

Insertion Devices

Axel Bernhard | 2023-12-01

- **Magnet in an insertion**
- not being part of the lattice

- Magnet in an insertion
- not being part of the lattice
- **typically a periodic array with**
	- period length $\lambda_{\rm u}$
	- number of periods N_u
	- length $L_{\rm u} = N_{\rm u} \lambda_{\rm u}$
	- zero net deflection: $x'(-L_u/2) = x'(L_u/2)$
	- **■** zero net displacement: $x(-L_u/2) = x(L_u/2)$

- Magnet in an insertion
- not being part of the lattice
- typically a periodic array with
	- period length $\lambda_{\rm u}$
	- number of periods N_u
	- length $L_{\rm u} = N_{\rm u} \lambda_{\rm u}$
	- zero net deflection: $x'(-L_u/2) = x'(L_u/2)$
	- **■** zero net displacement: $x(-L_u/2) = x(L_u/2)$
- aim: generate enhanced radiation by multiple deflection

Classification with respect to undulator parameter

$$
\mathcal{K}_{\mathsf{u}}:\approx\frac{\psi_0}{1/\gamma}
$$

 $K_u \gg 1$: Wiggler $K_u \leq 1$: Undulator

Classification with respect to undulator parameter

$$
\mathcal{K}_{\mathsf{u}}:\approx\frac{\psi_0}{1/\gamma}
$$

 $K_u \gg 1$: Wiggler $K_u \leq 1$: Undulator

The purpose of IDs

3/32 Axel Bernhard: Insertion Devices IBPT

From use case to design requirments

Outline

- **1. [Understanding undulator radiation](#page-9-0)**
- **2. [Understanding the FEL mechanism Phase requirements](#page-28-0)**
- **3. [Technological boundary conditions for ID magnetic design](#page-36-0)**
- **4. [Aspects of ID 3D and technical design](#page-51-0)**

Outline

1. [Understanding undulator radiation](#page-9-0)

- **[Planar undulator and wiggler radiation](#page-10-0)**
- **[Helical undulator radiation](#page-27-0)**
- **2. [Understanding the FEL mechanism Phase requirements](#page-28-0)**
- **3. [Technological boundary conditions for ID magnetic design](#page-36-0)**
- **4. [Aspects of ID 3D and technical design](#page-51-0)**

The basic principle

The particle trajectory I

Equations of motion: Lorentz force

$$
\vec{F} = m\gamma \begin{pmatrix} \ddot{x} \\ \ddot{y} \\ \ddot{z} \end{pmatrix} = e(\vec{v} \times \vec{B}) = eB_0 \begin{pmatrix} -\cos(k_u z) \dot{z} \\ 0 \\ \cos(k_u z) \dot{x} \end{pmatrix}
$$

$$
\vec{B}(x, 0, z) = B_0(0, \cos k_u z, 0)
$$

with
$$
k_u = \frac{2\pi}{\lambda_u}
$$

 $-\cos(k_{\rm u}z)\dot{z}$ θ $cos(k_u z)\dot{x}$

 \setminus $\overline{1}$

 $\sqrt{ }$ \mathcal{L}

The particle trajectory I

Ideal planar undulator:

$$
\vec{B}(x, 0, z) = B_0(0, \cos k_u z, 0)
$$

with
$$
k_u = \frac{2\pi}{\lambda_u}
$$

[Undulator radiation](#page-9-0) **[FEL/Phase requirements](#page-28-0)** [Magnetic design](#page-36-0) Magnetic design [Technical design](#page-51-0)

 $\dot{x} = -\frac{eB_0}{l}$

Equations of motion: Lorentz force

 $\vec{\digamma} = m\gamma$

 $\sqrt{ }$ \mathcal{L} \ddot{x} y¨ z¨ \setminus

Integration for x component:

$$
\dot{x} = -\frac{eB_0}{m\gamma k_u} \sin(k_u z).
$$

 $= e(\vec{v} \times \vec{B}) = eB_0$

8/32 Axel Bernhard: Insertion Devices **IBPT** Axel Bernhard: Insertion Devices **IBPT** Axel Bernhard: Insertion Devices

The particle trajectory I

Ideal planar undulator:

$$
\vec{B}(x, 0, z) = B_0(0, \cos k_u z, 0)
$$

with
$$
k_u = \frac{2\pi}{\lambda_u}
$$

[Undulator radiation](#page-9-0) Technical design [FEL/Phase requirements](#page-28-0) [Magnetic design](#page-36-0) Magnetic design [Technical design](#page-51-0)

Equations of motion: Lorentz force

$$
\vec{F} = m\gamma \begin{pmatrix} \ddot{x} \\ \ddot{y} \\ \ddot{z} \end{pmatrix} = e(\vec{v} \times \vec{B}) = eB_0 \begin{pmatrix} -\cos(k_u z) \dot{z} \\ 0 \\ \cos(k_u z) \dot{x} \end{pmatrix}
$$

Integration for x component:

$$
\dot{x} = -\frac{eB_0}{m\gamma k_\mathrm{u}}\sin(k_\mathrm{u}z).
$$

z-component: energy conservation:

$$
\dot{x}^2 + \dot{z}^2 = \beta^2 c^2 \quad \Rightarrow \quad \dot{z} = \beta c \sqrt{1 - \frac{\dot{x}^2}{\beta^2 c^2}}
$$

8/32 Axel Bernhard: Insertion Devices IBPT

The particle trajectory II

Trajectory as function of time

$$
x(t') = \frac{K_{\rm u}}{\beta \gamma k_{\rm u}} \cos(\Omega_{\rm u} t')
$$

The particle trajectory II

Trajectory as function of time

$$
x(t') = \frac{K_{\rm u}}{\beta \gamma k_{\rm u}} \cos(\Omega_{\rm u} t')
$$

$$
z(t') = \beta^* ct' + \frac{K_{\rm u}^2}{8\beta^2 \gamma^2 k_{\rm u}} \sin(2\Omega_{\rm u} t')
$$

Karkruhe Institute o

The particle trajectory II

Trajectory as function of time

$$
x(t') = \frac{K_{\rm u}}{\beta \gamma k_{\rm u}} \cos(\Omega_{\rm u} t')
$$

$$
z(t') = \beta^* ct' + \frac{K_{\rm u}^2}{8\beta^2 \gamma^2 k_{\rm u}} \sin(2\Omega_{\rm u} t')
$$

with

$$
\beta^* c = \beta c \left(1 - \frac{K_u^2}{4\beta^2 \gamma^2} \right) < \beta c!
$$

$$
2\Omega_u = 2k_u \beta^* c
$$

$$
K_u := \frac{eB_0}{mck_u}
$$

 $Trajectory + Liénard Wiechert potentials:$

$$
\vec{E}(\vec{r}_P, t) = \frac{e}{4\pi\epsilon_0} \left[\frac{1}{c} \frac{\vec{n} \times [(\vec{n} - \vec{\beta}) \times \dot{\vec{\beta}}]}{(1 - \vec{\beta} \cdot \vec{n})^3 R} \right]_{\text{ret}}
$$

 $Trajectory + Liénard Wiechert potentials:$

$$
\vec{E}(\vec{r}_P, t) = \frac{e}{4\pi\epsilon_0} \left[\frac{1}{c} \frac{\vec{n} \times [(\vec{n} - \vec{\beta}) \times \dot{\vec{\beta}}]}{(1 - \vec{\beta} \cdot \vec{n})^3 R} \right]_{\text{ret}}
$$

Consequence of reduced mean drift velocity and figure-8 motion:

complex periodic motion \Rightarrow line spectrum with harmonics h of fundamental wavelength

$$
\boxed{\lambda_1 = \frac{\lambda_\text{u}}{2\gamma^2}\left(1+\frac{\mathcal{K}_\text{u}^2}{2}+\gamma^2\vartheta^2\right)}
$$

The undulator equation.

[Undulator radiation](#page-9-0) Technical design [FEL/Phase requirements](#page-28-0) [Magnetic design](#page-36-0) Magnetic design [Technical design](#page-51-0)

10/32 Axel Bernhard: Insertion Devices **IBPT** And the state of the state of the state of the state IBPT

Karlsruhe Institute of Technolog

The radiation field

Consequence of reduced mean drift velocity and figure-8 motion:

complex periodic motion \Rightarrow line spectrum with harmonics h of fundamental wavelength

$$
\lambda_1=\frac{\lambda_{\rm u}}{2\gamma^2}\left(1+\frac{K_{\rm u}^2}{2}+\gamma^2\vartheta^2\right)
$$

The undulator equation.

[Undulator radiation](#page-9-0) Technical design [FEL/Phase requirements](#page-28-0) [Magnetic design](#page-36-0) Magnetic design [Technical design](#page-51-0)

10/32 Axel Bernhard: Insertion Devices **IBPT** And the state of the state of the state of the state IBPT

 $Trajectory + Liénard Wiechert potentials:$

$$
\vec{E}(\vec{r}_P, t) = \frac{e}{4\pi\epsilon_0} \left[\frac{1}{c} \frac{\vec{n} \times [(\vec{n} - \vec{\beta}) \times \dot{\vec{\beta}}]}{(1 - \vec{\beta} \cdot \vec{n})^3 R} \right]_{\text{ret}}
$$

Consequence of reduced mean drift velocity and figure-8 motion:

complex periodic motion \Rightarrow line spectrum with harmonics h of fundamental wavelength

$$
\lambda_1 = \frac{\lambda_\text{u}}{2\gamma^2}\left(1+\frac{\mathcal{K}_\text{u}^2}{2}+\gamma^2\vartheta^2\right)
$$

The undulator equation.

[Undulator radiation](#page-9-0) Technical design [FEL/Phase requirements](#page-28-0) [Magnetic design](#page-36-0) Magnetic design [Technical design](#page-51-0)

Spectral angular power distribution

$$
\frac{\mathrm{d}^2 P_h}{\mathrm{d}\Omega \mathrm{d}\omega} = P_\mathrm{u} \gamma^{*2} [F_{h\sigma}(\vartheta, \varphi) + F_{h\pi}(\vartheta, \varphi)] f_N(\Delta \omega_h)
$$

Total power

$$
P_{\rm u}=\frac{2}{3}\frac{e^4c^3}{4\pi\epsilon_0}\frac{\langle B^2\rangle W_e^2}{(mc^2)^4}
$$

 $Trajectory + Liénard Wiechert potentials:$

$$
\vec{E}(\vec{r}_P, t) = \frac{e}{4\pi\epsilon_0} \left[\frac{1}{c} \frac{\vec{n} \times [(\vec{n} - \vec{\beta}) \times \dot{\vec{\beta}}]}{(1 - \vec{\beta} \cdot \vec{n})^3 R} \right]_{\text{ret}}
$$

Consequence of reduced mean drift velocity and figure-8 motion:

complex periodic motion \Rightarrow line spectrum with harmonics h of fundamental wavelength

$$
\boxed{\lambda_1 = \frac{\lambda_\text{u}}{2\gamma^2}\left(1+\frac{\mathcal{K}_\text{u}^2}{2}+\gamma^2\vartheta^2\right)}
$$

The undulator equation.

[Undulator radiation](#page-9-0) **[FEL/Phase requirements](#page-28-0)** [Magnetic design](#page-36-0) Magnetic design [Technical design](#page-51-0)

Spectral angular power distribution

$$
\frac{\mathrm{d}^2 P_h}{\mathrm{d}\Omega \mathrm{d}\omega} = P_\mathrm{u} \gamma^{*2} [F_{h\sigma}(\vartheta, \varphi) + F_{h\pi}(\vartheta, \varphi)] f_N(\Delta \omega_h)
$$

Normalized angular power distribution $1st$ harmonic for σ and π polarization, respectively:

 $Trajectory + Liénard Wiechert potentials:$

$$
\vec{E}(\vec{r}_P, t) = \frac{e}{4\pi\epsilon_0} \left[\frac{1}{c} \frac{\vec{n} \times [(\vec{n} - \vec{\beta}) \times \dot{\vec{\beta}}]}{(1 - \vec{\beta} \cdot \vec{n})^3 R} \right]_{\text{ret}}
$$

Consequence of reduced mean drift velocity and figure-8 motion:

complex periodic motion \Rightarrow line spectrum with harmonics h of fundamental wavelength

$$
\boxed{\lambda_1 = \frac{\lambda_\text{u}}{2\gamma^2}\left(1 + \frac{\mathcal{K}_\text{u}^2}{2} + \gamma^2\vartheta^2\right)}
$$

The undulator equation.

Spectral angular power distribution

$$
\frac{\mathrm{d}^2 P_h}{\mathrm{d}\Omega \mathrm{d}\omega} = P_\mathrm{u} \gamma^{*2} [F_{h\sigma}(\vartheta,\varphi) + F_{h\pi}(\vartheta,\varphi)] f_N(\Delta \omega_h)
$$

Spectral function 1st harmonic:

the undulator spectrum can be changed by varying $K_{\mathsf{u}} = \frac{e}{2\pi m c} B_0 \lambda_{\mathsf{u}}$

- the undulator spectrum can be changed by varying $K_{\mathsf{u}} = \frac{e}{2\pi m c} B_0 \lambda_{\mathsf{u}}$
- K_u = 0.3: virtually harmonic motion \rightarrow single line spectrum

- \blacksquare the undulator spectrum can be changed by varying $K_{\mathsf{u}} = \frac{e}{2\pi m c} B_0 \lambda_{\mathsf{u}}$
- $K_u = 0.3$: virtually harmonic motion \rightarrow single line spectrum
- $K_{\text{u}} = 1.0$: higher harmonics appear, intensity increases (power $\propto B_0^2)$, lines are shifted to longer wavelengths (lower energies)

[Undulator radiation](#page-9-0) **[FEL/Phase requirements](#page-28-0)** [Magnetic design](#page-36-0) Magnetic design [Technical design](#page-51-0)

11/32 Axel Bernhard: Insertion Devices **IBPT** Axel Bernhard: Insertion Devices **IBPT** Axel Bernhard: Insertion Devices **IBPT**

- \blacksquare the undulator spectrum can be changed by varying $K_{\mathsf{u}} = \frac{e}{2\pi m c} B_0 \lambda_{\mathsf{u}}$
- $K_u = 0.3$: virtually harmonic motion \rightarrow single line spectrum
- $K_{\text{u}} = 1.0$: higher harmonics appear, intensity increases (power $\propto B_0^2)$, lines are shifted to longer wavelengths (lower energies)
- $K_{\text{u}} = 2.3$: tuning ranges of 1st and 3rd harmonic overlap

Helical undulators

Undulator field and trajectory

On axis field of an ideal helical undulator:

$$
\vec{B}=(B_{x0}\cos(k_{\mathrm{u}}z-\phi),B_{y0}\cos(k_{\mathrm{u}}z),0)
$$

 \Rightarrow elliptic motion in the transverse plane with

$$
\beta_x = -\frac{K_y}{\gamma}\cos(k_u z), \quad \beta_y = -\frac{K_x}{\gamma}\cos(k_u z - \phi)
$$

and, in particular, for $K_{x} = K_{y}, \phi = \frac{\pi}{2}$

$$
\beta_z = \beta - \frac{K_y^2}{4\beta\gamma^2} - \frac{K_x^2}{4\beta\gamma^2} = \text{const.}
$$

Radiation field

Similar solutions as for the planar undulator with following main differences:

n modified undulator equation

$$
\lambda_1=\frac{\lambda_{\sf u}}{2\gamma^2}\left(1+\frac{{\sf K}_x^2}{2}+\frac{{\sf K}_y^2}{2}+\vartheta^2\gamma^2\right)
$$

- elliptically, for $K_x = K_y, \phi = \frac{\pi}{2}$ circularly polarized light on axis
- constant $\beta_z \Rightarrow$ virtually no higher harmonics

Outline

1. [Understanding undulator radiation](#page-9-0)

2. [Understanding the FEL mechanism — Phase requirements](#page-28-0)

- **3. [Technological boundary conditions for ID magnetic design](#page-36-0)**
- **4. [Aspects of ID 3D and technical design](#page-51-0)**

The FEL mechanism: resonance condition

Energy transfer particle ↔ **light**

- $v_x \parallel \vec{E}_{\text{light}}$
- **energy transfer possible periodically**

Continuous energy transfer

- **requires fixed phase relation between electron** motion and field oscillation
- \blacksquare that is fulfilled for:

$$
\lambda = \frac{\lambda_{\rm u}}{2\gamma^2} \left(1 + \frac{K_{\rm u}^2}{2} \right)
$$

$$
\Rightarrow \gamma_r = \sqrt{\frac{\lambda_{\rm u}}{2\lambda} \left(1 + \frac{K_{\rm u}^2}{2} \right)}
$$

with γ_r the resonance energy

The high gain FEL mechanism: microbunching

all relative phases present

periodic particle energy modulation **periodic drift velocity modulation periodic particle density modulation**

Reference particle: $\psi_0 = -\pi/2$ zero energy transfer between electron and light wave

Laser-acceleration: $w_0 = -\pi$ energy transfer from light wave to electron

[Undulator radiation](#page-9-0) **[FEL/Phase requirements](#page-28-0)** [Magnetic design](#page-36-0) Magnetic design [Technical design](#page-51-0)

In a long bunch, given the FEL resonance condition is fulfilled:

Karlsruhe Institute of Technolog

The high gain FEL mechanism: microbunching

Reference particle: $\psi_0 = -\pi/2$ zero energy transfer between electron and light wave

Laser-acceleration: $w_0 = -\pi$ energy transfer from light wave to electron

In a long bunch, given the FEL resonance condition is fulfilled:

- all relative phases present
- periodic particle energy modulation
- **periodic drift velocity modulation**

all particles radiate coherently

periodic particle density modulation

ibid graphics: P.Schmüser et al., ibid. $\frac{1}{n}$ $\ddot{\sigma}$ P.Schmüser graphics:

[Undulator radiation](#page-9-0) **[FEL/Phase requirements](#page-28-0)** [Magnetic design](#page-36-0) Magnetic design [Technical design](#page-51-0)

 $[mm]$

 -0

 -0.2

ID field quality: The phase error

Phase relation electron — photon

Phase slip due to different travelling times (over half period):

$$
\omega_1(t_{\text{electron}}-t_{\text{photon}})=\omega_1\left(\frac{\lambda_{\text{u}}}{2\overline{v}_z}-\frac{\lambda_{\text{u}}}{2c}\right)!=\pi
$$

Here,

$$
\overline{\mathbf{v}}_{z} = \beta^* \mathbf{c} = \mathbf{c} \left(1 - \frac{1 + \frac{K_u^2}{2}}{2\gamma^2} \right).
$$

[Undulator radiation](#page-9-0) **[FEL/Phase requirements](#page-28-0)** [Magnetic design](#page-36-0) Magnetic design [Technical design](#page-51-0)

16/32 Axel Bernhard: Insertion Devices **IBPT** And the state of t

ID field quality: The phase error

Phase relation electron — photon

Phase slip due to different travelling times (over half period):

$$
\omega_1(t_{\text{electron}} - t_{\text{photon}}) = \omega_1 \left(\frac{\lambda_{\text{u}}}{2\overline{v}_z} - \frac{\lambda_{\text{u}}}{2c} \right)! = \pi
$$

Here,

$$
\overline{\mathbf{v}}_{z} = \beta^* \mathbf{c} = \mathbf{c} \left(1 - \frac{1 + \frac{K_u^2}{2}}{2\gamma^2} \right).
$$

Constant phase relation must be maintained along the whole undulator (beamline) for the high gain FEL process to work

ID field quality: The phase error

Phase relation electron — photon

Phase slip due to different travelling times (over half period):

$$
\omega_1(t_{\text{electron}}-t_{\text{photon}})=\omega_1\left(\frac{\lambda_{\text{u}}}{2\overline{v}_z}-\frac{\lambda_{\text{u}}}{2c}\right)!=\pi
$$

Here,

$$
\overline{\mathbf{v}}_{z} = \beta^* \mathbf{c} = \mathbf{c} \left(1 - \frac{1 + \frac{K_u^2}{2}}{2\gamma^2} \right).
$$

Constant phase relation must be maintained along the whole undulator (beamline) for the high gain FEL process to work

Phase errors

- **n** magnetic field errors \Rightarrow deviations of K_u and \overline{v}_z \Rightarrow local phase deviations ψ_i
- \blacksquare phase error at pole *n*: accumulated phase deviations of all preceding periods

$$
\phi_n = \sum_{i \le n} \psi_i
$$

- usual figure of merit for undulator field quality: rms phase error σ_{ϕ}^2
- target: few degrees

From use case to design requirements

A more complete picture

Outline

- **1. [Understanding undulator radiation](#page-9-0)**
- **2. [Understanding the FEL mechanism Phase requirements](#page-28-0)**
- **3. [Technological boundary conditions for ID magnetic design](#page-36-0)**
- **4. [Aspects of ID 3D and technical design](#page-51-0)**

Magnet technolgy choices for IDs

Pure Permanent Magnet (PPM)

Design principle (K. Halbach NIM 187 (1981))

- permanent magnet blocks
- rotation of easy axis in M steps per period (minimum 4)
- practical scaling law $(M = 4, h = \lambda_u/2)$: $B_{y0} = 1.72B_re^{-\pi g/\lambda_u}$
- amplitude determined by B_r , g and $\lambda _u$ (H_c)
- **tuning by variation of g**

Analytic field description (on axis)

$$
B_y = -2B_r \sum_{i=0}^{\infty} \cos\left(\frac{2n\pi z}{\lambda_u}\right) \cosh\left(\frac{2n\pi y}{\lambda_u}\right) \frac{\sin(n\pi \epsilon/M)}{n\pi/M} e^{-n\pi g/\lambda_u} (1 - e^{-2n\pi h/\lambda_u}) \quad \text{with} \quad n = 1 + iM
$$

[Undulator radiation](#page-9-0) **[FEL/Phase requirements](#page-28-0)** [Magnetic design](#page-36-0) Magnetic design [Technical design](#page-51-0)

20/32 Axel Bernhard: Insertion Devices IBPT

Hybrid Permanent Magnet

Design principle (K. Halbach (1983))

- soft magnetic poles magnetized by permanent magnet blocks
- non-linear material, numeric field calculation required (FEM)
- practical scaling law (Halbach, J. Phys. Col **44** (1983)):

$$
B = a \exp\left[b\left(\frac{g}{\lambda_{\rm u}}\right) + c\left(\frac{g}{\lambda_{\rm u}}\right)^2\right]
$$

a, b, c depending on material choice, compilation to be found in F. Nguyen et al., XLS-Report-2019-004 (2019)

Permanent magnet variable polarization (helical) designs

Design principles

- 4 magnet arrays for 2 orthogonal field components
- always fixed phase shift of $\frac{\pi}{2}$ between B_{x} and B_{y}
- **amplitude ratio varies by longitudinal shifting of arrays**

Permanent magnet variable polarization (helical) designs

Design principles

- 4 magnet arrays for 2 orthogonal field components
- always fixed phase shift of $\frac{\pi}{2}$ between B_{x} and B_{y}
- amplitude ratio varies by longitudinal shifting of arrays \blacksquare
- \blacksquare design variations, particularly for round beams
- \blacksquare Scaling law as for planar PMUs, a, b, c additionaly depend on helical undulator design type (see also XLS-Report-2019-004)

Strategies for increasing B

Advanced PMU designs

- **In vacuum undulators (IVU)**
	- e reduce magnetic gap
	- increase ratio B_0/λ_u

T.Tanaka et al., Proc. FEL 2005

Strategies for increasing B

Electromagnets: Planar SCUs and SCWs

Aiming at very high fields or short periods

Approximating with dipole field, K_{u} scales like

$$
K_{\rm u}=2.35\times10^{-4}M\frac{\lambda_{\rm u}}{g}\qquad\qquad(1)
$$

 \Rightarrow generally high current densities are required \Rightarrow SCUs are the mainly relevant EMUs

Electromagnets: Planar SCUs and SCWs

N.Mezentsev et al., CLIC DW Tech. Report (2016)

Undulator short model 'Undine', built in-house

State of the art

- low temperature SC, Nb-Ti
- horizontal racetrack
	- simple coil procuction (good)
	- **n** many splices (not so good, but manageable)
- **vertical racetrack**
	- single wire
	- **e** enabling very short periods

Electromagnets: Planar SCUs and SCWs

S. Richter, Dissertation, KIT (2023)

HTS vertical racetrack demonstrator coil (1 period)

State of the art

- low temperature SC, Nb-Ti
- horizontal racetrack
	- simple coil procuction (good)
	- **n** many splices (not so good, but manageable)
- **vertical racetrack**
	- single wire
	- **e** enabling very short periods

On the horizon

- high temperature SC, ReBCO tape
- **unprecedentedly high current densities and field** amplitudes

SC helical and variable polarization

S. Richter, Dissertation, KIT, 2023

Bifilar helix

- **bifilar helical coil around beam pipe**
- **n** fixed helicity (not changed upon current inversion)
- extremely resource efficient

SC helical and variable polarization

S. Richter, Dissertation, KIT, 2023

Bifilar helix

- **bifilar helical coil around beam pipe**
- **n** fixed helicity (not changed upon current inversion)
- **E** extremely resource efficient
- demonstrated for LTS and HTS

SC helical and variable polarization

Y.Ivanyushenkov et al., Proc.IPAC 2017

Bifilar helix

- **bifilar helical coil around beam pipe**
- fixed helicity (not changed upon current inversion)
- **E** extremely resource efficient
- demonstrated for LTS and HTS

SCAPE

- SC arbitrary polarizing emitter
- **full polarization control through two** independently powered coil pairs

[Undulator radiation](#page-9-0) **[FEL/Phase requirements](#page-28-0)** [Magnetic design](#page-36-0) Magnetic design [Technical design](#page-51-0)

Comparison of undulator technologies Example from the CompactLight design study

Outline

- **1. [Understanding undulator radiation](#page-9-0)**
- **2. [Understanding the FEL mechanism Phase requirements](#page-28-0)**
- **3. [Technological boundary conditions for ID magnetic design](#page-36-0)**
- **4. [Aspects of ID 3D and technical design](#page-51-0)**

Aspects of 3D and technical design

a non-exhaustive list

field termination

3D design and technical measures to ensure the beam-optical transparency

\blacksquare forces, structural mechanics

mechanics for taking up and moving against magnetic forces (variable gap, polarization control), thereby maintaining field quality

a cooling

cryo-engineering for CPMUs and SCUs

SC magnet protection

quench detection and magnet protection, simplified compared to beam transport magnets due to the low field energy

<u>fiducialization</u>

field quality measurement and control

Aspects of 3D and technical design

a non-exhaustive list

field termination

3D design and technical measures to ensure the beam-optical transparency

\blacksquare forces, structural mechanics

mechanics for taking up and moving against magnetic forces (variable gap, polarization control), thereby maintaining field quality

a cooling

cryo-engineering for CPMUs and SCUs

SC magnet protection

quench detection and magnet protection, simplified compared to beam transport magnets due to the low field energy

- *<u>fiducialization</u>*
- **field quality measurement and control**

Transparency requirement:

$$
x\left(\frac{-L_u}{2}\right) = x\left(\frac{L_u}{2}\right) \quad \text{and} \quad x'\left(\frac{-L_u}{2}\right) = x'\left(\frac{L_u}{2}\right)
$$

[Undulator radiation](#page-9-0) **[FEL/Phase requirements](#page-28-0)** [Magnetic design](#page-36-0) Magnetic design **[Technical design](#page-51-0)** Technical design

Transparency requirement:

$$
x\left(\frac{-L_u}{2}\right) = x\left(\frac{L_u}{2}\right) \quad \text{and} \quad x'\left(\frac{-L_u}{2}\right) = x'\left(\frac{L_u}{2}\right)
$$

This is equivalent with

$$
I_1 := \int_{-\frac{L_0}{2}}^{\frac{L_0}{2}} B_y \, dz = 0
$$

and
$$
I_2 := \int_{-\frac{L_0}{2}}^{\frac{L_0}{2}} dz \int_{-\frac{L_0}{2}}^z B_y \, dz' = 0,
$$

[Undulator radiation](#page-9-0) **[FEL/Phase requirements](#page-28-0)** [Magnetic design](#page-36-0) Magnetic design **[Technical design](#page-51-0)** Technical design

Transparency requirement:

Transparency requirement:

$$
x\left(\frac{-L_{\mathsf{u}}}{2}\right) = x\left(\frac{L_{\mathsf{u}}}{2}\right) \quad \text{and} \quad x'\left(\frac{-L_{\mathsf{u}}}{2}\right) = x
$$

This is equivalent with

$$
I_1 := \int_{-\frac{L_u}{2}}^{\frac{L_u}{2}} B_y dz = 0
$$

and
$$
I_2 := \int_{-\frac{L_u}{2}}^{\frac{L_u}{2}} dz \int_{-\frac{L_u}{2}}^z B_y dz' = 0,
$$

Practically achieved with

 $B_y(z) = -B_y(-z)$ and $I_2 = 0$ or $B_y(z) = B_y(-z)$ and $I_1 = 0$.

$$
\begin{array}{c}\n\begin{array}{c}\n\lambda \\
\frac{\lambda}{2} \\
\frac{\lambda}{2} \\
-\frac{1}{2} \\
-\frac{1}{2}\n\end{array}\n\end{array}
$$

 λ

[Undulator radiation](#page-9-0) **[FEL/Phase requirements](#page-28-0)** [Magnetic design](#page-36-0) Magnetic design **[Technical design](#page-51-0) Technical design**

 Λ

29/32 Axel Bernhard: Insertion Devices IBPT

Transparency requirement: $\chi\left(\frac{-L_{\rm u}}{2}\right)$ 2 $=\int x\left(\frac{L_{\rm u}}{2}\right)$ 2) and $x' \left(\frac{-L_u}{2} \right)$ 2 $= x \frac{N}{N}$ 0.0 \overline{a} \degree This is equivalent with Ξ ^{-0.05} $I_1 := \int_{1}^{\frac{L_0}{2}}$ $-\frac{l_u}{2}$ B_y dz = 0 and $I_2 := \int^{\frac{L_u}{2}}$ $\int_{-\frac{L_{\rm{u}}}{2}}^{\frac{L_{\rm{u}}}{2}} dz \int_{-\frac{L_{\rm{u}}}{2}}^{z}$ 2 $B_y \mathrm{d} z' = 0,$ 2 Practically achieved with $B_v(z) = -B_v(-z)$ and $I_2 = 0$ or $B_v(z) = B_v(-z)$ and $I_1 = 0$. -0.15 -0.10 $0.00 0.05 0.10 -$ 0.15 B/B₀dz'dz
0
0 10 5 0 5 10 $\pi z/\lambda_{\rm u}$ $-0.10 -0.05 0.00 0.05 0.10 0.15 -$ B/ B0dz 0dz

[Undulator radiation](#page-9-0) **[FEL/Phase requirements](#page-28-0)** [Magnetic design](#page-36-0) Magnetic design **[Technical design](#page-51-0)**

Vector Fields R

Cooling

[Undulator radiation](#page-9-0) **[FEL/Phase requirements](#page-28-0)** [Magnetic design](#page-36-0) Magnetic design **[Technical design](#page-51-0) Technical design**

Requirements and techniques

- **SCU**: operating temperature ∼4K
- CPMU: operating temperature ∼150K
- **HTSCU**: operating temperature 4K to 10K, still to be investigated and optimized
- Operation in light sources
	- light sources: stand-alone, closed cycle preferred
	- \bullet bath or contact cooling with liquids or/and cryocoolers
- Operation in FELs and damping rings
	- **foced flow cooling**
	- central cryoplant more efficient than local cryocoolers

Field quality control techniques

- **n** measurement techniques in general
	- Hall probe (, pulsed wire)
		- \rightarrow local field, phase error
	- **flipping coil, stretched wire, pulsed wire** \rightarrow field integrals

Field quality control techniques

- **n** measurement techniques in general
	- Hall probe (, pulsed wire) \rightarrow local field, phase error
		-
	- **flipping coil, stretched wire, pulsed wire** \rightarrow field integrals
- **phase error minimization PMU:**
	- **block** sorting

Field quality control techniques

- **n** measurement techniques in general
	- Hall probe (, pulsed wire) \rightarrow local field, phase error
	- **flipping coil, stretched wire, pulsed wire** \rightarrow field integrals
- **phase error minimization PMU:**
	- **block** sorting
	- **shimming**

Basic idea of local field correction by shimming

[Undulator radiation](#page-9-0) **[FEL/Phase requirements](#page-28-0)** [Magnetic design](#page-36-0) Magnetic design **[Technical design](#page-51-0)**

Field quality control techniques

- **n** measurement techniques in general
	- Hall probe (, pulsed wire) \rightarrow local field, phase error
	- **flipping coil, stretched wire, pulsed wire** \rightarrow field integrals
- **phase error minimization PMU:**
	- **block** sorting
	- **shimming**
	- pole/block adjustment

C.J. Milne et al., Appl. Sci. **7** (2017)

Magnet assembly and adjustment system of the Swiss-FEL ARAMIS undulators

[Undulator radiation](#page-9-0) **[FEL/Phase requirements](#page-28-0)** [Magnetic design](#page-36-0) Magnetic design **[Technical design](#page-51-0)**

Field quality control techniques

- **n** measurement techniques in general
	- Hall probe (, pulsed wire) \rightarrow local field, phase error
	- **flipping coil, stretched wire, pulsed wire** \rightarrow field integrals
- **phase error minimization PMU:**
	- **block** sorting
	- **shimming**
	- pole/block adjustment
- **n** in vacuum and CPMU: specialized Hall mapping techniques, e.g. SAFALI

T. Tanaka et al. PRSTAB **12** (2009)

Self-aligned field analyzer with laser instrumentation (SAFALI), UHV compatible.

- in vacuum and CPMU: specialized Hall mapping techniques, e.g. SAFALI
- SCUs specialized cryogenic and in-situ set-ups

magnetic qualification of SCUs in the final cryostat

Summary

- **Insertion device design is mainly driven by synchrotron light users' demands in terms of**
	- **Photon flux and brilliance**
	- **Polarization control**
	- Coherence
	- **but also: availability, sustainability**
- **general trend: towards shorter periods, yet maintaining the tunability range up to** $K = 2$
- **Permanent magnets are the state of the art, still improving**
- **Superconducting magnets as an alternative are becoming increasingly relevant, in particular in view of** the trend towards more compact light sources
- **HTS** technology bears a large potential for future short-period high-field insertion devices

[Undulator radiation](#page-9-0) **[FEL/Phase requirements](#page-28-0)** [Magnetic design](#page-36-0) Magnetic design **[Technical design](#page-51-0) Technical design**