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Magnet in an insertion
not being part of the lattice

typically a periodic array with
period length λu
number of periods Nu
length Lu = Nuλu
zero net deflection: x ′(−Lu/2) = x ′(Lu/2)
zero net displacement: x(−Lu/2) = x(Lu/2)

aim: generate enhanced radiation by multiple
deflection
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Classification with respect to undulator
parameter

Ku :≈ ψ0

1/γ

Ku � 1: Wiggler
Ku . 1: Undulator
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The purpose of IDs



damping

high radiation power

(high field) wiggler

radiation

high photon flux

undulator

high brilliance high peak brilliance full coherence

free electron laser

?
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From use case to design requirments



1. Understanding undulator radiation

2. Understanding the FEL mechanism — Phase requirements

3. Technological boundary conditions for ID magnetic design

4. Aspects of ID 3D and technical design
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Outline



1. Understanding undulator radiation
Planar undulator and wiggler radiation
Helical undulator radiation

2. Understanding the FEL mechanism — Phase requirements

3. Technological boundary conditions for ID magnetic design

4. Aspects of ID 3D and technical design
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The basic principle



Ideal planar undulator:

~B(x , 0, z) = B0(0, cos kuz, 0)

with ku =
2π

λu

Equations of motion: Lorentz force

~F = mγ

ẍ
ÿ
z̈

 = e(~v × ~B) = eB0

− cos(kuz)ż
0

cos(kuz)ẋ



Integration for x component:

ẋ = − eB0

mγku
sin(kuz).

z-component: energy conservation:

ẋ2 + ż2 = β2c2 ⇒ ż = βc

√
1− ẋ2

β2c2
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The particle trajectory I
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The particle trajectory I



Trajectory as function of time

x(t′) = Ku
βγku

cos(Ωut′)

z(t′) = β∗ct′ + K2
u

8β2γ2ku
sin(2Ωut′)

with

β∗c = βc
(
1− K2

u
4β2γ2

)
< βc!

2Ωu = 2kuβ
∗c

Ku :=
eB0

mcku
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v = β∗c; numbers given for λu = 14mm,

We = 2.5GeV.
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The particle trajectory II
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The particle trajectory II



Trajectory + Liénard Wiechert potentials:

~E(~rP , t) =
e

4πε0

[
1

c
~n × [(~n − ~β)× ~̇β]

(1− ~β · ~n)3R

]
ret

Consequence of reduced mean drift velocity
and figure-8 motion:
complex periodic motion ⇒ line spectrum
with harmonics h of fundamental wavelength

λ1 =
λu
2γ2

(
1 +

K2
u
2

+ γ2ϑ2
)

The undulator equation.

Spectral angular power distribution

d2Ph
dΩdω

= Puγ
∗2[Fhσ(ϑ, ϕ) + Fhπ(ϑ, ϕ)]fN(∆ωh)

Undulator radiation FEL/Phase requirements Magnetic design Technical design
10/32 Axel Bernhard: Insertion Devices IBPT

The radiation field
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Total power
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2

3

e4c3

4πε0

〈B2〉W 2
e

(mc2)4
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the undulator spectrum can be changed by
varying Ku = e

2πmc B0λu

Ku = 0.3: virtually harmonic motion → single
line spectrum
Ku = 1.0: higher harmonics appear, intensity
increases (power ∝ B2

0), lines are shifted to
longer wavelengths (lower energies)
Ku = 2.3: tuning ranges of 1st and 3rd harmonic
overlap
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Undulator spectra and tuning
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Undulator field and trajectory
On axis field of an ideal helical undulator:

~B = (Bx0 cos(kuz − φ),By0 cos(kuz), 0)

⇒ elliptic motion in the transverse plane with

βx = −Ky

γ
cos(kuz), βy = −Kx

γ
cos(kuz − φ)

and, in particular, for Kx = Ky , φ = π
2

βz = β −
K2

y

4βγ2
− K2

x
4βγ2

= const.

Radiation field
Similar solutions as for the planar undulator with
following main differences:

modified undulator equation

λ1 =
λu
2γ2

(
1 +

K2
x
2

+
K2

y

2
+ ϑ2γ2

)

elliptically, for Kx = Ky , φ = π
2 circularly

polarized light on axis
constant βz ⇒ virtually no higher harmonics

Undulator radiation FEL/Phase requirements Magnetic design Technical design
12/32 Axel Bernhard: Insertion Devices IBPT

Helical undulators



1. Understanding undulator radiation

2. Understanding the FEL mechanism — Phase requirements

3. Technological boundary conditions for ID magnetic design

4. Aspects of ID 3D and technical design
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Outline



Energy transfer particle ↔ light

P.Schmüser et al., Springer Tracts in Modern
Physics (2014)

oscillatory motion
vx ‖ ~Elight

energy transfer possible periodically

Continuous energy transfer
requires fixed phase relation between electron
motion and field oscillation
that is fulfilled for:

λ =
λu
2γ2

(
1 +

K2
u
2

)
⇒ γr =

√
λu
2λ

(
1 +

K2
u
2

)
with γr the resonance energy
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The FEL mechanism: resonance condition



In a long bunch, given the FEL resonance condition is fulfilled:
all relative phases present
periodic particle energy modulation
periodic drift velocity modulation
periodic particle density modulation

gr
ap

hi
cs

:
P.

Sc
hm

üs
er

et
al

.,
ib

id
.
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The high gain FEL mechanism: microbunching



In a long bunch, given the FEL resonance condition is fulfilled:
all relative phases present
periodic particle energy modulation
periodic drift velocity modulation
periodic particle density modulation

→ Microbunching:

all particles radiate coherently

gr
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hi
cs

:
P.
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.
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The high gain FEL mechanism: microbunching



Phase relation electron — photon
Phase slip due to different travelling times (over half
period):

ω1(telectron − tphoton) = ω1

(
λu
2v z

− λu
2c

)
! = π

Here,

v z = β∗c = c
(
1−

1 +
K2

u
2

2γ2

)
.

Constant phase relation must be maintained along the
whole undulator (beamline) for the high gain FEL
process to work

Phase errors
magnetic field errors ⇒ deviations of Ku and v z
⇒ local phase deviations ψi

phase error at pole n: accumulated phase
deviations of all preceding periods

φn =
∑
i≤n

ψi

usual figure of merit for undulator field quality:
rms phase error σ2

φ

target: few degrees
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ID field quality: The phase error
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ID field quality: The phase error
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ID field quality: The phase error



damping

high radiation power

(high field) wiggler

field strength

radiation

high photon flux

undulator

short period length

high brilliance

field quality tunability polarization control

high peak brilliance full coherence

free electron laser

tapering
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From use case to design requirements
A more complete picture



1. Understanding undulator radiation

2. Understanding the FEL mechanism — Phase requirements

3. Technological boundary conditions for ID magnetic design

4. Aspects of ID 3D and technical design
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Outline



Undulator Magnets

Permanent magnet (PMU)

Pure Permanent
Magnet (PPM)

planar helical
(APPLE, Delta)

Hybrid Permanent
Magnet (HPM)

Electro magnet (EMU)

normal conducting superconduct-
ing (SCU)

planar

LTS HTS

helical, SCAPE
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Magnet technolgy choices for IDs



Design principle (K. Halbach NIM 187 (1981))
permanent magnet blocks
rotation of easy axis in M steps per period (minimum 4)
practical scaling law (M = 4, h = λu/2):
By0 = 1.72Bre−πg/λu

amplitude determined by Br , g and λu (Hc)
tuning by variation of g

Analytic field description (on axis)

By = −2Br

∞∑
i=0

cos
(
2nπz
λu

)
cosh

(
2nπy
λu

)
sin(nπε/M)

nπ/M e−nπg/λu(1− e−2nπh/λu) with n = 1 + iM

Undulator radiation FEL/Phase requirements Magnetic design Technical design
20/32 Axel Bernhard: Insertion Devices IBPT

Pure Permanent Magnet (PPM)



Design principle (K. Halbach (1983))
soft magnetic poles magnetized by permanent magnet
blocks
non-linear material, numeric field calculation required
(FEM)
practical scaling law (Halbach, J. Phys. Col 44 (1983)):

B = a exp
[

b
(

g
λu

)
+ c

(
g
λu

)2
]

a, b, c depending on material choice, compilation to be
found in F. Nguyen et al., XLS-Report-2019-004 (2019)
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Hybrid Permanent Magnet



Design principles
4 magnet arrays for 2 orthogonal field components
always fixed phase shift of π

2 between Bx and By

amplitude ratio varies by longitudinal shifting of arrays

design variations, particularly for round beams
Scaling law as for planar PMUs, a, b, c additionaly depend
on helical undulator design type (see also
XLS-Report-2019-004)
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Permanent magnet variable polarization (helical)
designs



M.Calvi et al., J. Synchrotron Rad. 24 (2017)

Design principles
4 magnet arrays for 2 orthogonal field components
always fixed phase shift of π

2 between Bx and By

amplitude ratio varies by longitudinal shifting of arrays
design variations, particularly for round beams
Scaling law as for planar PMUs, a, b, c additionaly depend
on helical undulator design type (see also
XLS-Report-2019-004)
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Permanent magnet variable polarization (helical)
designs



T.Tanaka et al., Proc. FEL 2005

Advanced PMU designs
In vacuum undulators (IVU)

reduce magnetic gap
increase ratio B0/λu

Cooled PMUs (CPMU)
in addition:

increase remanent field
increase coercive force
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Strategies for increasing B
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Advanced PMU designs
In vacuum undulators (IVU)

reduce magnetic gap
increase ratio B0/λu

Cooled PMUs (CPMU)
in addition:

increase remanent field
increase coercive force
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Aiming at very high fields or short periods
Approximating with dipole field, Ku scales like

Ku = 2.35× 10−4NI λu
g (1)

⇒ generally high current densities are required
⇒ SCUs are the mainly relevant EMUs

On the horizon
high temperature SC, ReBCO tape
unprecedentedly high current densities and field
amplitudes
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Electromagnets: Planar SCUs and SCWs



N.Mezentsev et al., CLIC DW Tech. Report (2016)

Undulator short model ‘Undine’, built in-house

State of the art
low temperature SC, Nb-Ti
horizontal racetrack

simple coil procuction (good)
many splices (not so good, but manageable)

vertical racetrack
single wire
enabling very short periods

On the horizon
high temperature SC, ReBCO tape
unprecedentedly high current densities and field
amplitudes
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Electromagnets: Planar SCUs and SCWs



S. Richter, Dissertation, KIT (2023)

HTS vertical racetrack demonstrator coil (1 period)

State of the art
low temperature SC, Nb-Ti
horizontal racetrack

simple coil procuction (good)
many splices (not so good, but manageable)

vertical racetrack
single wire
enabling very short periods

On the horizon
high temperature SC, ReBCO tape
unprecedentedly high current densities and field
amplitudes
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Electromagnets: Planar SCUs and SCWs



S. Richter, Dissertation, KIT, 2023

Bifilar helix
bifilar helical coil around beam pipe
fixed helicity (not changed upon current
inversion)
extremely resource efficient

demonstrated for LTS and HTS

SCAPE
SC arbitrary polarizing emitter
full polarization control through two
independently powered coil pairs
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SC helical and variable polarization
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Bifilar helix
bifilar helical coil around beam pipe
fixed helicity (not changed upon current
inversion)
extremely resource efficient
demonstrated for LTS and HTS

SCAPE
SC arbitrary polarizing emitter
full polarization control through two
independently powered coil pairs
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SC helical and variable polarization



Y.Ivanyushenkov et al., Proc.IPAC 2017

Bifilar helix
bifilar helical coil around beam pipe
fixed helicity (not changed upon current
inversion)
extremely resource efficient
demonstrated for LTS and HTS

SCAPE
SC arbitrary polarizing emitter
full polarization control through two
independently powered coil pairs
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SC helical and variable polarization



F. Nguyen et al., XLS Report 2019-004
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Comparison of undulator technologies
Example from the CompactLight design study



1. Understanding undulator radiation

2. Understanding the FEL mechanism — Phase requirements

3. Technological boundary conditions for ID magnetic design

4. Aspects of ID 3D and technical design
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Outline



field termination
3D design and technical measures to ensure the beam-optical transparency
forces, structural mechanics
mechanics for taking up and moving against magnetic forces (variable gap, polarization control),
thereby maintaining field quality
cooling
cryo-engineering for CPMUs and SCUs
SC magnet protection
quench detection and magnet protection, simplified compared to beam transport magnets due to the
low field energy
fiducialization
field quality measurement and control
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Aspects of 3D and technical design
a non-exhaustive list
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Aspects of 3D and technical design
a non-exhaustive list



Transparency requirement:

x
(
−Lu
2

)
= x

(
Lu
2

)
and x ′

(
−Lu
2

)
= x ′

(
Lu
2

)

This is equivalent with

I1 :=

∫ Lu
2

− Lu
2

Bydz = 0

and I2 :=

∫ Lu
2

− Lu
2

dz
∫ z

− Lu
2

Bydz ′ = 0,

Practically achieved with

By (z) = −By (−z) and I2 = 0

or By (z) = By (−z) and I1 = 0.
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Field termination



N.Mezentsev et al., CLIC DW Tech. Report (2016)

Requirements and techniques
SCU: operating temperature ∼4K
CPMU: operating temperature ∼150K
HTSCU: operating temperature 4K to 10K,
still to be investigated and optimized
Operation in light sources

light sources: stand-alone, closed cycle preferred
bath or contact cooling with liquids or/and
cryocoolers

Operation in FELs and damping rings
foced flow cooling
central cryoplant more efficient than local
cryocoolers
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Cooling



Field quality control techniques
measurement techniques in general

Hall probe (, pulsed wire)
→ local field, phase error
flipping coil, stretched wire, pulsed wire
→ field integrals

phase error minimization PMU:
block sorting

shimming
pole/block adjustment

in vacuum and CPMU: specialized Hall mapping
techniques, e.g. SAFALI
SCUs specialized cryogenic and in-situ set-ups
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Field quality control techniques
measurement techniques in general

Hall probe (, pulsed wire)
→ local field, phase error
flipping coil, stretched wire, pulsed wire
→ field integrals

phase error minimization PMU:
block sorting
shimming

pole/block adjustment
in vacuum and CPMU: specialized Hall mapping
techniques, e.g. SAFALI
SCUs specialized cryogenic and in-situ set-ups

Basic idea of local field correction by shimming
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Field quality control techniques
measurement techniques in general

Hall probe (, pulsed wire)
→ local field, phase error
flipping coil, stretched wire, pulsed wire
→ field integrals

phase error minimization PMU:
block sorting
shimming
pole/block adjustment

in vacuum and CPMU: specialized Hall mapping
techniques, e.g. SAFALI
SCUs specialized cryogenic and in-situ set-ups

C.J. Milne et al., Appl. Sci. 7 (2017)

Magnet assembly and adjustment system of the Swiss-
FEL ARAMIS undulators
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Field quality control techniques
measurement techniques in general

Hall probe (, pulsed wire)
→ local field, phase error
flipping coil, stretched wire, pulsed wire
→ field integrals

phase error minimization PMU:
block sorting
shimming
pole/block adjustment

in vacuum and CPMU: specialized Hall mapping
techniques, e.g. SAFALI

SCUs specialized cryogenic and in-situ set-ups

T. Tanaka et al. PRSTAB 12 (2009)

Self-aligned field analyzer with laser instrumentation
(SAFALI), UHV compatible.
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Field quality control techniques
measurement techniques in general

Hall probe (, pulsed wire)
→ local field, phase error
flipping coil, stretched wire, pulsed wire
→ field integrals

phase error minimization PMU:
block sorting
shimming
pole/block adjustment

in vacuum and CPMU: specialized Hall mapping
techniques, e.g. SAFALI
SCUs specialized cryogenic and in-situ set-ups

A. Grau et al., Proc. IPAC 2019

In-vacuum, cryogenic magnetic measurement setup for
magnetic qualification of SCUs in the final cryostat
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Field quality measurement and control



Insertion device design is mainly driven by synchrotron light users’ demands in terms of
Photon flux and brilliance
Polarization control
Coherence
but also: availability, sustainability

general trend: towards shorter periods, yet maintaining the tunability range up to K = 2

Permanent magnets are the state of the art, still improving
Superconducting magnets as an alternative are becoming increasingly relevant, in particular in view of
the trend towards more compact light sources
HTS technology bears a large potential for future short-period high-field insertion devices
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