_u/2)$
 - zero net displacement: $x(-L_u/2) = x(L_u/2)$

- Magnet in an insertion
- not being part of the lattice
- typically a periodic array with
 - period length $\lambda_{\rm u}$
 - number of periods N_u
 - length $L_u = N_u \lambda_u$
 - zero net deflection: $x'(-L_u/2) = x'(L_u/2)$
 - zero net displacement: $x(-L_u/2) = x(L_u/2)$
- aim: generate enhanced radiation by multiple deflection

Undulator radiation

Classification with respect to undulator parameter

$$K_{\rm u} :\approx rac{\psi_0}{1/\gamma}$$

K_u ≫ 1: Wiggler
 K_u ≲ 1: Undulator

Undulator radiation

FEL/Phase requirements

Magnetic design

Technical design

Classification with respect to undulator parameter

$$K_{\rm u} :\approx rac{\psi_0}{1/\gamma}$$

K_u ≫ 1: Wiggler
 K_u ≤ 1: Undulator

Undulator radiation

FEL/Phase requirements

The purpose of IDs

Axel Bernhard: Insertion Devices

Magnetic design

Technical design

From use case to design requirments

Outline

- 1. Understanding undulator radiation
- 2. Understanding the FEL mechanism Phase requirements
- 3. Technological boundary conditions for ID magnetic design
- 4. Aspects of ID 3D and technical design

Undulator radiation

Outline

1. Understanding undulator radiation

- Planar undulator and wiggler radiation
- Helical undulator radiation
- 2. Understanding the FEL mechanism Phase requirements
- 3. Technological boundary conditions for ID magnetic design
- 4. Aspects of ID 3D and technical design

Undulator radiation

The basic principle

FEL/Phase requirements

Magnetic design

<u>-βc</u>

Technical design

1.2

1.1

1 $\lambda^*/(\lambda_u/2\gamma)$

The particle trajectory I

Equations of motion: Lorentz force

$$\vec{F} = m\gamma \begin{pmatrix} \ddot{x} \\ \ddot{y} \\ \ddot{z} \end{pmatrix} = e(\vec{v} \times \vec{B}) = eB_0 \begin{pmatrix} -\cos(k_{\rm u}z)\dot{z} \\ 0 \\ \cos(k_{\rm u}z)\dot{x} \end{pmatrix}$$

Ideal planar undulator:

$$ec{B}(x,0,z) = B_0(0,\cos k_{
m u} z,0)$$

with $k_{
m u} = rac{2\pi}{\lambda_{
m u}}$

Undulator radiation

FEL/Phase requirements

Magnetic design

Technical design

The particle trajectory I

Ideal planar undulator:

$$ec{B}(x,0,z) = B_0(0,\cos k_{
m u} z,0)$$
 with $k_{
m u} = rac{2\pi}{\lambda_{
m u}}$

Equations of motion: Lorentz force

$$\vec{F} = m\gamma \begin{pmatrix} \ddot{x} \\ \ddot{y} \\ \ddot{z} \end{pmatrix} = e(\vec{v} \times \vec{B}) = eB_0 \begin{pmatrix} -\cos(k_{\rm u}z)\dot{z} \\ 0 \\ \cos(k_{\rm u}z)\dot{x} \end{pmatrix}$$

Integration for *x* component:

$$\dot{x} = -\frac{eB_0}{m\gamma k_{\rm u}}\sin(k_{\rm u}z).$$

Undulator radiation

FEL/Phase requirements

The particle trajectory I

Ideal planar undulator:

$$ec{B}(x,0,z) = B_0(0,\cos k_{
m u} z,0)$$
 with $k_{
m u} = rac{2\pi}{\lambda_{
m u}}$

Undulator radiation

FEL/Phase requirements

Equations of motion: Lorentz force

$$\vec{F} = m\gamma \begin{pmatrix} \ddot{x} \\ \ddot{y} \\ \ddot{z} \end{pmatrix} = e(\vec{v} \times \vec{B}) = eB_0 \begin{pmatrix} -\cos(k_{\rm u}z)\dot{z} \\ 0 \\ \cos(k_{\rm u}z)\dot{x} \end{pmatrix}$$

Integration for *x* component:

$$\dot{x} = -\frac{eB_0}{m\gamma k_{\rm u}}\sin(k_{\rm u}z).$$

z-component: energy conservation:

$$\dot{x}^2 + \dot{z}^2 = \beta^2 c^2 \quad \Rightarrow \quad \dot{z} = \beta c \sqrt{1 - \frac{\dot{x}^2}{\beta^2 c^2}}$$

Magnetic design

Technical design

The particle trajectory II

Trajectory as function of time

$$x(t') = \frac{K_{\rm u}}{\beta \gamma k_{\rm u}} \cos(\Omega_{\rm u} t')$$

Undulator radiation

The particle trajectory II

Trajectory as function of time

$$\begin{aligned} x(t') &= \frac{K_{\rm u}}{\beta \gamma k_{\rm u}} \cos(\Omega_{\rm u} t') \\ z(t') &= \beta^* c t' + \frac{K_{\rm u}^2}{8\beta^2 \gamma^2 k_{\rm u}} \sin(2\Omega_{\rm u} t') \end{aligned}$$

Undulator radiation

FEL/Phase requirements

Karlsruhe Institute of Technology

The particle trajectory II

Trajectory as function of time

$$\begin{aligned} x(t') &= \frac{K_{\rm u}}{\beta \gamma k_{\rm u}} \cos(\Omega_{\rm u} t') \\ z(t') &= \beta^* c t' + \frac{K_{\rm u}^2}{8\beta^2 \gamma^2 k_{\rm u}} \sin(2\Omega_{\rm u} t') \end{aligned}$$

with

$$\beta^* c = \beta c \left(1 - \frac{K_u^2}{4\beta^2 \gamma^2} \right) < \beta c$$
$$2\Omega_u = 2k_u \beta^* c$$
$$K_u := \frac{eB_0}{mck_u}$$

K_u=0.5 K_u=1.0 K..=2.0 0.8 0.6 0.4 0.2 x*(t') [µm] 0 -0.2 -0.4 -0.6 -0.8 -1 -0.4 -0.2 0 0.2 0.4 z*(ť) [µm] Particle trajectory in the co-moving frame with

 $\textit{v}=\beta^{*}\textit{c};$ numbers given for $\lambda_{\rm u}=14\,{\rm mm},$ $W_{\rm e}=2.5\,{\rm GeV}.$

Undulator radiation

FEL/Phase requirements

Technical design

Trajectory + Liénard Wiechert potentials:

$$\vec{E}(\vec{r}_{P},t) = \frac{e}{4\pi\epsilon_{0}} \left[\frac{1}{c} \frac{\vec{n} \times [(\vec{n}-\vec{\beta}) \times \dot{\vec{\beta}}]}{(1-\vec{\beta}\cdot\vec{n})^{3}R} \right]_{\rm ret}$$

Undulator radiation

FEL/Phase requirements

Trajectory + Liénard Wiechert potentials:

$$\vec{E}(\vec{r}_{P},t) = \frac{e}{4\pi\epsilon_{0}} \left[\frac{1}{c} \frac{\vec{n} \times \left[(\vec{n} - \vec{\beta}) \times \dot{\vec{\beta}} \right]}{(1 - \vec{\beta} \cdot \vec{n})^{3} R} \right]_{\text{ret}}$$

Consequence of reduced mean drift velocity and figure-8 motion:

complex periodic motion \Rightarrow line spectrum with harmonics *h* of fundamental wavelength

$$\lambda_1 = \frac{\lambda_{\rm u}}{2\gamma^2} \left(1 + \frac{{\cal K}_{\rm u}^2}{2} + \gamma^2 \vartheta^2\right)$$

The undulator equation.

Undulator radiation

FEL/Phase requirements

Trajectory + Liénard Wiechert potentials:

$$\vec{\mathsf{E}}(\vec{r}_{\mathsf{P}},t) = \frac{\mathsf{e}}{4\pi\epsilon_0} \left[\frac{1}{\mathsf{c}} \frac{\vec{n} \times [(\vec{n} - \vec{\beta}) \times \dot{\vec{\beta}}]}{(1 - \vec{\beta} \cdot \vec{n})^3 R} \right]_{\rm ret}$$

Consequence of reduced mean drift velocity and figure-8 motion:

complex periodic motion \Rightarrow line spectrum with harmonics *h* of fundamental wavelength

$$\lambda_1 = \frac{\lambda_{\rm u}}{2\gamma^2} \left(1 + \frac{{\rm K}_{\rm u}^2}{2} + \gamma^2 \vartheta^2\right)$$

The undulator equation.

Undulator radiation

FEL/Phase requirements

Magnetic design

Technical design

Axel Bernhard: Insertion Devices

Spectral angular power distribution

$$\frac{\mathrm{d}^2 P_h}{\mathrm{d}\Omega \mathrm{d}\omega} = P_{\mathrm{u}} \gamma^{*2} [F_{h\sigma}(\vartheta,\varphi) + F_{h\pi}(\vartheta,\varphi)] f_{\mathrm{N}}(\Delta \omega_h)$$

Trajectory + Liénard Wiechert potentials:

$$\vec{\mathsf{E}}(\vec{\mathsf{r}}_{\mathsf{P}},t) = \frac{\mathsf{e}}{4\pi\epsilon_0} \left[\frac{1}{\mathsf{c}} \frac{\vec{\mathsf{n}} \times [(\vec{\mathsf{n}} - \vec{\beta}) \times \dot{\vec{\beta}}]}{(1 - \vec{\beta} \cdot \vec{\mathsf{n}})^3 \mathsf{R}} \right]_{\mathrm{ret}}$$

Consequence of reduced mean drift velocity and figure-8 motion:

complex periodic motion \Rightarrow line spectrum with harmonics h of fundamental wavelength

$$\lambda_1 = \frac{\lambda_{\rm u}}{2\gamma^2} \left(1 + \frac{{\rm K}_{\rm u}^2}{2} + \gamma^2 \vartheta^2\right)$$

The undulator equation.

Undulator radiation

FEL/Phase requirements

Spectral angular power distribution

$$\frac{\mathrm{d}^2 P_h}{\mathrm{d}\Omega \mathrm{d}\omega} = \mathbf{P}_{\mathrm{u}} \gamma^{*2} [F_{h\sigma}(\vartheta,\varphi) + F_{h\pi}(\vartheta,\varphi)] f_{\mathrm{N}}(\Delta \omega_h)$$

Total power

$$P_{\rm u} = \frac{2}{3} \frac{e^4 c^3}{4\pi\epsilon_0} \frac{\langle B^2 \rangle W_e^2}{(mc^2)^4}$$

Magnetic design

Technical design

Trajectory + Liénard Wiechert potentials:

$$\vec{E}(\vec{r}_{P},t) = \frac{e}{4\pi\epsilon_{0}} \left[\frac{1}{c} \frac{\vec{n} \times [(\vec{n}-\vec{\beta}) \times \dot{\vec{\beta}}]}{(1-\vec{\beta} \cdot \vec{n})^{3}R} \right]_{\rm ret}$$

Consequence of reduced mean drift velocity and figure-8 motion:

complex periodic motion \Rightarrow line spectrum with harmonics *h* of fundamental wavelength

$$\boxed{\lambda_1 = \frac{\lambda_{\rm u}}{2\gamma^2} \left(1 + \frac{{\cal K}_{\rm u}^2}{2} + \gamma^2 \vartheta^2\right)}$$

The undulator equation.

Undulator radiation

FEL/Phase requirements

Spectral angular power distribution

$$\frac{\mathrm{d}^{2} P_{h}}{\mathrm{d}\Omega \mathrm{d}\omega} = P_{\mathrm{u}} \gamma^{*2} [F_{h\sigma}(\vartheta,\varphi) + F_{h\pi}(\vartheta,\varphi)] f_{\mathrm{N}}(\Delta \omega_{h})$$

Normalized angular power distribution $1^{\rm st}$ harmonic for σ and π polarization, respectively:

Magnetic design

Technical design

Trajectory + Liénard Wiechert potentials:

$$\vec{E}(\vec{r}_{P},t) = \frac{e}{4\pi\epsilon_{0}} \left[\frac{1}{c} \frac{\vec{n} \times [(\vec{n}-\vec{\beta}) \times \dot{\vec{\beta}}]}{(1-\vec{\beta} \cdot \vec{n})^{3}R} \right]_{\rm ret}$$

Consequence of reduced mean drift velocity and figure-8 motion:

complex periodic motion \Rightarrow line spectrum with harmonics *h* of fundamental wavelength

$$\overline{\lambda_1 = \frac{\lambda_{\rm u}}{2\gamma^2} \left(1 + \frac{{\cal K}_{\rm u}^2}{2} + \gamma^2 \vartheta^2\right)}$$

The undulator equation.

Undulator radiation

FEL/Phase requirements

Spectral angular power distribution

$$\frac{\mathrm{d}^{2} P_{h}}{\mathrm{d}\Omega \mathrm{d}\omega} = P_{\mathrm{u}} \gamma^{*2} [F_{h\sigma}(\vartheta,\varphi) + F_{h\pi}(\vartheta,\varphi)] f_{N}(\Delta \omega_{h})$$

Spectral function $1^{\mbox{\scriptsize st}}$ harmonic:

Technical design

- the undulator spectrum can be changed by varying ${\cal K}_{\rm u}=\frac{{\rm e}}{2\pi mc}B_0\lambda_{\rm u}$

Undulator radiation

FEL/Phase requirements

- the undulator spectrum can be changed by varying ${\cal K}_{\rm u}=\frac{{\rm e}}{2\pi mc}B_0\lambda_{\rm u}$
- $K_u = 0.3$: virtually harmonic motion \rightarrow single line spectrum

Undulator radiation

FEL/Phase requirements

- the undulator spectrum can be changed by varying ${\cal K}_{\rm u}=\frac{{\rm e}}{2\pi mc}B_0\lambda_{\rm u}$
- $K_{\rm u} = 0.3$: virtually harmonic motion \rightarrow single line spectrum
- K_u = 1.0: higher harmonics appear, intensity increases (power ∝ B₀²), lines are shifted to longer wavelengths (lower energies)

Undulator radiation

FEL/Phase requirements

- the undulator spectrum can be changed by varying ${\cal K}_{\rm u}=\frac{{\rm e}}{2\pi mc}B_0\lambda_{\rm u}$
- $K_{\rm u} = 0.3$: virtually harmonic motion \rightarrow single line spectrum
- K_u = 1.0: higher harmonics appear, intensity increases (power ∝ B₀²), lines are shifted to longer wavelengths (lower energies)
- K_u = 2.3: tuning ranges of 1st and 3rd harmonic overlap

Undulator radiation

FEL/Phase requirements

Helical undulators

Undulator field and trajectory

On axis field of an ideal helical undulator:

$$\vec{B} = (B_{x0}\cos(k_{u}z - \phi), B_{y0}\cos(k_{u}z), 0)$$

 \Rightarrow elliptic motion in the transverse plane with

$$\beta_x = -\frac{K_y}{\gamma}\cos(k_u z), \quad \beta_y = -\frac{K_x}{\gamma}\cos(k_u z - \phi)$$

and, in particular, for $\mathit{K_x} = \mathit{K_y}, \phi = \frac{\pi}{2}$

$$\beta_z = \beta - \frac{K_y^2}{4\beta\gamma^2} - \frac{K_x^2}{4\beta\gamma^2} = \text{const.}$$

Radiation field

Similar solutions as for the planar undulator with following main differences:

modified undulator equation

$$\lambda_1 = \frac{\lambda_{\mathsf{u}}}{2\gamma^2} \left(1 + \frac{\mathsf{K}_{\mathsf{x}}^2}{2} + \frac{\mathsf{K}_{\mathsf{y}}^2}{2} + \vartheta^2 \gamma^2 \right)$$

- elliptically, for $K_x = K_y, \phi = \frac{\pi}{2}$ circularly polarized light on axis
- constant $\beta_z \Rightarrow$ virtually no higher harmonics

Undulator radiation

FEL/Phase requirements

Magnetic design

Outline

1. Understanding undulator radiation

2. Understanding the FEL mechanism — Phase requirements

- 3. Technological boundary conditions for ID magnetic design
- 4. Aspects of ID 3D and technical design

Undulator radiation

The FEL mechanism: resonance condition

Energy transfer particle \leftrightarrow light

- oscillatory motion
- $v_x \parallel \vec{E}_{\text{light}}$
- energy transfer possible periodically

Continuous energy transfer

- requires fixed phase relation between electron motion and field oscillation
- that is fulfilled for:

$$\lambda = \frac{\lambda_{\rm u}}{2\gamma^2} \left(1 + \frac{K_{\rm u}^2}{2} \right)$$
$$\Rightarrow \gamma_r = \sqrt{\frac{\lambda_{\rm u}}{2\lambda} \left(1 + \frac{K_{\rm u}^2}{2} \right)}$$

with γ_r the resonance energy

Undulator radiation

FEL/Phase requirements

The high gain FEL mechanism: microbunching

Reference particle: $\psi_0 = -\pi/2$ zero energy transfer between electron and light wave

Laser-acceleration: $\psi_0 = -\pi$ energy transfer from light wave to electron

FEL case: $\psi_0 = 0$ energy transfer from electron to light wave

Undulator radiation

FEL/Phase requirements

Magnetic design

Technical design

In a long bunch, given the FEL resonance condition is fulfilled:

- all relative phases present
- periodic particle energy modulation
- periodic drift velocity modulation
- periodic particle density modulation

Karlsruhe Institute of Technology

The high gain FEL mechanism: microbunching

Reference particle: $\psi_0 = -\pi/2$ zero energy transfer between electron and light wave

Laser-acceleration: $\psi_0 = -\pi$ energy transfer from light wave to electron

In a long bunch, given the FEL resonance condition is fulfilled:

- all relative phases present
- periodic particle energy modulation
- periodic drift velocity modulation

all particles radiate coherently

periodic particle density modulation

graphics: P.Schmüser et al., ibid

Undulator radiation

FEL/Phase requirements

Magnetic design

ID field quality: The phase error

Phase relation electron — photon

Phase slip due to different travelling times (over half period):

$$\omega_1(t_{\text{electron}} - t_{\text{photon}}) = \omega_1 \left(\frac{\lambda_{\text{u}}}{2\overline{v}_z} - \frac{\lambda_{\text{u}}}{2c} \right)! = \pi$$

Here,

$$\overline{\mathbf{v}}_{\mathbf{z}} = \beta^* \mathbf{c} = \mathbf{c} \left(1 - \frac{1 + \frac{\mathbf{K}_u^2}{2}}{2\gamma^2} \right).$$

Undulator radiation

FEL/Phase requirements

ID field quality: The phase error

Phase relation electron — photon

Phase slip due to different travelling times (over half period):

$$\omega_1(t_{\text{electron}} - t_{\text{photon}}) = \omega_1 \left(\frac{\lambda_{\text{u}}}{2\overline{v}_z} - \frac{\lambda_{\text{u}}}{2c} \right)! = \pi$$

Here,

$$\overline{\mathbf{v}}_{\mathbf{z}} = \beta^* \mathbf{c} = \mathbf{c} \left(1 - \frac{1 + \frac{\mathbf{K}_u^2}{2}}{2\gamma^2} \right).$$

Constant phase relation must be maintained along the whole undulator (beamline) for the high gain FEL process to work

Undulator radiation

FEL/Phase requirements

ID field quality: The phase error

Phase relation electron — photon

Phase slip due to different travelling times (over half period):

$$\omega_1(t_{ ext{electron}} - t_{ ext{photon}}) = \omega_1 \left(rac{\lambda_{ ext{u}}}{2\overline{v}_z} - rac{\lambda_{ ext{u}}}{2c}
ight)! = \pi$$

Here,

$$\overline{v}_z = \beta^* c = c \left(1 - \frac{1 + \frac{\kappa_u^2}{2}}{2\gamma^2} \right).$$

Constant phase relation must be maintained along the whole undulator (beamline) for the high gain FEL process to work

Phase errors

- magnetic field errors \Rightarrow deviations of K_u and \overline{v}_z \Rightarrow local phase deviations ψ_i
- phase error at pole n: accumulated phase deviations of all preceding periods

$$\phi_n = \sum_{i \le n} \psi_i$$

- usual figure of merit for undulator field quality: rms phase error σ_{ϕ}^2
- target: few degrees

Undulator radiation

FEL/Phase requirements

From use case to design requirements

A more complete picture

FEL/Phase requirements

Magnetic design

Outline

- 1. Understanding undulator radiation
- 2. Understanding the FEL mechanism Phase requirements
- 3. Technological boundary conditions for ID magnetic design
- 4. Aspects of ID 3D and technical design

Magnet technolgy choices for IDs

Pure Permanent Magnet (PPM)

Design principle (K. Halbach NIM 187 (1981))

- permanent magnet blocks
- rotation of easy axis in M steps per period (minimum 4)
- practical scaling law $(M = 4, h = \lambda_u/2)$: $B_{v0} = 1.72 B_r \mathrm{e}^{-\pi g/\lambda_u}$
- amplitude determined by B_r , g and λ_{μ} (H_c)
- tuning by variation of g

Analytic field description (on axis)

$$B_{y} = -2B_{r} \sum_{i=0}^{\infty} \cos\left(\frac{2n\pi z}{\lambda_{u}}\right) \cosh\left(\frac{2n\pi y}{\lambda_{u}}\right) \frac{\sin(n\pi\epsilon/M)}{n\pi/M} e^{-n\pi g/\lambda_{u}} (1 - e^{-2n\pi h/\lambda_{u}}) \quad \text{with} \quad n = 1 + iM$$

Undulator radiation

FEL/Phase requirements

Axel Bernhard: Insertion Devices

Hybrid Permanent Magnet

Design principle (K. Halbach (1983))

- soft magnetic poles magnetized by permanent magnet blocks
- non-linear material, numeric field calculation required (FEM)
- practical scaling law (Halbach, J. Phys. Col 44 (1983)):

$$B = a \exp\left[b\left(\frac{g}{\lambda_{u}}\right) + c\left(\frac{g}{\lambda_{u}}\right)^{2}\right]$$

a, *b*, *c* depending on material choice, compilation to be found in F. Nguyen et al., XLS-Report-2019-004 (2019)

Undulator radiation

Axel Bernhard: Insertion Devices

Permanent magnet variable polarization (helical) designs

Design principles

- 4 magnet arrays for 2 orthogonal field components
- always fixed phase shift of $\frac{\pi}{2}$ between B_x and B_y
- amplitude ratio varies by longitudinal shifting of arrays

Permanent magnet variable polarization (helical) designs

Design principles

- 4 magnet arrays for 2 orthogonal field components
- always fixed phase shift of $\frac{\pi}{2}$ between B_x and B_y
- amplitude ratio varies by longitudinal shifting of arrays
- design variations, particularly for round beams
- Scaling law as for planar PMUs, a, b, c additionaly depend on helical undulator design type (see also XLS-Report-2019-004)

Strategies for increasing B

Advanced PMU designs

- In vacuum undulators (IVU)
 - reduce magnetic gap
 - increase ratio B_0/λ_u

T.Tanaka et al., Proc. FEL 2005

Undulator radiation

FEL/Phase requirements

Magnetic design

Technical design

Strategies for increasing B

Advanced PMU designs

- In vacuum undulators (IVU)
 - reduce magnetic gap
 - increase ratio B₀/λ_u
- Cooled PMUs (CPMU) in addition:
 - increase remanent field
 - increase coercive force

Electromagnets: Planar SCUs and SCWs

Aiming at very high fields or short periods

Approximating with dipole field, K_u scales like

$$K_{\rm u} = 2.35 \times 10^{-4} N I \frac{\lambda_{\rm u}}{g} \tag{1}$$

 \Rightarrow generally high current densities are required \Rightarrow SCUs are the mainly relevant EMUs

Undulator radiation

Electromagnets: Planar SCUs and SCWs

N.Mezentsev et al., CLIC DW Tech. Report (2016)

Undulator short model 'Undine', built in-house

State of the art

- Iow temperature SC, Nb-Ti
- horizontal racetrack
 - simple coil procuction (good)
 - many splices (not so good, but manageable)
- vertical racetrack
 - single wire
 - enabling very short periods

Undulator radiation

Electromagnets: Planar SCUs and SCWs

S. Richter, Dissertation, KIT (2023)

HTS vertical racetrack demonstrator coil (1 period)

State of the art

- Iow temperature SC, Nb-Ti
- horizontal racetrack
 - simple coil procuction (good)
 - many splices (not so good, but manageable)
- vertical racetrack
 - single wire
 - enabling very short periods

On the horizon

- high temperature SC, ReBCO tape
- unprecedentedly high current densities and field amplitudes

Magnetic design

Technical design

Undulator radiation

SC helical and variable polarization

S. Richter, Dissertation, KIT, 2023

Bifilar helix

- bifilar helical coil around beam pipe
- fixed helicity (not changed upon current inversion)
- extremely resource efficient

Undulator radiation

SC helical and variable polarization

S. Richter, Dissertation, KIT, 2023

Bifilar helix

- bifilar helical coil around beam pipe
- fixed helicity (not changed upon current inversion)
- extremely resource efficient
- demonstrated for LTS and HTS

SC helical and variable polarization

Y.Ivanyushenkov et al., Proc.IPAC 2017

Bifilar helix

- bifilar helical coil around beam pipe
- fixed helicity (not changed upon current inversion)
- extremely resource efficient
- demonstrated for LTS and HTS

SCAPE

- SC arbitrary polarizing emitter
- full polarization control through two independently powered coil pairs

Undulator radiation

FEL/Phase requirements

Magnetic design

Axel Bernhard: Insertion Devices

Comparison of undulator technologies Example from the CompactLight design study

F. Nguyen et al., XLS Report 2019-004

Undulator radiation

FEL/Phase requirements

Magnetic design

Technical design

Outline

- 1. Understanding undulator radiation
- 2. Understanding the FEL mechanism Phase requirements
- 3. Technological boundary conditions for ID magnetic design
- 4. Aspects of ID 3D and technical design

Aspects of 3D and technical design

a non-exhaustive list

field termination

3D design and technical measures to ensure the beam-optical transparency

forces, structural mechanics

mechanics for taking up and moving against magnetic forces (variable gap, polarization control), thereby maintaining field quality

cooling

cryo-engineering for CPMUs and SCUs

SC magnet protection

quench detection and magnet protection, simplified compared to beam transport magnets due to the low field energy

fiducialization

field quality measurement and control

Aspects of 3D and technical design

a non-exhaustive list

field termination

3D design and technical measures to ensure the beam-optical transparency

forces, structural mechanics

mechanics for taking up and moving against magnetic forces (variable gap, polarization control), thereby maintaining field quality

cooling

cryo-engineering for CPMUs and SCUs

SC magnet protection

quench detection and magnet protection, simplified compared to beam transport magnets due to the low field energy

fiducialization

field quality measurement and control

Transparency requirement:

$$x\left(\frac{-L_{u}}{2}\right) = x\left(\frac{L_{u}}{2}\right)$$
 and $x'\left(\frac{-L_{u}}{2}\right) = x'\left(\frac{L_{u}}{2}\right)$

Transparency requirement:

$$x\left(\frac{-L_{u}}{2}\right) = x\left(\frac{L_{u}}{2}\right)$$
 and $x'\left(\frac{-L_{u}}{2}\right) = x'\left(\frac{L_{u}}{2}\right)$

This is equivalent with

$$I_{1} := \int_{-\frac{L_{u}}{2}}^{\frac{L_{u}}{2}} B_{y} dz = 0$$

and
$$I_{2} := \int_{-\frac{L_{u}}{2}}^{\frac{L_{u}}{2}} dz \int_{-\frac{L_{u}}{2}}^{z} B_{y} dz' = 0,$$

Undulator radiation

Transparency requirement:

Undulator radiation

FEL/Phase requirements

Magnetic design

Technical design

Transparency requirement:

$$x\left(\frac{-L_{u}}{2}\right) = x\left(\frac{L_{u}}{2}\right)$$
 and $x'\left(\frac{-L_{u}}{2}\right) = x_{u}$

This is equivalent with

$$I_1 := \int_{-\frac{L_u}{2}}^{\frac{L_u}{2}} B_y dz = 0$$

and
$$I_2 := \int_{-\frac{L_u}{2}}^{\frac{L_u}{2}} dz \int_{-\frac{L_u}{2}}^{z} B_y dz' = 0,$$

Practically achieved with

$$B_y(z) = -B_y(-z)$$
 and $I_2 = 0$
 $B_y(z) = B_y(-z)$ and $I_1 = 0$.

Undulator radiation

FEL/Phase requirements

0

Magnetic design

Technical design

or

Axel Bernhard: Insertion Devices

Transparency requirement:

Undulator radiation

FEL/Phase requirements

Magnetic design

Technical design

Cooling

N.Mezentsev et al., CLIC DW Tech. Report (2016)

Undulator radiation

FEL/Phase requirements

Requirements and techniques

- SCU: operating temperature ~4 K
- **CPMU**: operating temperature ${\sim}150\,{\rm K}$
- **HTSCU**: operating temperature 4 K to 10 K, still to be investigated and optimized
- Operation in light sources
 - light sources: stand-alone, closed cycle preferred
 - bath or contact cooling with liquids or/and cryocoolers
- Operation in FELs and damping rings
 - foced flow cooling
 - central cryoplant more efficient than local cryocoolers

Axel Bernhard: Insertion Devices

Field quality control techniques

- measurement techniques in general
 - Hall probe (, pulsed wire)
 - \rightarrow local field, phase error
 - flipping coil, stretched wire, pulsed wire \rightarrow field integrals

Field quality control techniques

- measurement techniques in general
 - Hall probe (, pulsed wire)
 - \rightarrow local field, phase error
 - flipping coil, stretched wire, pulsed wire
 → field integrals
- phase error minimization PMU:
 - block sorting

Field quality control techniques

- measurement techniques in general
 - Hall probe (, pulsed wire)
 - \rightarrow local field, phase error
 - flipping coil, stretched wire, pulsed wire
 → field integrals
- phase error minimization PMU:
 - block sorting
 - shimming

Basic idea of local field correction by shimming

Undulator radiation

Field quality control techniques

- measurement techniques in general
 - Hall probe (, pulsed wire)
 - \rightarrow local field, phase error
 - flipping coil, stretched wire, pulsed wire
 → field integrals
- phase error minimization PMU:
 - block sorting
 - shimming
 - pole/block adjustment

C.J. Milne et al., Appl. Sci. 7 (2017)

Magnet assembly and adjustment system of the Swiss-FEL ARAMIS undulators

Undulator radiation

Field quality control techniques

- measurement techniques in general
 - Hall probe (, pulsed wire)
 - \rightarrow local field, phase error
 - flipping coil, stretched wire, pulsed wire
 → field integrals
- phase error minimization PMU:
 - block sorting
 - shimming
 - pole/block adjustment
- in vacuum and CPMU: specialized Hall mapping techniques, e.g. SAFALI

T. Tanaka et al. PRSTAB 12 (2009)

Self-aligned field analyzer with laser instrumentation (SAFALI), UHV compatible.

Undulator radiation

- in vacuum and CPMU: specialized Hall mapping techniques, e.g. SAFALI
- SCUs specialized cryogenic and in-situ set-ups

In-vacuum, cryogenic magnetic measurement setup for magnetic qualification of SCUs in the final cryostat

Summary

- Insertion device design is mainly driven by synchrotron light users' demands in terms of
 - Photon flux and brilliance
 - Polarization control
 - Coherence
 - but also: availability, sustainability
- ${\ensuremath{\,^\circ}}$ general trend: towards shorter periods, yet maintaining the tunability range up to ${\ensuremath{\mathcal{K}}}=2$
- Permanent magnets are the state of the art, still improving
- Superconducting magnets as an alternative are becoming increasingly relevant, in particular in view of the trend towards more compact light sources
- HTS technology bears a large potential for future short-period high-field insertion devices

Undulator radiation