
Superferric Magnets

Marco Statera, INFN Milano LASA

- Superferric magnets
 - What are they? Why use them?
- Selected examples
 - HE physics, precision experiments, light sources...
- High Order correctors, the first superferric magnets in LHC
 - Why superferric?
 - How they are designed and built
 - Do they perform?
- How can we use superferric magnets in future

Superferric magnet

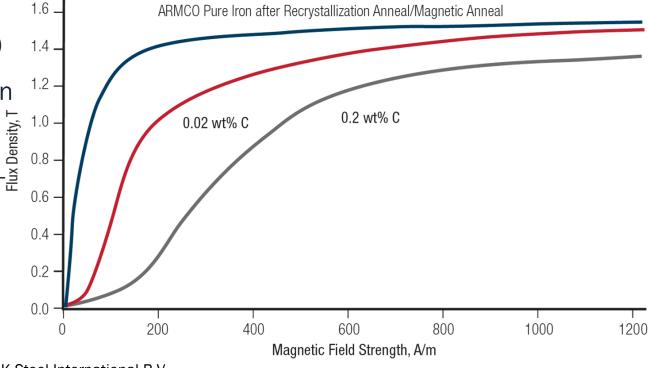

Magnet

- Magnetic field
- Shape
- Volume

Superferric

- Superconducting
- Iron geometry strongly affects the field shape

https://triennale.org/



ARMCO[©] is a trade mark by AK Steel International B.V. PURE IRON 99.85% low impourities

- Low mechanical properties wrt low carbon steel
- Excellent magnetic properties (zero crossing)
 - Sensitive to impurities and deformation (machining)
- Improved resistance against corrosion and oxidation in comparison to normal steels
- Good cold forming capability
- Ideally suitable for welding
- Small deformation with temperature suffer

Oversimplification Zero field crossing Add one tesla to the pole field

By AK Steel International B.V.

Max.

(C)

(Mn)

(Cu)

(Co)

(Sn)

Analysis %

0.010

0.060

0.005

0.003

0.005

0.030

0.005

0.005

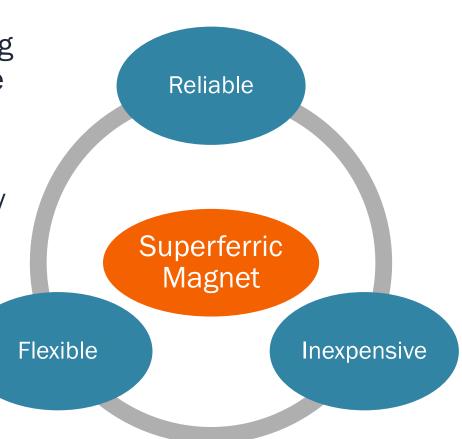
Composition

Carbon

Nitrogen Copper

Cobalt

Manganese Phosphorus 1.8 _



Why superferric magnets

Superferric design is characterized by a close coupling of the superconducting coil to the iron flux return of the manget.

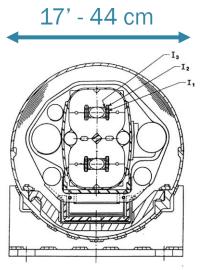
The shape of the field is highly influenced by the iron geometry

Two regimes Ferric B<M $\mu\sim\infty$ Superferric B>M $\mu=1$

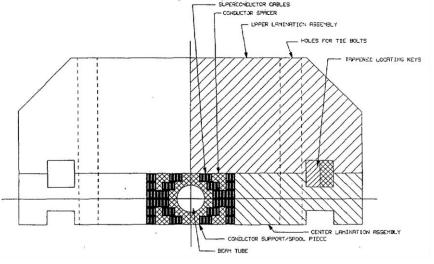
Two different optimizations

- Tradeoff for field quality at different fields
- Single regime use

F.R. Huson et al. IEEE tr. On Nuclear Science, 32-5 (1985)


F.R. Huson et al. Particle Accelerators, 28 pp213-218 (1990)

Superconducting Super Collider, USA


Superferric magnets for beamline and syncrotron

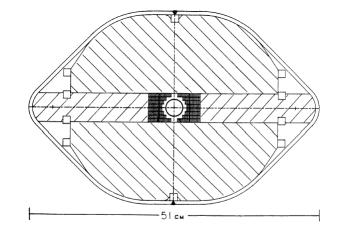

3 T compact

Figure 2: The 2-in-1 3 Tesla superferric magnet is enclosed in a vacuum chamber of $16\ 3/4$ '' o.D. The iron is 1/16'' laminations. The two magnet channels are magnetically independent. The gap of the magnet is 1 inch. The good field is greater than 2 cm diameter. The support in the figure is made of 2 concentric fiberglass cones, one between $10^{\circ} \rm K$ and $80^{\circ} \rm K$ and the other between $80^{\circ} \rm K$ and $300^{\circ} \rm K$. There is a support every 24 feet. The small pipes are for liquid helium and nitrogen and the larger ones for helium gas. Sixty layers of superinsulation are between $80^{\circ} \rm K$ and $300^{\circ} \rm K$.

W. Xie et al., IEEE Tr. In Magnetics VOL. MAG-23, NO. 2 (1987) F.R. Huson et al. Particle Accelerators, 28 pp213-218 (1990)

IGURE 1 Cross-section of two-mode superferric magnet.

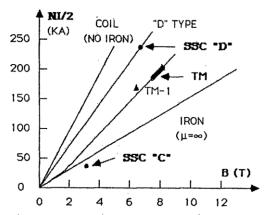
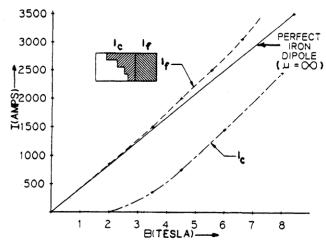
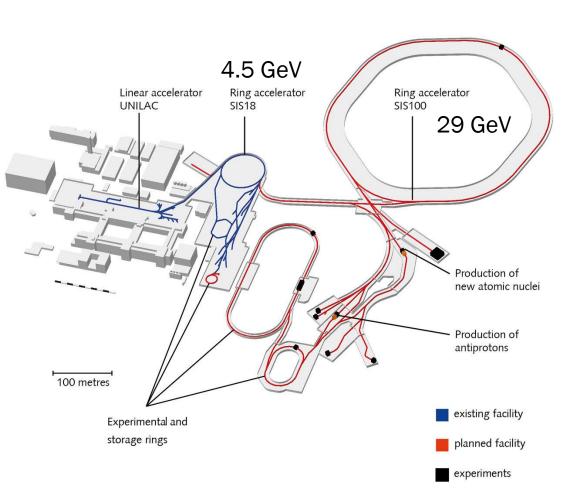


Fig. 4: Quadrant ampere-turns N1/2 for several types of magnets. SSC "D" has 2 cm inner coil radius. The gap in the iron for SSC "C" is 2.54 cm, TM is 4 cm and TM-1, 4.8 cm. The Ampere-turns for




FIGURE 2

Calculated current programming of the two coil segments.

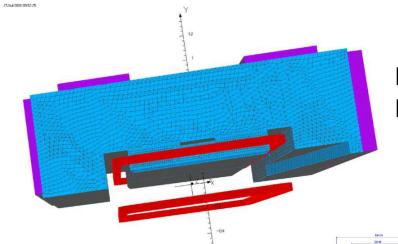
FAIR at GSI

- SIS fast ramped Ring Accelerator (4 T/s)
- When the accelerated ions impact a material sample, antiprotons or special isotopes
- •The Super-FRS is a two-stage fragment separators, that uses the Bp- Δ E-Bp method, in which the analysis of the magnetic rigidity (Bp) is combined with the energy loss in a specially shaped degrader (Δ E)
- Extensive use of superferric magnets

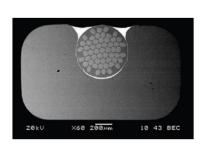
www.gsi.de

Prototype of the Superferric Dipoles for Super-FRS

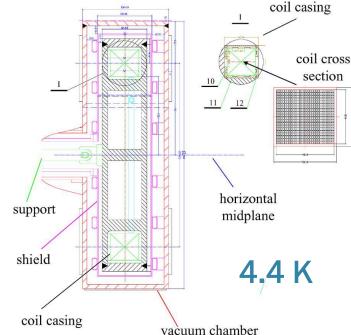
- In the target area resistive magnets due to high radiation dose
- For the dipoles also a normal conducting solution could come into consideration. Here the enormous **power consumption** of a conventional dipole leads to the decision of using superconducting coils.


Racetrack coils NbTi conductor Coils cooled by LHe

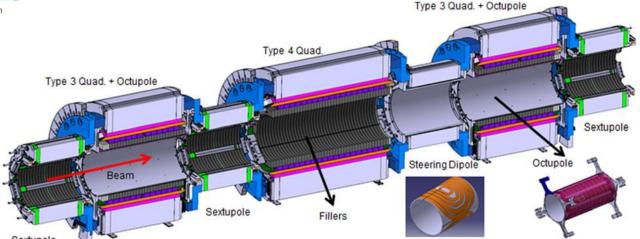
Integral field quality (relative) $\Delta([Bdl])$

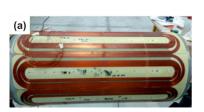

H. Leibrock et al., IEEE Tr. Appl. Sup, VOL. 20, NO. 3 (2010)

P. Szwarngruber et al., Physics Procedia 36 (2012) 872 – 877 (2012)

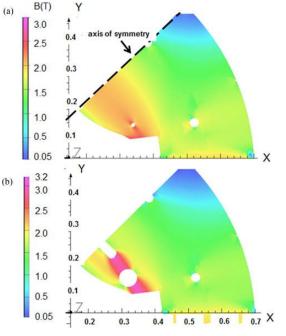

P. Szwarngruber et al., IEEE Tr. Appl. Sup, VOL. 23, NO. 3 (2013)

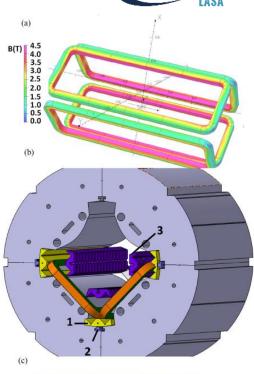
H-type iron yoke Max field 1.6 T




for B=0.15 to 1.2 T: ±3·10⁻⁴ and for B=1.2 T to 1.6 T: $\pm 1.10^{-4}$

Super-FRS Multiplets

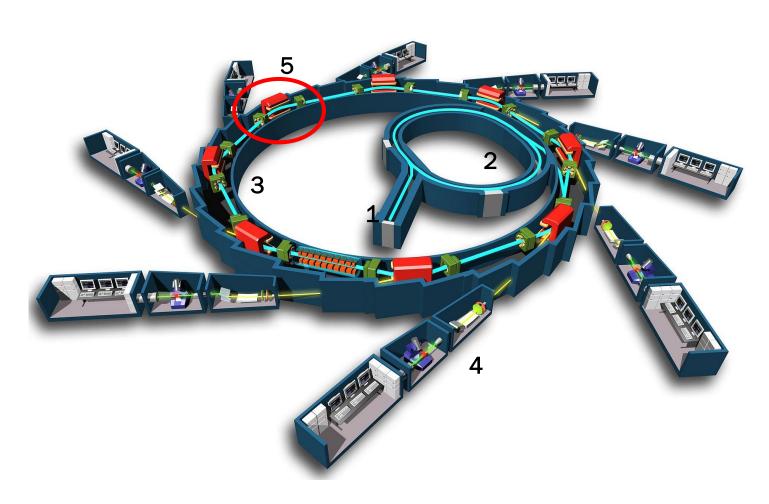




- Octupole and steering dipole are cosin theta

E Cho et al., IEEE Tr. Appl. Sup, VOL. 28, NO. 4 (2018) E Cho et al., IEEE Tr. Appl. Sup, VOL. 30, NO. 4 (2020) E Cho et al., IEEE Tr. Appl. Sup, VOL. 32, NO. 4 (2022)

Pole geometry optimized to reduce the b6 contribution



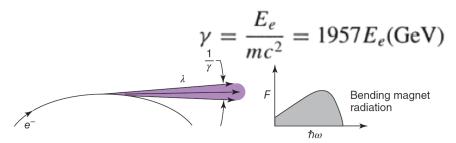
Synchrotron – Light Source

- 1 Injector
- 2 Booster Ring
- 3 Storage Ring
- 4 Beamline
- 5 Bending Magnet

Bending Magnet

The bending magnets in the storage rings are the primary sources of radiations.

The BM source produces a beam of fixed vertical opening angle $\psi \sim \gamma^{-1}$ (photon beam divergence), while the horizontal spam is determined by the length of the BM arc.


The critical energy of a synchrotron source depends upon the storage ring energy and the magnetic field of BM.

To be able to reach high photon energies (50keV and more) the solution is to use superconducting magnets to increase

the magnetic field.

$$E_c = \hbar \omega_c = \frac{3e \, \hbar B \gamma^2}{2m}$$

$$E_c(\text{keV}) = 0.6650E_e^2(\text{GeV})B(\text{T})$$

Bending Magnet

Emitted Radiation

Emitted Radiation

Fundamental of Synchrotron Radiations

Amardeep Bharti and Navdeep Goyal

Photon Energy (keV)

Attwood, D. (2007)Soft X-rays and Extreme Ultraviolet Radiation:

CAS 19 November - 02 December 2023, St. Pölten, Austria

Principle and Applications, Cambridge University Press.

Bending vs Superbending Magnets

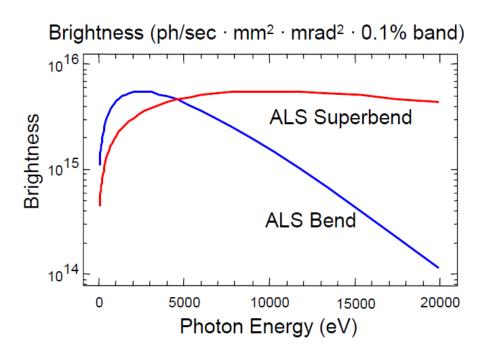


Figure 1: Brightness of a Superbend versus the normal conducting bend

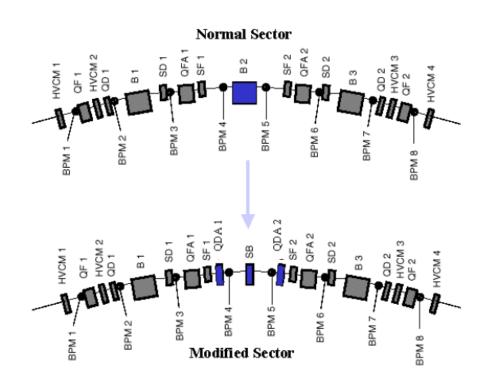
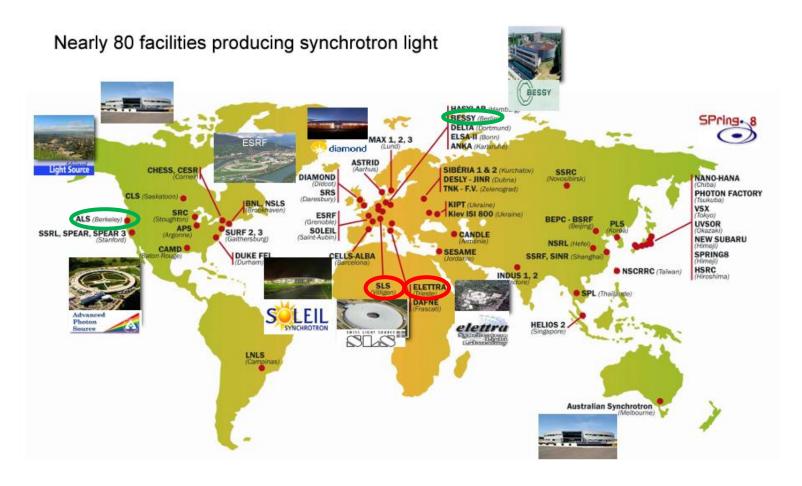
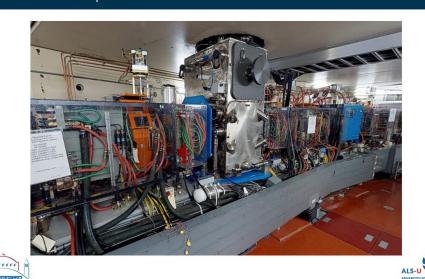



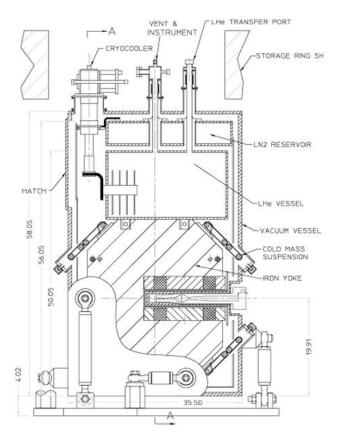
Figure 2: Magnetic layout of a normal (top) and modified (bottom) sector.

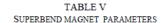
Light Sources in the World

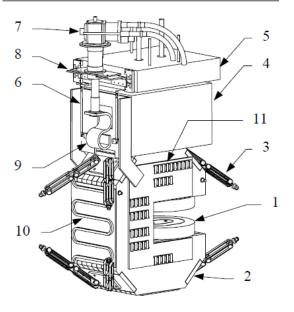
ALS (Berkeley) and BESSY (Berlin) have already installed Superconducting Bending magnets

Elettra (Trieste) and SLS
(Villigen) are in the
design/production phases for
their Superconducting
Bending magnets


Laurent S. Nadolski, 60 years of J. Laskar April 28-30, 2015




LBNL - ASL SuperBend


ALS sector with superbend

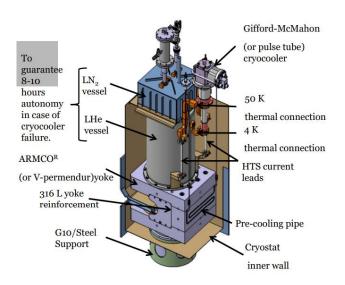
Quantity	Value			
agnet type	Racetrack windings, iron poles			
le length along beam	114 mm			
le length transverse to beam	180 mm			
rns per layer	33			
umber of layers	70			
nductor length per coil	1725 m			
erating current	291 A at 1.9 GeV			
ak field at conductor	6.8 T			
action of critical current	0.44 at 4.3 K			
ored energy	150 kJ			
w-field inductance	11 H			
gh-field inductance	3 H			
tal cold mass	15 00 kg			

6.8 T on conductor

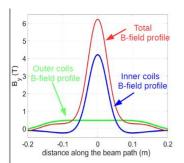
- Superferric
- Cooled by coldhead in the 4 K range
- Realibility in case of cold head failure

ALS Superbend Magnet System J. Zbasnik (2000)

Fig. 1. Superbend cold mass assembly: 1- superconducting coils with steel poles, 2- laminated steel yoke, 3- suspension straps, 4- LHe vessel, 5- LN₂ vessel, 6- HTS leads, 7- cryocooler, 8-50 K thermal connection, 9-4 K thermal connection, 10- cooldown tube, 11- warmup heater.



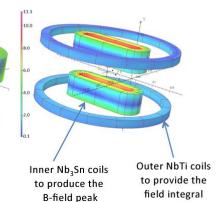
PSI SLS-2 SuperBend

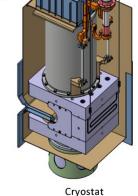

Superbend main components and parameters

	Outer coils	Inner coils
Conductor type:	Nb-Ti	Nb ₃ Sn (RRP)
Insulation:	Formvar	S-glass
I _c @ 4.2 K (A)	752 @ 5T	810 @ 12T
Magnetic energy (kJ) (1 coil)	3.8	16.6
Inductance (mH) (1 coil)	50	210
Current per turn (A)	400	400
N. turns (1 coil)	200	1485
Extraction Voltage (V) (τ _{damp} =0.4s)	340	140
Horizontal aperture (mm)		53
Peak field at conductor (T)	2.8	11.3
Peak temperature (K)	4.2	4.3

Challenges for the magnet projects at the Paul Scherrer Institut – PHANGS workshop (2017) Stephane Sanfilippo

- Superferric
- Cooled by coldhead in the 4 K range
- Realibility in case of cold head failure


C. Calzolaio, S. Sanfilippo, A. Anghel, S. Sidorov


Longitudinal gradient superbend

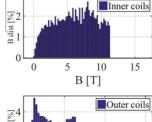
split racetracks + solenoids

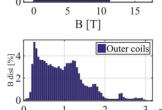
B-field profile full width half maximum (FWHM): 40-70 mm.

B-field peak: $\approx 6 \text{ T}$.

assembly

Inner coils


50% of the winding pack experiences a field above 6 T


ARMCOR or V-permendur) to enhance

the field and reduce the stray field

10% of the winding pack experiences a field above 10 T.

Peak field: 11.3 T → Nb₂Sn

B [T]

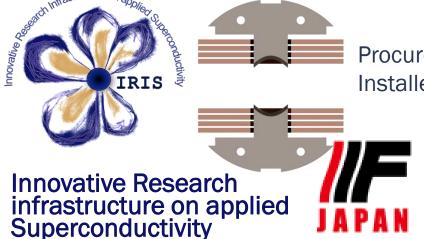
Outer coils

50% of the winding pack experiences a field above 0.8 T.

10% of the winding pack experiences a field above 1.7 T.

Peak field: 2.9 T → Nb-Ti

Energy Saving HTS Magnet for sustainable Accelerators (ESMA)


Scope: superconducting cables test up to 10 T

• Deliverale: 10 T – 70 mm aperture HTS conduction cooled dipole operating @ 10-20 K conduction cooled by coldheads

Goal: increase of the TRL for 15 T – 20 K magnets for FCC and Muon Collider

Iron contribution about 1 T – Field quality to be optimized

Parameter	Unit	Value
Central field	tesla	10
Free bore dimensions	mm	H80 x V50
Magnet length	mm	1000
Good field region uniformity	N/A	1.5%
Good field region extension	mm	H50xV30xL400
Operating temperature	K	20
Minimum op. temper. for test	K	10
Maximum current	Α	<1000

Procured by LASA
Installed in INFN Genova

Thermal shield

Iron insert

End-plates S Sorti and I

S. Sorti and L. Balconi Univ. of Milano & INFN-LASA

Dimensions	12 mm × 67 µm
Substrate	40 μm of Hastelloy C276
Copper stabilizer	2 × 10 μm, RRR>20
Easy-way minimum bend	10 mm
Allower longitudinal strain	-0.4 % to 0.3 %
I _c , 77 K, self-field	Min. 400 A, average 470 A
Ic, 20 K, 15 T	Min 500 A

Tape procured by LASA: 15 km of 12 mm by FARADAY

Racetrack stack

Actual design

Racetrack

	IRIS
Cable section	∫ ■ Metal

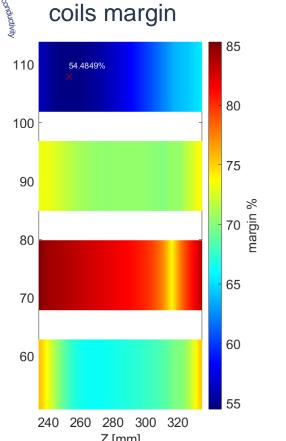
Cable section

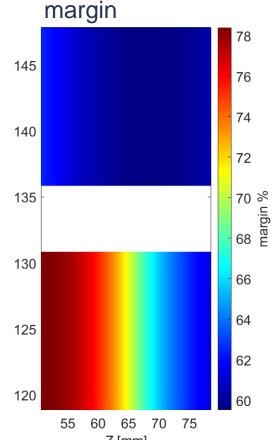
Wetal

Cu

YBCO

Sub


12


10

YBCO

Sub

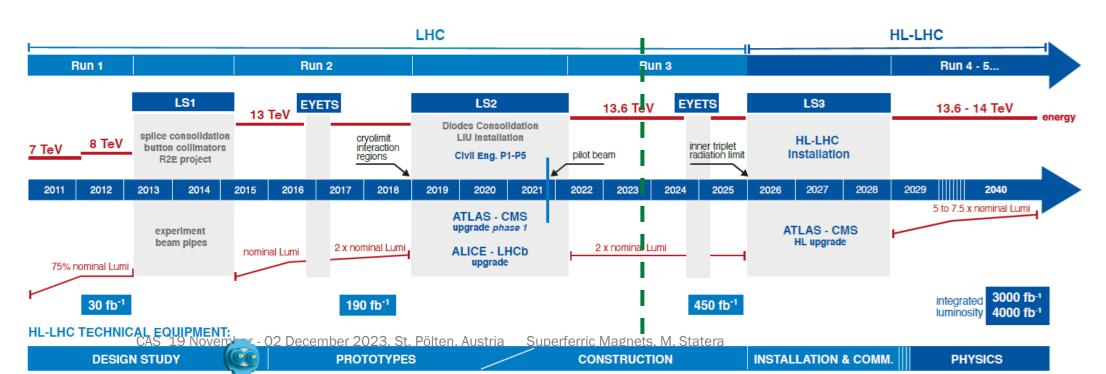
Central field B ₀	tesla	10
Minimum central field B _{0min}	tesla	8
Free aperture	mm	Ø70
Good field region uniformity	N/A	±1.5%
Good field region extension	mm	H50xV30xL350
Operating temperature	K	20
Operating Current	А	810

The margin is calculated considering z [mm]
Temperature and field angle
For safety this calculation includes the case of a 100% current sharing between the tapes.

The main objective of HiLumi LHC Design Study is to extend the LHC lifetime by **another decade** and to determine a hardware configuration and a set of beam parameters that will allow the LHC to reach the following targets:

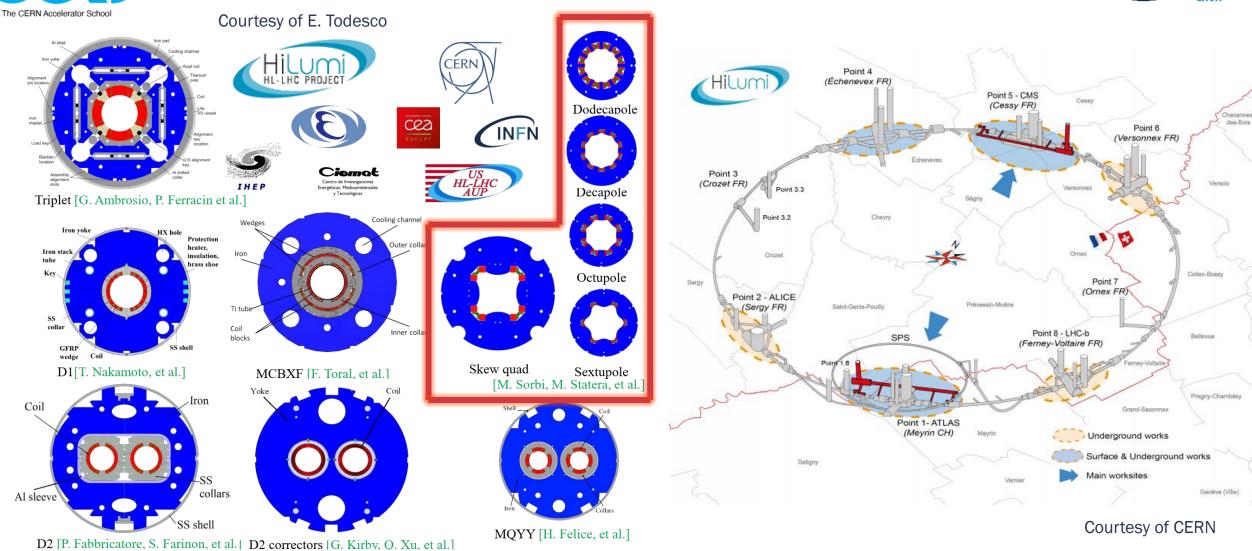
A peak luminosity of $L_{peak} = 5 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$ with levelling, allowing:

An integrated luminosity of 250 fb⁻¹ per year, enabling the goal of $L_{int} = 3000$ fb⁻¹ twelve years after the upgrade.

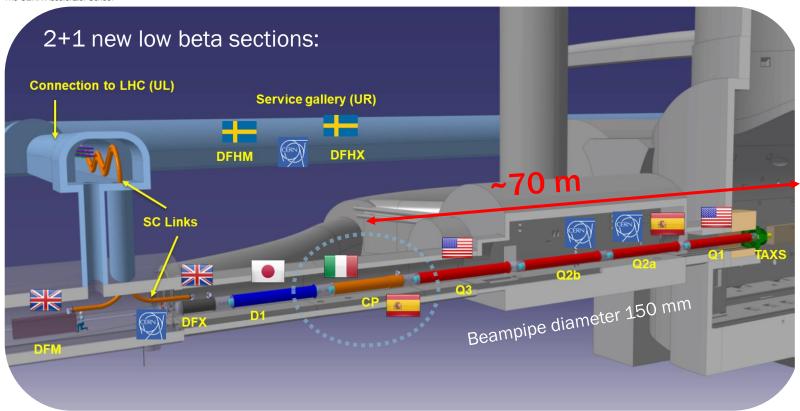

This luminosity is more than ten times the luminosity reach of the first 10 years of the LHC lifetime.

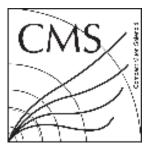
Courtesy of O. Brüning - Project Leader

LHC / HL-LHC Plan

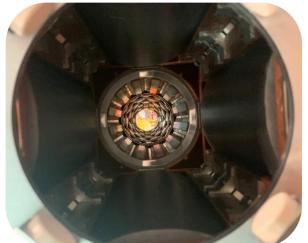


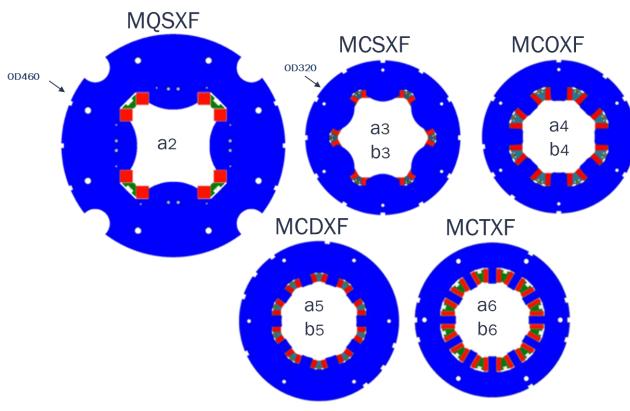
HO Corrector Magnets Zoo





The low beta section




- The High Order Correctors have to provide integrated field and to be as compact as possible
- First superferric magnets in LHC
- In the actual configuration about 3.5 m

HO Corrector Magnets Zoo

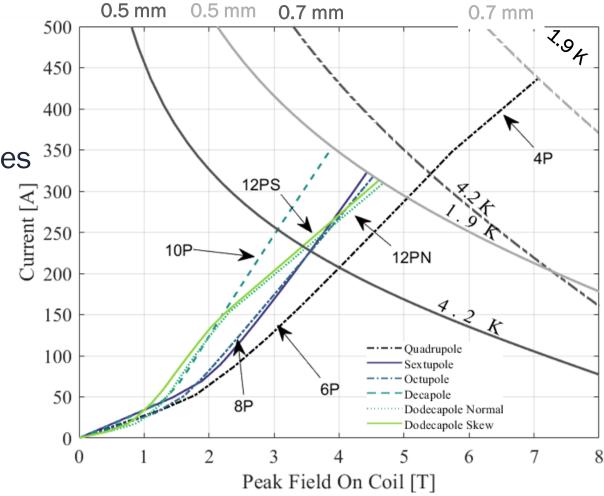
NbTi SuperFerric design

Geometrical lengths: 200 mm - 580 mm

Quench protection: no energy extraction (but 4P)

60% margin @ 1.9 K

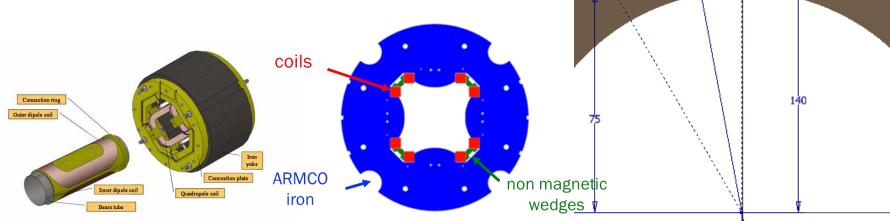
F. Toral et al., EPAC 2006 and CERN-2014-005 (CERN, Geneva, 2014) G. Volpini et al., IEEE Tr. Appl. Sup, VOL. 26, NO. 4 (2016)



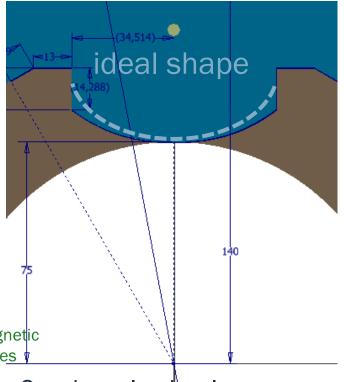
NbTi superconding coils

- Racetrack
- Insulation by S2 glass reinforced material Superferric design
- Compact and modular
- Strong contribution of the iron poles
- Field quality influenced by the shape of the poles

Magnet	Type (normal/skew)	Integral field at r=50 mm	Magnetic Length	Coil Peak Field	Magnetic stored energy @lult	Operating Current	Ultimate current	Turns per coils	Ic @ 4.2 K	Margin @1.9K
		T⋅m	m	T	kJ	Α	A	-	A	%
Quadrupole (4P)	S	0.700	0.401	3.53	36	174	197	754	315	57.1
Sextupole (6P)	N,S	0.064	0.168	2.14	1.2	99	112	280	225	>60
Octupole (8P)	N,S	0.046	0.145	2.06	1.1	102	115	372	230	>60
Decapole (10P)	N,S	0.026	0.145	1.73	0.5	92	106	228	256	>60
Dodecapole (12P)	N	0.086	0.469	1.44	7.8	85	97	436	233	>60
Dodecapole (12P)	S	0.017	0.099	1.44	~0.9	84	94	436	230	>60

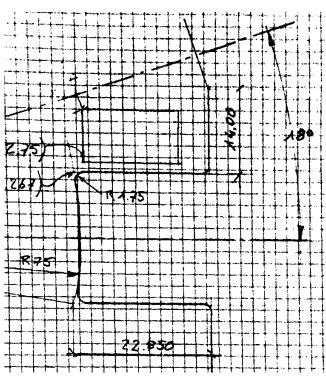


pole shape


Relaxed field quality 100 U Need for compact magnets Inner diameter 150 mm

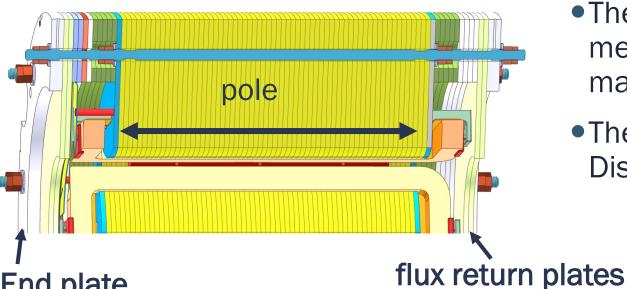
The design is based on the studies by Toral et. al on superferric magnets for Free Electron Lasers (XFEL)

Toral et al. EPAC 2006

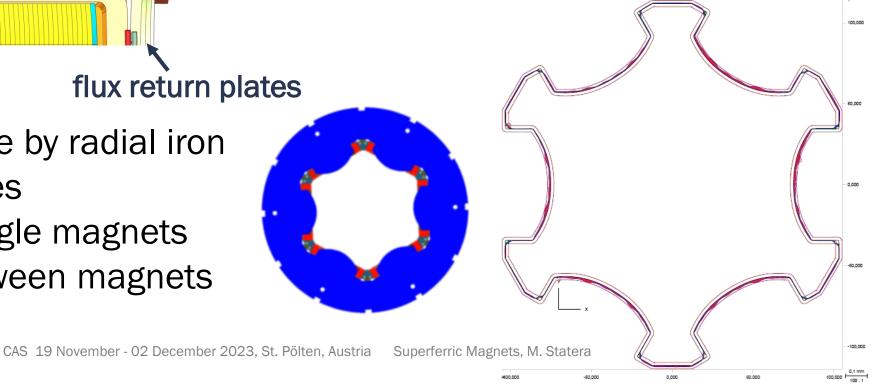

modifed ideal n = 2; 3

Quadrupole simple increase of thickness at the sides of the pole

Sextupole ideal pole shape Superferric Magnets, M. Statera


maximum area n > 3

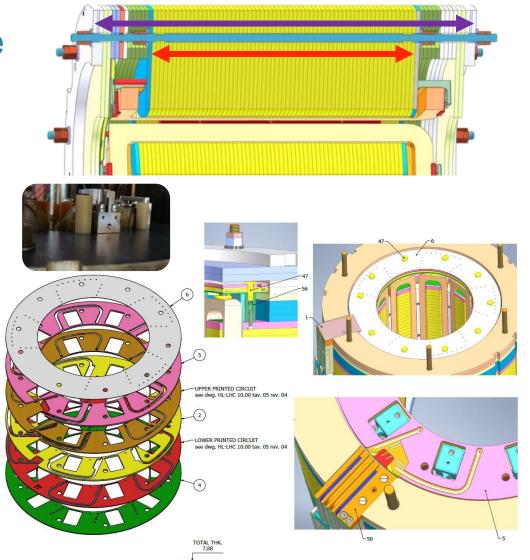
As much as possible iron area in the pole



Fringe field is reduce by radial iron and flux return plates
Compactness of single magnets
Lower distance between magnets

 The shape of the pole is extensively measured with high accuracy to quarantee magnetic performance

 The outer alignment slots are also Electrical Discharge Machined (EDM) and measured



Handling at room temperature

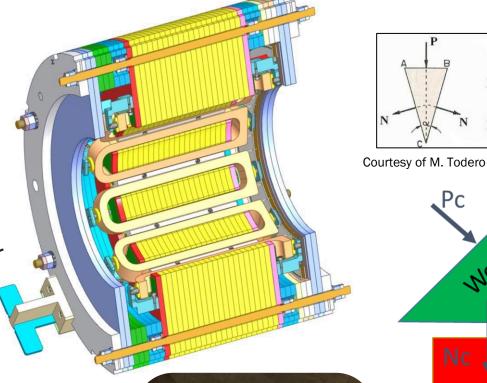
Longitudinal prestress on iron

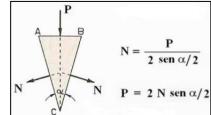
- Avoid lamination movements during transportation (2.5 g MAX) handling and installation
- 1D model
- Two step prestress (pole and full magnet)
 - CuBe rods (high yeld stress) to increase preload at cold
 - A fix the pole
 - B pack the magnet
- Tolerances
 - Electrical connections mechanically protected
 - Several custom components
 - Mechanical tolerances may create interference at room temperature

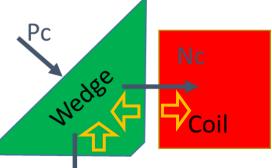
Coils in place at cold

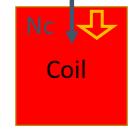
The coils are supported by wedges and longitudinal prestress on plates

The force on coils is a function of the order


Simplified models and 2.5D simulations have been developed


Prestress on coils

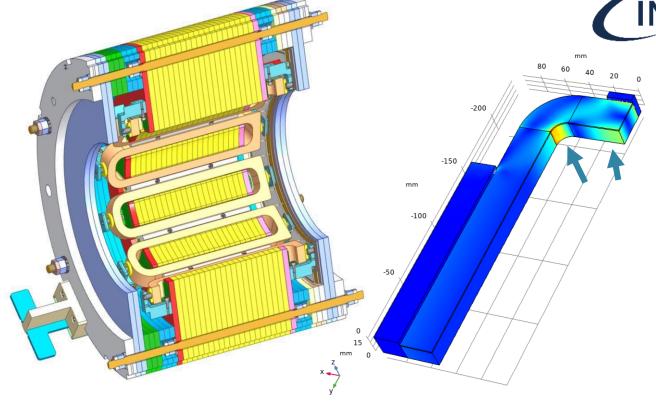

Aim guarantee contact at cold and low as possible stress on coils to avoid damages


Beware of mechanical tolerances

Goal lower stress may reduce the training

Table 8-4 Linear expansions as function of temperature for usual materials					
Material	$\int_4^{100} dl/l$	$\int_{100}^{293} dl/l$			
Stainless steel	35×10^{-5}	296 × 10 ⁻⁵			
Copper	44×10^{-5}	326×10^{-5}			
Aluminum	47×10^{-5}	415×10^{-5}			
Iron	18×10^{-5}	198 × 10 ⁻⁵			
Epoxy fiberglass	47×10^{-5}	279×10^{-5}			

Handbook of cryogenic engineering, J.G. Weisend II


The output are the toques to be applied during assembly

Longitudinal

- 1D model plus 2.5D model
- Differential contraction between Iron laminations and coil-supportsscrews

Wedges prestress

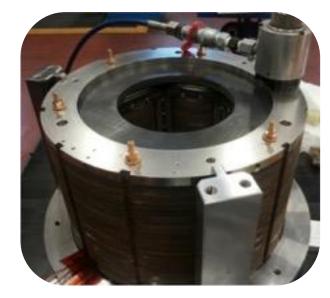
- Avoid coils movements/falling
- Use the elasticity of each coil family
- 2D model
- 2.5 D model

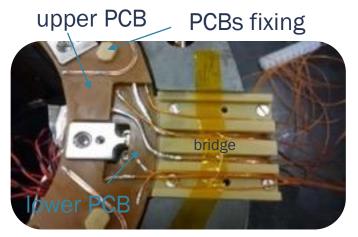
Magnet	torque [n. x Nm]	range [Nm]	Tools 1 range 0.20-0.50 Nm 2 range 0.50-2.00 Nm	Calculated Torques [n. x Nm]
4P	2 x 1.00	0.94-1.06	2	2 x 0.8
6P	2 x 0.44	0.40-0.48	1	2 x 0.2
8P	2 x 0.55	0.52-0.58	2	2 x 0.25
10P	2 x 0.35	0.32-0.39	1	2 x 0.20
12PS	2 x 0.49	0.45-0.53	1	2 x 0.35
12P N	2 x 0.31	0.28-0.34	1	2 x 0.20

HOC ASSEMBLY

The CERN Accelerator School

alignment frame

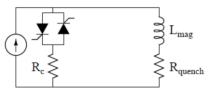

Coil technology and magnet assembly procedure have been developed at LASA Developing and transfering and QA are key point to pursuit reproducible results


- Procedure developed at LASA on prototypes
- 6P, 8P, 10P assembled at LASA
- 12P and 4P assembled in industry

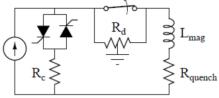
wedge ongitudinal support

Quench Protection

LASA Quench Protection

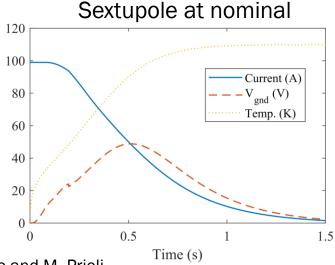

- ENERGY EXTRACTION by dump resistor
- Threshold 200 mV
- Validation time 20 ms

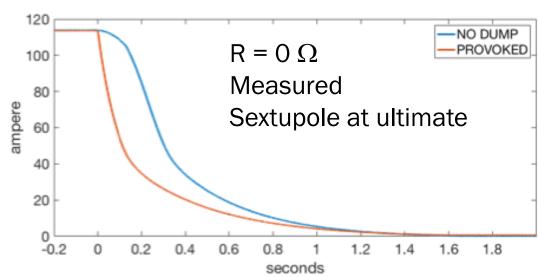
Protection in LHC – no energy extraction (except the quadrupole)


- Measuring current
- Time range 60-180 ms
- Max current: ultimate current (up to 114 A)

Tests at LASA – R dump = 0

- Quech induced by heater (and AIN insert)
- Increase validation time up to 180 ms at ultimate current

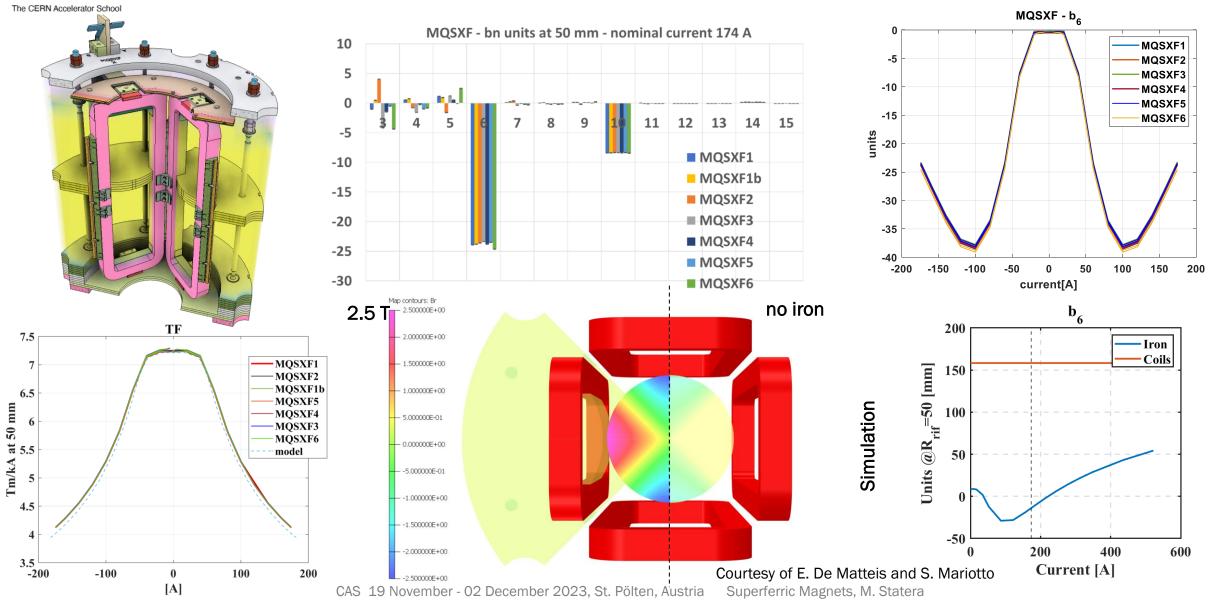



Simplified schematic of the protection circuit applied to the other corrector magnets (6p, 8p, 10p, 12p (N), 12p (S)). From left to right: power converter, crowbar, magnet.

Simplified schematic of the protection circuit applied to the quadrupole magnet (4p), R_{quench} Dump resistor

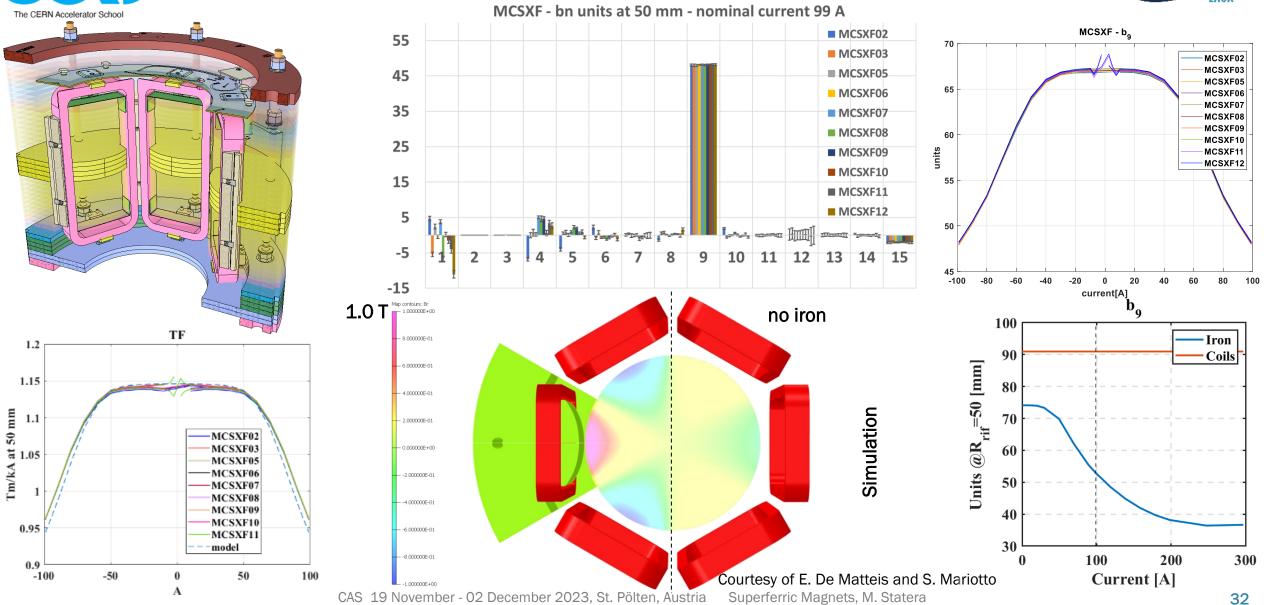
Courtesy of S. Mariotto and M. Prioli

Protection

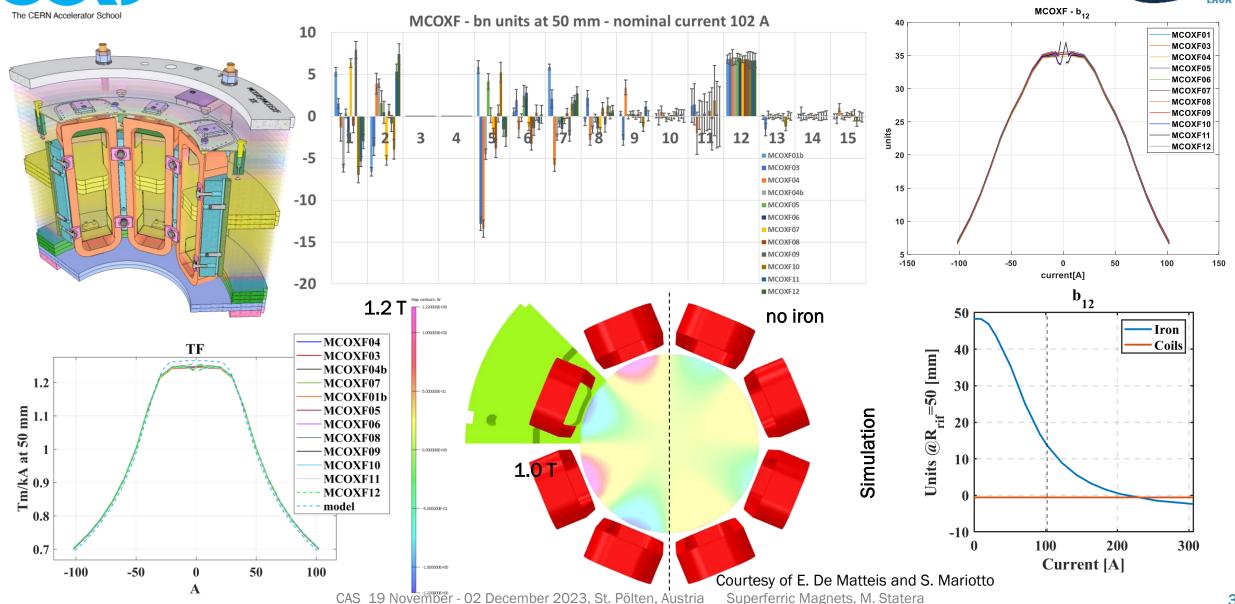


Magnet	MCSXF	MCOXF	MCDXF	MCTXF	MCTSX F			
Magnet Order	6р	8p	1 0p	12p (N)	12p (S)			
$T_{max}(K)$	122	121	99	112	98			
$V_{gnd, max}(V)$	63	73	33	145	33	6P 8P 10P	12P 4P	
[MQ]	10000							♣8P assembled ♣6P assembled ♣10P assembled
resistance	1000		4	Â				→ 12P assembled - · 10 muA limit
resist	100)	.1	نا هم هم	mit			4P assembled4Pb assembled
	10) 📙	<i>,</i>					
		0				1000 oltage [V]	2000	

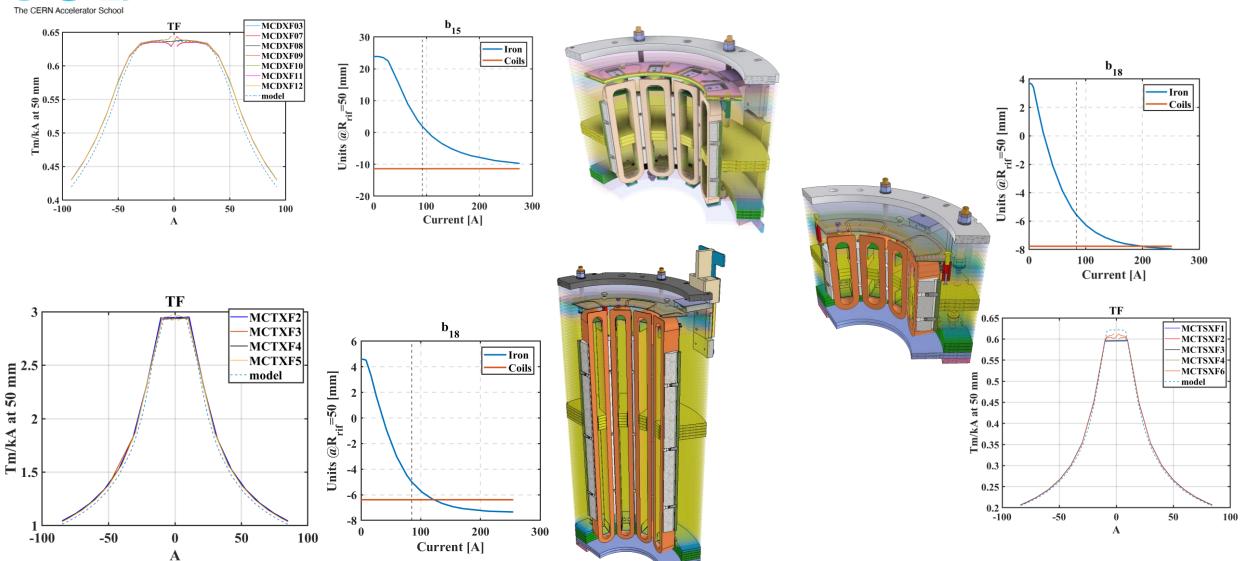
Skew Quadrupole Family Field Quality



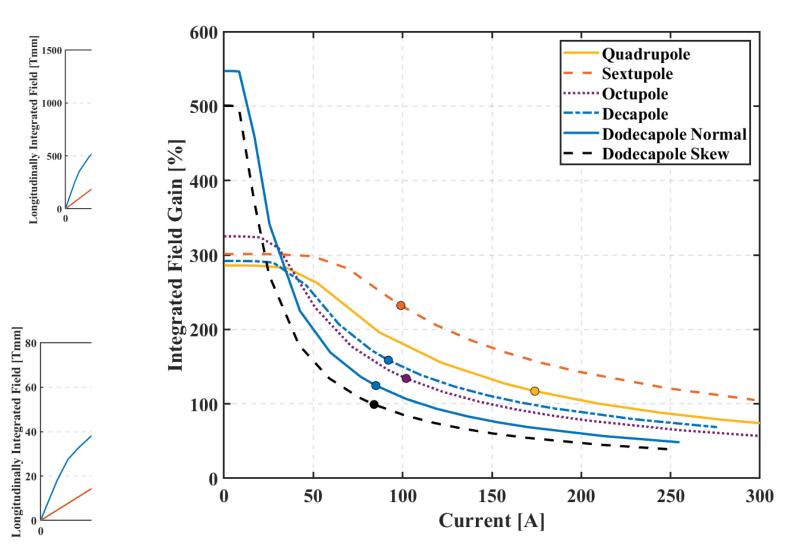
Sextupole Family Field Quality

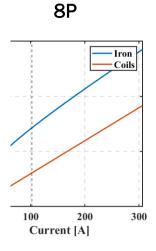


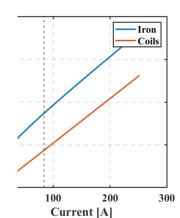
Octupole Family Field Quality



Decapole and Dodecapoles Transfer Functions

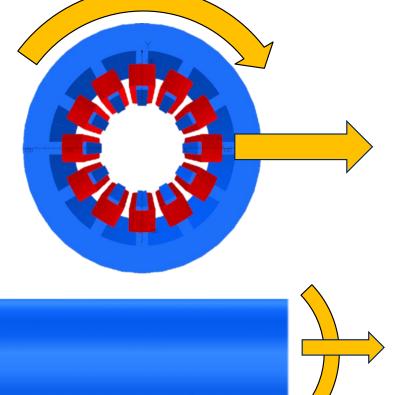






Effect of Iron in Superferric HOC

12PS


MECHANICAL TOLERANCES

Effect of assembly tolerances on field quality, analysis by S. Mariotto

The superferric design allows a release of assembly tolerances, thus reducing the cost

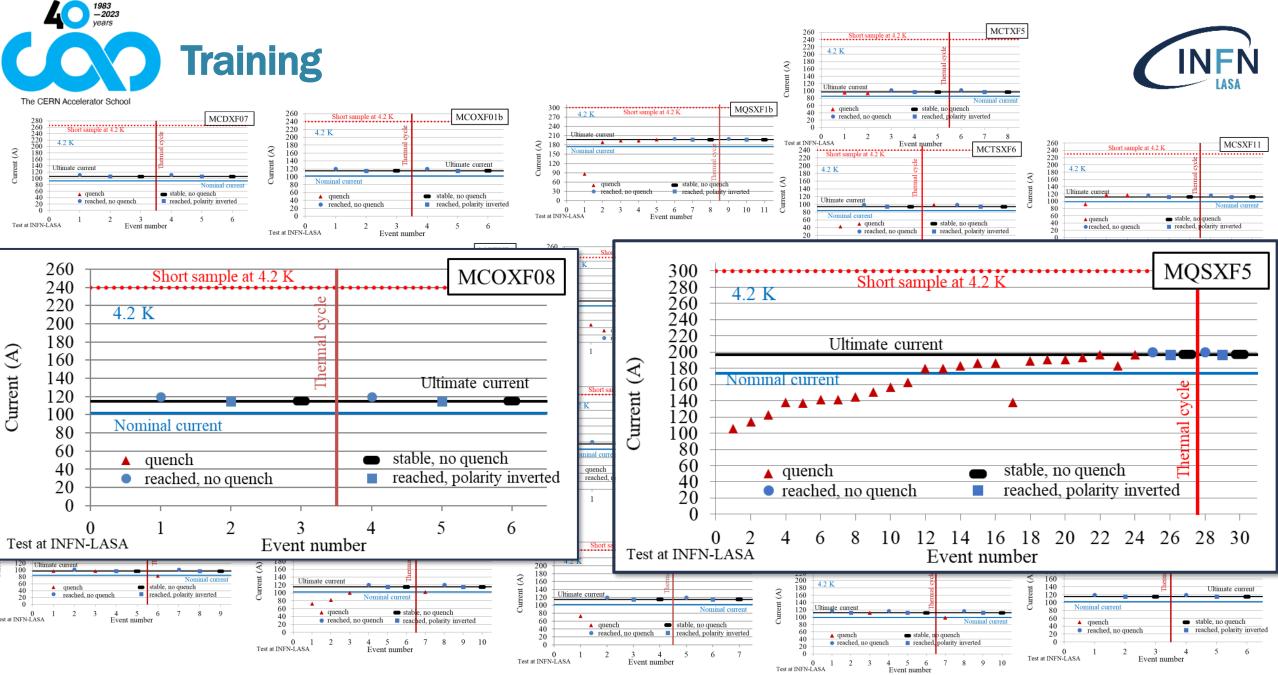
Allowed overall harmonic content 100 U

Displacement max 0.1 mm

$$b_5 = -47.5 \text{ units}$$

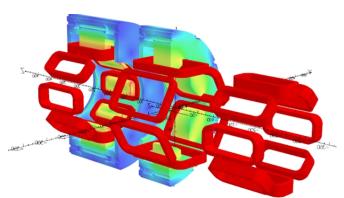
 $b_7 = -4.6 \text{ units}$

$$a_6 = 20.4 \text{ units}$$


Horizontal displ. 0.3 mm

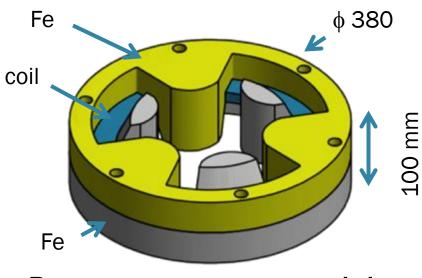
$$a_4 = -1.1 \text{ units}$$

Displacement max 0.1 mm negligible



Integration

The CERN Accelerator School


Courtesy of E. Prin

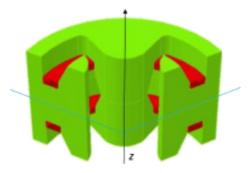
Exploring Different Designs Round Coil Magnet

alternating poles on each iron ring

Iron rings for the flux return

dx rocarr

Demonstrator: one module


The special iron pole and return flux shaping generate a multipolar field (I. F. Malyshev and V. Kashikhin)

Iron dominated

Fits strain sensitive superconductors i.e. MgB2 and ReBCO

A full magnet has 2 coil to cancel solenoidal field

Full magnet

G. Volpini et al. Eletromagnetic Study of a Round Coil Superferric Magnet, IEEE Tr. App. Sup, 26, 4 (2016)

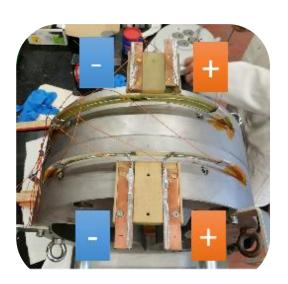
MgB₂ winding BTS2 ground insulation

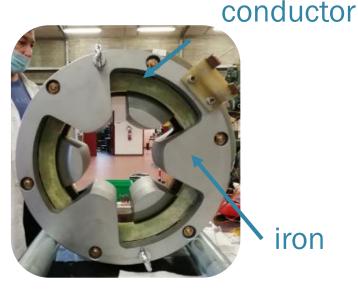
In/out soldering

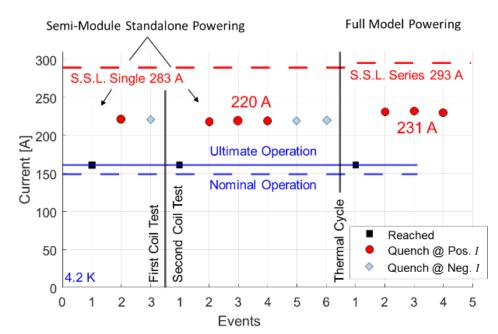
Conical spring washers supports

V. Kashikhin et al., Proc. IPAC 2010

I. F. Malyshev, Patent 1 689 890/26-25, Oct. 12, 1973, Bulletin 41. V. Kashikhin, IEEE Trans. Appl. Supercond., vol. 20 (2010)




Exploring different designs



- The development of the round coil magnet idea is a way to
- introduce HTS superconductors in accelerators

 •Not the best choice for HL but suitable for lower energy accelators and/or to operate at higher temperature
- Oné way toward higher sustainability of accelerators (10 K 20 K operation)

Full module

Courtesy of R. Valente

Courtesy D. Tommasini, CERN

Energy saving accelerator and beam line magnets

European Strategy for Particle Physics 2020

Energy consumption of particle accelerator facilities is expected to **increase** in the future: Need for «Improvement of energy efficiency»

«Cryogen-free superconducting magnets instead of common resistive magnet for heavy particles beam lines»

Objectives:

- Use of MgB₂ or HTS conductors
- Energy consumption 5-20 lower
- Work @ T=>20 K with solid conduction cooling to reduce cryogenic power consumption

MNP33-Dipole NA62-CERN **7560 MWh/y**

Compass-CERN 6953 MWh/y

Revamping

Superferric

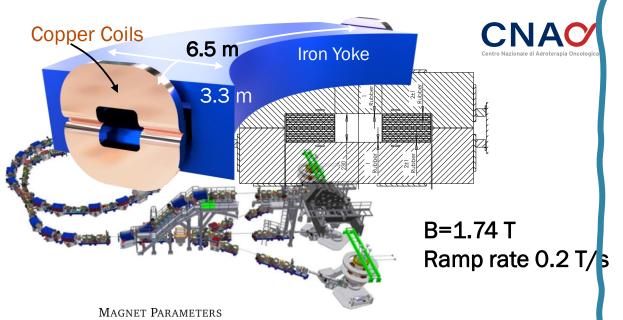
Coil dominated

Exotic

MgB₂ or HTS conductors **Cheapest** solution

Optimized iron geometries Intermediate field

HTS conductors (high field)
Reduced Magnet Dimensions


Combined function magnets
New beamline design

Magnet Case Studies

Ramped Bending Dipole «Window-Frame»

_____ Main Features:

Nominal Current	2280 A
Min Current	380 A
Nominal Field	1.74 T
Magnetic Lenght	5740 mm
Entrance Angle	30°C
Exit Angle	21°C
Field Homogenity	2 units
Maximum Power	700 kW

Field quality: \pm 2E-4 Δ B/B₀ in 200x200 mm² aperture

Duty cycle depends strongly from patient treatment

30 kW DC = 262 MWh/year

Steady-state H-Type bending Dipole SCHERRER INSTITUT B=1.47 TIron Yoke Copper Coils MAGNET PARAMETERS

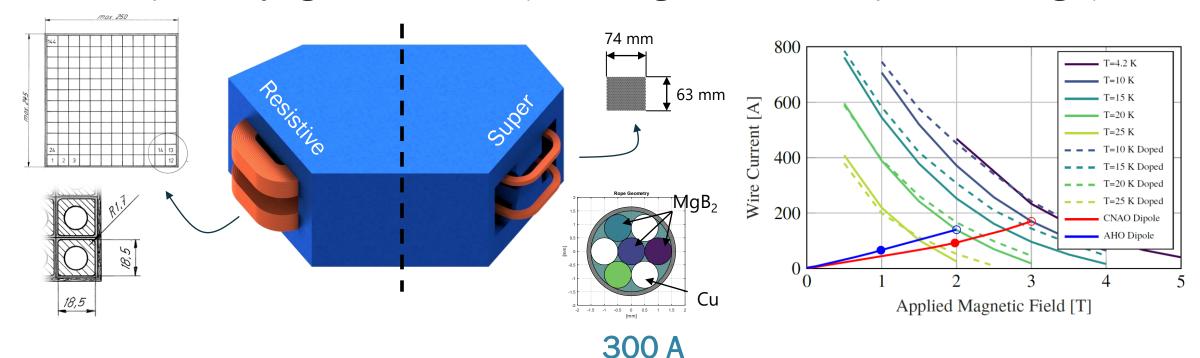
	AHO
Air Gap	100 mm
Max. Current	1000 A
Max. Voltage	95 V
Max. Power	95 kW
R @ 20°C	83 mΩ
Cond. Dimensions	18.5×18.5 mm
Cooling Channel Diam.	11.5 mm
Water Flow	60 l/min
Pressure drop	8 bar
T Rise	23°C
Turns	144

Main Features:

Weight of magnet: 50 tons

Copper coils cooling power **190 kW** continuously mid-May to mid-Dec.

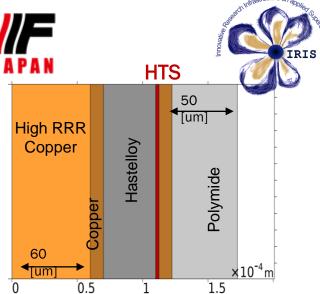
 $E_{tot} = 715 \text{ MWh/year}$



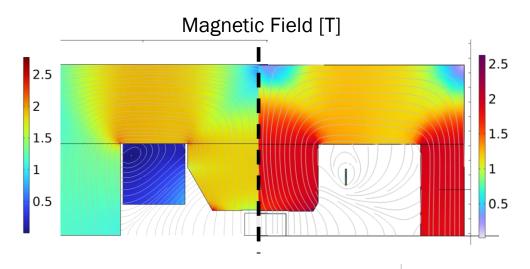
MgB₂ @ 20 K Electromagnetic Design

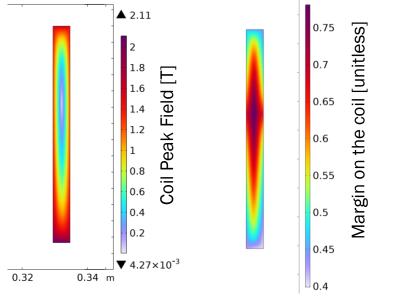
Target of the electromagnetic design optimization

- Magnetic field of 1.45 T at center.
- Field quality given by the yoke poles (coil used to magnetize it). Same ampere-turns $(144 \times 1000 \text{ A})$
- Use of a rope (4 MgB₂ conductors and 3 high-purity copper wires).
 484 ropes carrying 300 A @ 1.2 T (50% margin LL 8 K temperature margin)


Courtesy of S. Mariotto

HTS @ T=50 K EM Design Optimization

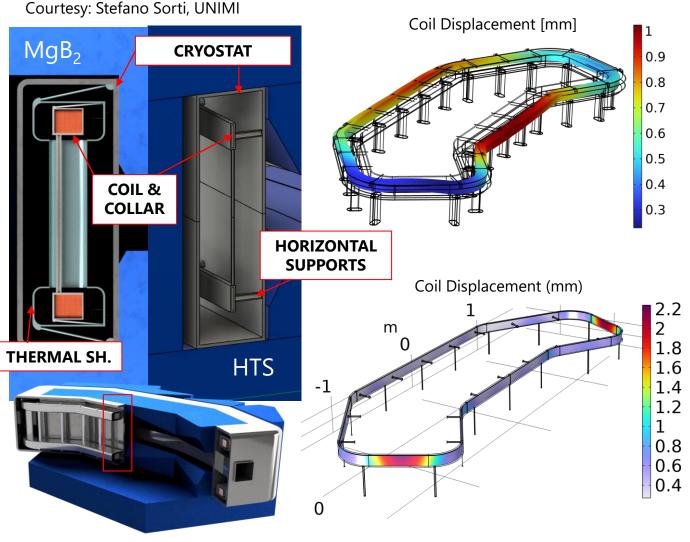



Target of the electromagnetic design optimization

- Magnetic field of 1.45 T at center.
- 2D Field magnetic optimization of coil cross-section
- Minimize Peak Field on conductor while obtain the maximum margin on LL
 - Scaling of the old ampere-turns (144 A x 1000 turns)

Dimensions	4 mm × 67 μm
Substrate	40 µm of Hastelloy C276
Copper stabilizer	2 × 10 μm, RRR>20
Easy-way minimum bend	10 mm
Allower longitudinal strain	-0.4 % to 0.3 %
I _c , 50 K, 2 T	Min. 508 A with B Max. 832 A with B $_{\parallel}$

Mechanical Design



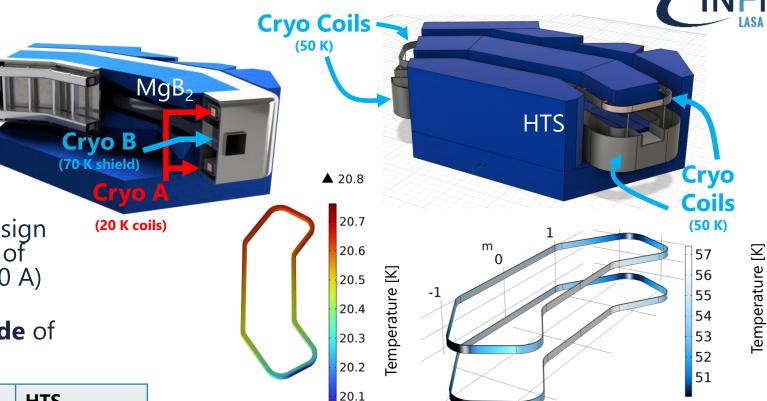
To limit coil displacement and deformation a **collar** can be used (SS 316LN)

A distributed **set of SS 316LN tie-rods** or **cylindrical support** in **G10** is adopted to sustain mechanically the coil

MgB₂ configuration requires active cooled aluminum **thermal shield** (cooled @ 70 K with coils @ 20 K). **HTS can work @ 50K**

	Supports	N	Length (mm)	Diam. (mm)
MaD	Coil-shield	48	130	4
MgB ₂	Shield-cryost.	48	180	6
LITC	Horizontal	16	130	20
HTS	Vertical	16	198	10

Thermal Design


How to optimize the thermal loads:

 MLI (30 Layers) used to reduce the radiation power on thermal shield

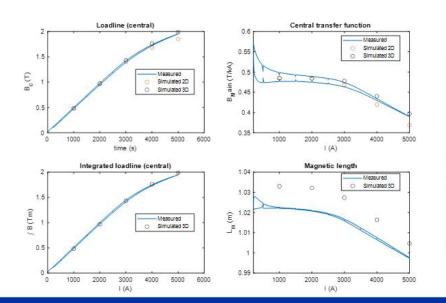
 Current leads have to be carefully design to minimize heat load on coil. Choice of operational current is important (300 A)

 Cryocoolers installed on one/both side of the magnet

	MgB ₂		HTS	
MAGNET	Coils @ 20 K	Shield @ 70 K	Coil @ 50 K	
Q support	1.35 W	12 W	4.6 W	
Q Current Leads	0.2 W	24 W	28 W	
Q radiation	0.45 W	11 W	11.7 W	
Q tot	2 W	47 W	44.3 W	

Energy Consumption			
Resistive Config.	MgB2 @ 20K Design	HTS @ 50K Design	
190 kW 715 MWh/year	5 kW 18 MWh/year	3,4 kW 13 MWh/year	
Reduction Factor	40 Times	56 Times	

Energy Efficient Superferric Dipole


Test and Magnetic measurement of EESD magnet demonstrator

EESD magnet demonstrator

- Magnetic measurement date confromed to expectations.
- · 20 K test under preparation.

- Energy-Efficient Superferic Dipole (EESD) is an innovative iron-dominated magnet design relying on the 3-kA MgB₂ cable developed for sc link in WP6a.
- A demonstrator was built and tested, which achieved
 5 kA and 1.95 T dipole field at 4.5 K wihtout quench.

Solid design for the cable

Good performance at low temperature

High current to be evaluated in case of a conduction cooled test

Courtesy of A. Devred,
A. Ballarino, N. Bourcey,

F. Mangiarotti, A. Milanese,

C. Petrone (CERN/TE-MSC)

Page 47/20

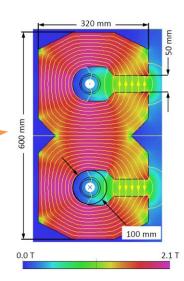
Superferric Magnets, M. Statera

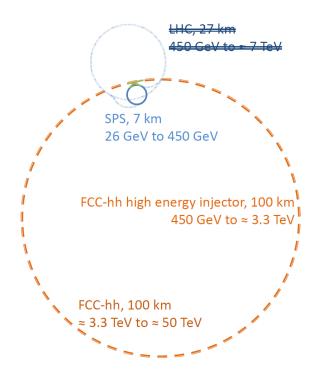
CERN


13th HL-LHC Collaboration Meeting, Vancouver, Canada – 25-28 September 2023

CAS 19 November - 02 December 2023, St. Pölten, Austria

Superferric option for FCC


A. Milanese et al, IPAC 2014


Resistive

- peak power (in magnets only) of 100 MW with coil operating at low current density (1 A/mm²)
- > overall size 54 x 108 cm
- > 45 kA for 1.1 T in bore
- > parallel physics?

Superconducting

- cryogenic power to be evaluated, function of cycle (ramp rate and frequency), superconducting material, operating temperature, cryostat design
- > overall size 32 x 60 cm
- > 50 kA for 1.1 T in bore

- An option for the FCC-hh higher energy injector
- Optimization by 2 apertures
- Manifacture potentially cheap
- High current, but one power converter
- Cryogenics to be optimized

- Superferric magnets are
 - Flexible
 - Reliable
 - Inexpensive
- Not solving any possible technical problem
- Interesting for energy saving reserach and applications

LASA team

F. Broggi, E. De Matteis, S. Mariotto, A. Paccalini, A. Pasini, D. Pedrini, A. Leone, M. Quadrio, A. Palmisano, M. Prioli, M. Sorbi, S. Sorti, M. Statera, M. Todero, R.U. Valente, C. Uva

CERN

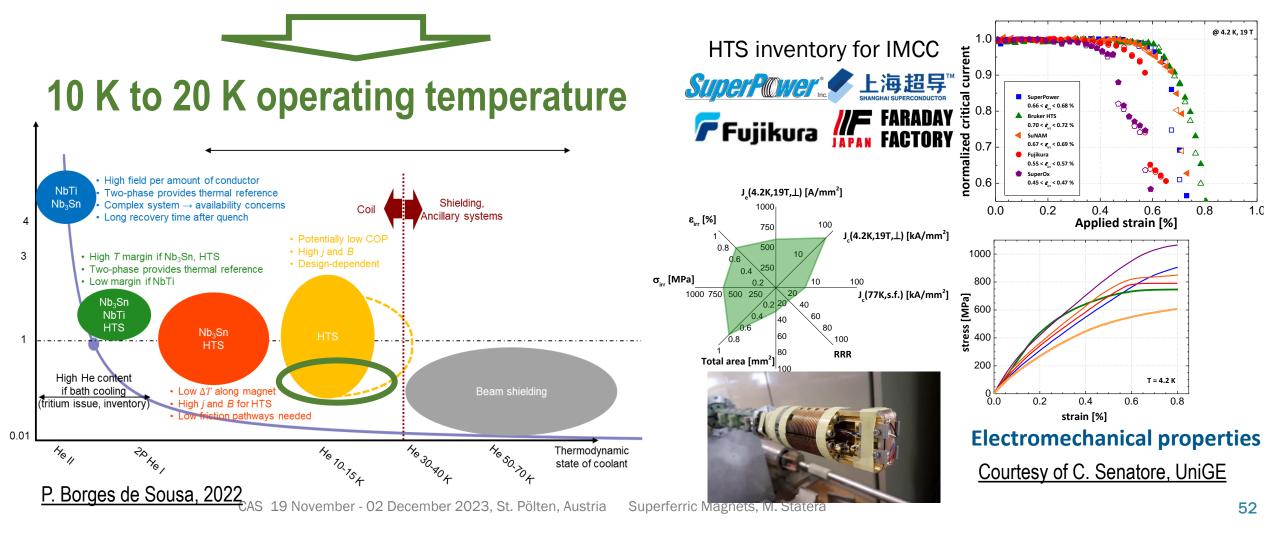
E. Gautheron, A. Musso, E. Todesco

SAES Getters and SAES Rial Vacuum

F. Gangini, P. Manini, M. Campaniello,

C. Santini, A. Zanichelli

Motivation and conductor characterization


@ 4.2 K, 19 T

1.0

3 pillas of design:

Performance (field and field quality), Cost and Sustainability

Ongoing conductor characterization and modeling

