

Overview of Magnetic Measurements Why, when, what and how to measure (and calibrate)

Marco Buzio, Test & Measurement Section, Magnet, Superconductors and Cryostats Group

CAS course on "Normal- and Superconducting Magnets", 19.11−02.12.2023 Pölten, Austria

Introduction

Why and when to measure

Know your magnetic field

FEM/BEM simulations

− Highly idealized object − Costs: mostly setup (scripts → scalable parametric analysis)

Beam-based measurements

−Full set of actual objects

(+ all the rest around them …)

−Costs: beam time (expensive!)

Magnetic measurements

− real object or close representative, under controlled laboratory conditions

− costs: development of instrumentation, power supplies, cooling, transport …. manpower ∞ n. of test cases

Beam-based measurement: examples

Solenoid axis tilt (ISOLDE REX)

- Tilt could not be measured in-situ due to mechanical constraints
- Beam Position Monitors measure beam deflection angle *α* by scanning the entry direction
- Radial field *B^r* approx. by 1st order Taylor expansion

$$
p_{\text{GeV}/c}\alpha = 0.3 \int_{-L/2}^{L/2} B_y \, dz \qquad \varepsilon_x = \frac{\pi}{0.3} \frac{L}{\mu_0 N I R^2} p_{\text{GeV}/c} \alpha
$$

LHC multipole polarity check

- Triggered by anomalies detected in early injection tests
- Beam prepared with low intensity and emittance; large momentum offset to enhance sensitivity
- Suspected multipoles set to excite betatron oscillations at opposite polarities
- Trajectory difference compared to MADX simulations
- Effective but €xp€n\$iv€

R. Calaga , Polarity checks in Sectors 23 & 78, LHC Performance Note 010, 2009

25.11.2023 marco.buzio@cern.ch | Overview of Magnetic Measurements 4/36

Beam-based measurements: summary

Advantages

- by definition, **the beam sees all** that's relevant in the actual operating conditions
- Beam measurement can deal quickly with the **unexpected**
- They may be the **only option**: e.g. old magnets with no spare, no FE model

Limitations

- **difficult interpretation**: all effects integrated by the beam, unique inversion may not be possible
- require **very precise instrumentation** (e.g. ppm tune measurements, 10-50 μm BPM), stable machine, as many correctors as possible, dynamic aperture margin
- require well-known **optic model** (obtained from previous magnetic measurements !)
- only non-linearities small enough not to cause beam lifetime issues can be measured
- Good Field Region corners cannot be explored well due to the finite size of the beam
- **very time consuming** (e.g. LEP bump FFT took 2 months) hence extremely **expensive**

Numerical models ← Measurements

Numerical models

- **Object does not need to exist !** but beware: the final object will be always different from the model due to geometrical tolerances, material properties variations
- **Arbitrary operational parameter range**
- **Arbitrary range and resolution of results** (space/time)

• **Systematic (and "random") errors**

- modelling errors: approximated or missing physical phenomena (e.g. hysteresis) and couplings (e.g. magnetothermal, -mechanical, -electrical); - approximation errors: truncation, simplified solutions

- discretization errors: triangulation, outer domain boundaries
- numerical errors: roundoff, instabilities (corner singularities)

• **Cost driver: setup and validation**

- initial effort ranges from trivial to near-impossible
- scripted iterations do not require manpower
- computation cost normally scales with h^{2-3} , $1/dt$

• **Best at: relative differences and changes**

- parameter space exploration, optimization

Measurement

• **Object "as built"**

but beware: a proto/spare may not represent well the mean of a series)

• **Practical limitations:**

available test bench, power converter voltage/current, time …

• **Practical limitations:**

- overall sensor size, sensing volume shape and size, mechanical positioning - sensor sensitivity, linear range, bandwidth

• **Systematic and random measurement errors:**

- transduction (S/N) and acquisition noise (ADC linearity, quantization)
- acquisition chain errors: preamplifier gain, frequency response
- calibration and numerical post-processing errors

• **Cost drivers: setup and operation**

- adapted high-precision instrumentation often requires specific R&D

- repeated tests (parametric studies, series runs) consume proportional resources

• **Best at: absolute results**

with proper traceable calibration chain

Example: CERN PS main unit

Defocusing Focusing narrow focusing PFW wide defocusing PFW wide focusing PFW narrow defocusing PFW figure-of-eight loop

figure-of-eight loop

hyperbolic shape poles

- Combined-function dipole + F/D quadrupole
- 10 x angled blocks just one big end region
- 1+1+2+2 magnetically and inductively coupled excitation circuits
- Still no complete 3D dynamic model at age 60+ …

Pole face windings

Impact of model uncertainties

Analytical 1D model (neglecting leakage)

impact of geometrical uncertainty (mechanical tolerances, assembly errors)

10 m/100 mm gap error → **10-4 field error** at low field

$$
B = \frac{\mu_0 \mu_r N_t I}{\ell + \mu_r g}
$$

impact of material property uncertainties

5% μ_r error \rightarrow **5·10⁻⁴ field error** at low field

Material properties uncertainty

variation of the coercivity/peak permeability over 50 ktons of MAGNETIL steel sheets for LHC cryomagnets

Giuseppe Peiro *et al.*, Toward the Production of 50 000 Tonnes of Low-Carbon Steel Sheet for the LHC Superconducting Dipole and Quadrupole Magnets, IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 12, NO. 1, MARCH 2002

Add: difference between actual hysteresis loop and initial curve

scatter over a small set of three ARMCO steel samples taken from same batch

FE ↔ measurements: CERN PSB bending dipole

steel plates to be reinforced to equalize the rings at high field (+110% @ 2 GeV w.r.t. design value !)

4-ring main bending dipole of CERN PS Booster

Courtesy A. Newborough, R Chritin

Outer rings (higher saturation) **2% mismatch** FE/MM

2D FE with nominal *B(H*) (tweaking the curve does not work !)

25.11.2023 marco.buzio@cern.ch | Overview of Magnetic Measurements 10/36

FE ↔ measurements: MedAustron Bending Dipole

- modelling issues more complex for dynamic phenomena (eddy currents)
- medical hadrontherapy machine requirements: fast energy changes, high accuracy and stability
- settling time: measured **200 20 ms**, computed **150 ms**

G. Golluccio, A. Beaumont *et al.,* Overview of the magnetic measurements status for the MedAustron project, IMMW18 T. Zickler *et al.,* Design and Optimization of the MedAustron Synchrotron Main Dipoles, IPAC11

Traditional (complementary) approach

Hybrid approach: data-driven Digital Twins

- Combine optimally the strong points of computer modeling and measurement
- Formalize and automate the comparison of computed and measured quantities
- Example: CERN ISOLDE 90° High Resolution Separator

beam pipe Sensors in the fringe field region computation **Parameters** *p* (g, μ_r) **Bayesian priors** (g0 ,σg), (µr0,σµr**)** $\chi^2(p) = \sum$ \boldsymbol{k} $p_k - p_{k0}$ ² σ_k^2 $\frac{1}{2}$ + $\left\langle \frac{1}{2} \right\rangle$ j $B_j^\text{comp}(\boldsymbol{p}) - B_j^\text{meas}\Big)^2$ σ_B^2 … and we want the field here … … but we can only measure *B^j* there ! **Measurement uncertainty** σ_{B} measurement Minimization w.r.t. *p* $J=$ ∂B_j $\partial \bm{p}$ comp , $H =$ $\partial^2 B_j$ ∂p^2 comp Indications for experiment design We don't know well these … p_{k0} $\sigma_{\!}$ *p^k*

Melvin Liebsch this CAS

When to measure

Design phase: test material samples for permeability, coercivity etc...; test prototypes or models (scaled down versions) to validate computer simulations and specific design choices (e.g. chamfers, shims, details …)

> **Series acceptance tests**: monitor production quality, tooling wear … trap errors as early as possible to steer manufacturing. Build up statistics to reduce tests and minimize total cost. Get all data required for fiducialization (installation) and beam optics. NB: internal acceptance criteria might be flexible, but contractual acceptance is binary

Prototypes/pre-series: test field quality to verify the respect of mechanical tolerances (inverse problem), give feedback to designer and manufacturing firms. Carry out a fully detailed magnetic characterization (often no time to do so during series tests)

throughout lifetime: characterize magnets after repairs, or to allow use in different ways than originally intended

different trade-offs between accuracy and resources at different times

25.11.2023 marco.buzio@cern.ch | Overview of Magnetic Measurements 14/36

From field quality to mechanical issues: LHC dipoles

- **Electrical QA**: fault detection of LHC dipoles via harmonic field measurements: 18 shorts, 4 assembly faults, 14 nonconform components detected
- **Inter-turn short circuits**: harmonics due to all possible cases pre-computed and matched to measurements

Fig. 6. Measurement of multipole b2 along the magnet axis with alarm limits at 4σ and 8σ (dashed lines) in the straight part.

Insulation thickness QA

anomaly identification threshold set at $\frac{|b_n-\langle b_n|}{\sigma(h_n)}$ $\sigma(b_n$ ≥ 4 \rightarrow one false alarm expected in a population of 1232

Measurement goals

What to measure

What do we want to measure

Beam-line magnets

- Integrated field/gradient (all that matters for the beam in 1st approx.)
- Average magnetic axis i.e. locus where $B = 0$ (NB: for lenses n≥2, there are (n-1) solutions!. Can be defined for dipoles e.g. $B_{10}=0$ in LHC)
- Average field direction (= phase of main harmonic) errors couple betatron oscillations in the horizontal and vertical planes
- Field quality i.e. harmonics *or* field/gradient uniformity

All of the above = $f(l)$ for non-linear control, local = $f(z)$ for manufacturing quality, high-order beam dynamics Harmonic expansion: full information in 2D case only (integral/central field)

Experimental magnets

- 3D vector field maps needed by tracking codes for experimental magnets, spectrometers and certain beam line magnets (short, strongly bent, large β swings)
- "universal" but costly representation

25.11.2023 marco.buzio@cern.ch | Overview of Magnetic Measurements 17/36

Which harmonics to measure

- **Typical needs** for the beam: C1 (orbit), C2 (focusing, betatron tuning and coupling), C3 (chromaticity correction); C3~C6 (in LHC) for lattice correction; B4 for Landau damping; B3/B4 for excitation of instabilities e.g. extraction
- **Higher orders** may be needed to compute correctly field or gradient uniformity if the quality is bad
- Where do we stop ?: Cauchy estimate for holomorphic functions helps: $|C_n|$ < const.·r_{ref}⁻ⁿ

FEM/BEM processing of boundary data

- Back to Maxwell: Unique solution of Laplace equation in a source-free domain + Neumann (normal field) or Dirichlet (tangential) boundary conditions (if: simply connected domain, smooth boundary)
- **Reduce problem dimensionality**: scan only the boundary, fit a BEM model to get interior values at arbitrary resolution (no volume mesh required !)

• Back to Maxwell: Maximum Principle: extremal values always on the boundary → metrological advantage of interpolating the interior

2D example, cylindrical symmetry: Measurement uncertainty at $|z|=r_0$

$$
B_n = C_n \left(\frac{z}{r_0}\right)^{n-1} \Rightarrow
$$

$$
\Rightarrow \qquad \sigma(B_n(z)) = \sigma_B\left(\frac{z}{r_0}\right)
$$

• R&D challenges: automated meshing and setup of BEM model; hybrid boundary conditions (e.g. integrals from flux measurements); incorporate arbitrarily scattered/multiple/interior points

 $n-1$

Measurement methods

How to measure

Magnetic field sensing principles

Electromotive force (Faraday's induction law)

Ponderomotive forces on currents (Lorentz force)

25.11.2023 marco.buzio@cern.ch | Overview of Magnetic Measurements 21/36

Induction sensors

$$
-V_c = \frac{\partial \Phi}{\partial t} = N_t \frac{d}{dt} \iint_{\mathcal{A}} \mathbf{B} \cdot \mathbf{n} dA =
$$

$$
N_t \iint_{\mathcal{A}} \frac{\partial \mathbf{B}}{\partial t} \cdot \mathbf{n} dA + N_t \oint_{\partial \mathcal{A}} \mathbf{v} \times \mathbf{B} d\ell =
$$

 ∂B ∂t $A_c B$ $\partial \theta$ ∂t A_{c} ∂B ∂x ∂x ∂t $l_w B \frac{dV}{dt}$ (∂x ∂t

Fixed coil in a time-changing field (fluxgate, AC stretched wire)

Coil rotating in a DC field

Coil translating in a DC field with a gradient

lassical DC stretched wire)
 [−] $\frac{1}{1}$ $\left\{\begin{matrix} \text{C} & \text{$ $\overline{\mathsf{M}}$ **B ⁿ** Wire translating in a DC field (classical DC stretched wire)

Assume: infinitely thin, geometrically coincident windings

Induction coils

Lucio Fiscarelli this CAS

- Workhorse of CERN instrumentation park; **most accurate and cost-effective method** ideal for integral field; coil "bucking" → immunity from mechanical imperfections; harmonic expansion contains all results of interest
- Sensitive to the **flux;** the field must be derived
- Inherently *linear* (but: finite acquisition Z_{in} , frequency response)
- Fixed-coil S/N improve with dΦ/dt; bandwidth of rotating coil is limited by mechanics
- **Voltage integration** → noise reduced proportionally to frequency; integrator drift is major issue Direct post-processing of the voltage also possible, relies on accurate speed control and measurement
- Length, width, number of turns, rotation radius … must be **adapted to the magnet.** Difficult for bent dipoles. no off-the-shelf solutions; industrial PCB designs possible; optimization requires in-house winding and high-quality electromechanical components

Lorentz force-based sensors

Resistors

Concentrators

- Point-like probes directly sensitive to a **single field component** (with higher order correction terms)
- Mechanical/galvanomagnetic phenomena → stronger non-linearity → **repeated calibration**

Stretched-wire and Hall probe systems

Stretched-wire systems

- adapt to any (straight) gap size and length
- inductive (DC/AC/pulsed-mode magnet, translating/rotating wire) and ponderomotive implementations (AC vibrating wire)
- longitudinal center + pitch and yaw (counter-directional wire movements)
- sub-µm axis localization (vibrating mode at resonance)
- reference for integrated field strength, axis and direction in high-field magnets (1-turn, variable-geometry coil)

Credit: Carlo Petrone

rotating wire in elliptical gap

Hall probe systems

- Commercially available
- ≤ 1 mm \rightarrow high-resolution field maps
- kHz bandwidth possible with appropriate design
- non-linear sensitivity to in- and out-of-plane *B*
- offset and sensitivity drift with $T \rightarrow f$ requent recalibration/thermal compensation/stabilization

25.11.2023 marco.buzio@cern.ch | Overview of Magnetic Measurements 25/36

Magnetic resonance sensors

- Resonant absorption/re-emission of RF waves in a sample within a <u>uniform field</u> (field gradient spreads the resonance, impact depends on sample size and shape)
- Transducer sensitive to **||***B***||**
- Proton γ depends on fundamental constants \rightarrow **metrological standard** (impact of temperature, shape, orientation and chemical nature of the sample: < 10⁻⁶ for NMR, 10⁻⁴~10⁻³ for EPR)

∼

10 T

25.11.2023 marco.buzio@cern.ch | Overview of Magnetic Measurements 26/36

Method selection criteria

"hard" criteria

"soft" criteria

1) Compatibility with field level/gradients (could not work at all!)

2) Transverse size (it must fit, and should reach as wide as possible)

- local ripple close to the pole may degrade the accuracy of harmonics
- extrapolation further from the axis can be applied, at a cost

3) Bandwidth

- sensitivity will drop above cutoff frequency
- additional errors e.g. from inductive cable loops

4) Longitudinal size

- the integral can be computed by scanning longitudinally (time-consuming)
- de-convolution of longitudinal scans done with a longer probe → low-pass filter, noise

5) Accuracy

- uncertainty can be reduced by repetition, changing orientation, cross-checks ...

6) Result format: harmonics vs. map (1D/2D/3D)

- can be translated into one another, with caveats

7) Practical considerations:

cost, measurement time, output signal level, cabling length, commensurate size of sensors and magnet, availability of trained personnel …

Measurement accuracy

The **standard uncertainty** of an instrument is a function of the **operating conditions** (field range/frequency, gradient, temperature …)

Further improvement possible, based on the **time and effort** taken

- <u>Repeat</u> to get rid of random errors: $\sigma(\langle x \rangle) = \frac{\sigma(x)}{n^2}$ \overline{n} diminishing returns for large *n*
- Oversample

time domain: MHz sample rate even for sub-kHz bandwidth \rightarrow much improved voltage integration drift correction: angular domain: oversample the flux when rotating a coil to reduce aliasing error in FFT

- Flip and repeat to estimate and subtract systematic errors either the magnet or the instrument, as is more practical
- Reverse polarity to recover ambient or intrinsic offsets e.g. remanent field
- Redundant takes will always give you confidence !

25.11.2023 marco.buzio@cern.ch | Overview of Magnetic Measurements 28/36

Metrological aspects

Units, standards and calibration

Measurement terminology

calibration = finding the transfer function of an instrument by comparison with another, of known accuracy

Accurate & Inaccurate & Inaccurate & Imprecise Precise Precise Imprecise

- **precision:** measure of dispersion
- **accuracy:** closeness of agreement between measure (average) and true value
- **resolution:** smallest detectable change
- estimated standard deviation σ measure of dispersion ("*noise*") obtained from a finite sample : $2=\frac{1}{n}$ $\frac{1}{n}\sum_{i}(x-\bar{x})^2$ NB: normally distributed sources of dispersion add quadratically
- **standard measurement uncertainty** *u* dispersion of an averaged measurement $u(\bar{x}) = \pm \frac{\sigma}{\sqrt{n}}$ \overline{n}

Reference: ISO GUM (*Guide to the Expression of Uncertainty in Measurement)*

Measurement reference standards

Measurement standard: artifact, device or process that embodies the definition of a physical measurement unit

- **primary standard**: lowest-uncertainty, at the top of the reference chain, said to *realize* a unit
- **secondary standard**: calibrated w.r.t. a primary, said to *represent* a unit; easier dissemination, higher uncertainty
- **working standard**: certified standard on user's premises, traceable to a primary standard

Fun fact: international standards and procedures are defined by consensus (democratic process !)

Calibration chain traceability

- unbroken chain of comparisons, each with a stated uncertainty, from a measurement to a primary standard
- Fundamental concept to certify (also legally) a measurement
- based on formal "good practices": maintaining systematic records, databases, documented procedures …

Magnetic reference standards

Realization of the Tesla

1. calculable source (iron-free solenoid, Helmholtz coils …) severe limits to accuracy and field level (winding geometry, Lorentz forces, heating)

Realization of the Weber

1. realize the Tesla over a known area

- 2. realize the **Volt·second** standard lab equipment
- 3. realize a multiple of the flux quantum *Φ***0=***h***/2***e* severe limits to field level

direction, axis…)

2. any other sufficiently uniform and stable source, measured with a **reference NMR sample** e.g. sphere of pure H₂0 at 25°C + γ_{p} from CODATA

BIPM, SI Brochure, *Mise en pratique* for the definition of the ampere and other electric units in the SI, 2019

- partial embodiment of unit's definition - no standard for other quantities of

interest (field components,

Calibration methods – point-like probes

- General method: compare to reference measurement at multiple field levels over the full range
- Many different schemes possible:

Sequential

- Measure at same position, multiple field levels
- Positioning accuracy, field reproducibility
- Relaxed field uniformity

Synchronous

- Measure test and reference probes next to each other at multiple field levels
- Field uniformity and stability
- Relaxed position accuracy

In-situ

- Measure sequentially a field map (1D ,2D or 3D) covering the whole B range
- Match via least-squares
- Positioning accuracy, field reproducibility

Calibration chain for a Stretched Wire system Comparative calibration

- No metrological reference for integral/average field
- Use NMR where ∇B sufficiently low
- Complement with additional probe (coil, Hall)

Ab-initio **calibration**

- Uncertainty propagation thru subsystems
- SSW takes on functional reference role

Conclusions

- **Magnetic measurements** are an essential part of the magnet qualification process, complementing computer simulations and beam-based measurements
- No single instrument or technique can cover all requirements
- Multiple instruments are complementary; overlap provides estimation of absolute uncertainty
- Very little available commercially be prepared for R&D
- Precise mechanics, quality materials and sturdy benches are the foundation of good instruments
- Stability comes from **mass**: **ponderal**, **thermal** and **electrical**
- Many trade offs: bandwidth for sensitivity, time for accuracy, time for spatial resolution ...
- Different strategies to reduce **errors**:
	- optimize critical parameters at design time e.g. rotating coil radius
	- repeat to average away random errors
	- compare instruments and exploit symmetries to calibrate systematic errors

"Before I came here, I was confused on this topic. Having heard this talk I am still confused, but on a higher level."

Enrico Fermi (1951)

Thank you for your attention

25.11.2023 marco.buzio@cern.ch | Overview of Magnetic Measurements 36/36

Additional slides

Typical transversal vs. longitudinal size

Typical accuracy vs. field range

CGS (Gaussian) unit system

- based on the concept of <u>magnetic poles</u>, still used in certain domains (e.g. geomagnetism)
- identical numerical values for *B* and *H* in air
- assume unit dimensionless μ_0 and ε_0 and include 4π factors to simplify calculations (convenient before computers)
- SI based on the concept of current sources, prevalent in the literature after 1980s
- CGS and SI units may have different dimensions and can't always be considered as multiples of each other

Quantum Metrological Triangle

- Super- and semi-conducting cryogenic devices \rightarrow quantum standard *realization* of *V*, *I* and *R* (\sim 1970s)
- Metrological triangle + high precision frequency measurement → experimental verification of the consistency of e *K^J* and *R^K*

Redefinition of SI base units (20.05.2018)

25.11.2023 marco.buzio@cern.ch | Overview of Magnetic Measurements 43/36

Fiducialization methods

Calibration of systematic geometric errors for magnetic axis

Horizontal magnetic axis – mechanical reference

Horizontal magnetic axis– optical reference

Horizontal & vertical axis – mechanical references

Turn magnet by 180° around longitudinal axis repeat magnetic measurement

Fiducialization methods

Calibration of systematic geometric errors for point-like probe assemblies

1) Turnaround in a linear gradient, B || sensing axis

- For Hall probe: field normal to Hall sensor, alignment error $\varepsilon \rightarrow$ negligible 1-cos ε readout error
- For NMR: insensitive to direction
- Two measurements at 180° (arbitrary offset Δx) provide the distance sensor-fiducial

$$
\begin{cases}\nB_1^{\text{meas}} = \cos \varepsilon B_1 \approx (1 - \frac{\varepsilon^2}{2})B_1 \\
B_2^{\text{meas}} = \cos \varepsilon B_2 \approx (1 - \frac{\varepsilon^2}{2})B_2\n\end{cases} \Rightarrow
$$

• An additional measurement at 180° provides also G

$$
\begin{cases}\n\Delta x = \frac{(B_2 - B_1)}{G} \approx \frac{B_2^{\text{meas}} - B_1^{\text{meas}}}{G} \\
x_2 - x_1 = \Delta x + 2d\n\end{cases} \Rightarrow d = \frac{x_2 - x_1}{2} + \frac{B_2^{\text{meas}} - B_1^{\text{meas}}}{2G}
$$

$$
d = \frac{x_1(B_3 - B_2) - x_2(B_3 - B_1) + x_3(B_2 - B_1)}{2(B_2 - B_3)}, \qquad G = \frac{B_2 - B_3}{x_2 - x_3}
$$

2) Turnaround in a linear gradient, B ⊥ **sensing axis**

-
- For NMR: n.a.
- Three measurements at 180° (around y/z)

$$
\begin{cases}\nB_1^{\text{meas}} = -\sin \varepsilon B_1 \approx -\varepsilon B_1 \\
B_2^{\text{meas}} = -\sin \varepsilon B_2 \approx -\varepsilon B_2 \\
B_3^{\text{meas}} = +\sin \varepsilon B_3 \approx +\varepsilon B_3\n\end{cases}
$$

$$
\begin{cases}\n\Delta x_{12} = \frac{B_2 - B_1}{G}, & x_2 - x_1 = \Delta x_{12} + 2h \\
\Delta x_{23} = \frac{B_3 - B_2}{G}, & x_3 - x_2 = \Delta x_{23}\n\end{cases}
$$

25.11.2023 marco.buzio@cern.ch | Overview of Magnetic Measurements 50/36

3) Rotation in a linear gradient

Rotate the sensor assembly in a known 2D quadrupole field:

$$
\begin{cases}\nB_x = Gy \\
B_y = Gx\n\end{cases}\n\implies\n\begin{cases}\nB_\rho = G\rho \sin 2\vartheta \\
B_\tau = G\rho \cos 2\vartheta\n\end{cases}
$$

Ideal case: rotation axis \equiv magnetic axis

$$
F_1: \begin{cases} x_1 = \rho_1 \cos(\vartheta + \vartheta_1) \\ y_1 = \rho_1 \sin(\vartheta + \vartheta_1) \end{cases}
$$

$$
F_2: \begin{cases} x_2 = \rho_2 \cos(\vartheta + \vartheta_2) \\ y_2 = \rho_2 \sin(\vartheta + \vartheta_2) \end{cases}
$$

$$
P: \begin{cases} x_p = \rho_p \cos(\vartheta + \vartheta_p) \\ y_p = \rho_p \sin(\vartheta + \vartheta_p) \end{cases}
$$

 $\hat{\mathbf{n}} = \cos \eta \, \hat{\boldsymbol{\rho}} + \sin \eta \, \hat{\boldsymbol{\tau}}$

Fiducial coordinates measured during rotation → FFT 1^{st} harmonic amplitudes ρ_1 , ρ_2 and phases \mathscr{S}_1 , \mathscr{S}_2

Position of the sensor (unknown)

Hall probe sensing direction (rotating unit vector)

 $B_{\text{Hall}}(\vartheta) = \boldsymbol{B} \cdot \hat{\boldsymbol{n}} = G \rho_{\text{P}} \sin(2\vartheta + \eta)$ Measured field

FFT (B_{meas}(9)) \rightarrow 2nd harmonic: amplitude $\rho_{\rm P}$ and phase η

Sensing direction w.r.t. line $\mathbf{F_1} \cdot \mathbf{F_2}$: $\alpha = \eta + \vartheta_P - \vartheta_1 - \beta$, $\beta = \sin^{-1} \frac{\rho_2 \sin(\vartheta_2 - \vartheta_1)}{\sqrt{\rho_2 \rho_2^2 + \rho_1^2}}$ $\rho_1^2 + \rho_2^2 - 2\rho_1 \rho_2 \cos(\vartheta_2 - \vartheta_1)$ Sensor position **P-F**₁: $\begin{cases} \parallel \mathbf{F}_1 - \mathbf{F}_2 = \rho_1 \sin \beta - \rho_P \sin(\vartheta_P - \vartheta_1 + \beta_2) \\ \parallel \mathbf{F}_1 - \mathbf{F}_2 = \rho_1 \cos \beta - \rho_P \cos(\vartheta_P - \vartheta_1 + \beta_2) \end{cases}$ \perp **F**₁−**F**₂ = ρ ₁ cos β − ρ _P cos(θ_P − θ₁ + β

Non-ideal case: rotation axis (x_0, y_0) \boxtimes magnetic axis

DC component of $F_{1,2}$ and 1st harmonic of $B_{meas}(9)$ encode (x_0, y_0)

$$
B(\vartheta) = G\rho_{\rm P} \sqrt{1 + \frac{\rho_0^2}{\rho_P^2} + 2\frac{\rho_0}{\rho_P} \cos(\vartheta + \vartheta_{\rm P} + \tan^{-1}\frac{y_0}{x_0})}
$$

4) Turnaround in a non-linear gradient

5) Best-fit to known field map

 $R = \{X, Y, Z\}$ (Lab) reference (attached to field map)

 $r = \{x, y, z\}$ (Local) housing reference (attached to fiducials F_i)

 $R = C + [\Phi] r$ Reference transformation

 $d = d_0 + \Delta d$

Probe position in local reference: nominal + (small) unknown component

Measure the field at multiple positions/orientation of the housing: *j***=1..***M*

 $P_i = C_i + [\Phi]_i d$

Probe position in Lab reference (jth measurement)

 $B_j^{\text{meas}} = B_H(\boldsymbol{P}_j) = \boldsymbol{f}(\boldsymbol{P}_j) \cdot \widehat{\boldsymbol{N}}_j$ $\mathcal{E}(\boldsymbol{\delta}) =$ $\boldsymbol{\delta}$ σ_d 2 $+$ > $j=1$ $\sum_{i=1}^{M}\Big(B_j-\pmb{f}\Big(\pmb{\mathcal{C}}_j+\textcolor{black}{[\Phi]}_j(\pmb{d}_0+\pmb{\delta})\Big)\cdot\textcolor{black}{[\Phi]}_j\textcolor{black}{[\varepsilon]\widehat{\pmb{n}}}$ σ_j 2 $\widehat{\boldsymbol{n}} = [\varepsilon] \widehat{\boldsymbol{n}}_0 =$ 1 $-\varepsilon_x$ $-\varepsilon_y$ ε_x 1 0 $\varepsilon_{\rm y}$ 0 1 $\widehat{\bm{n}}_{\bm{0}}$ Unit vector normal to Hall probe (sensing axis) in local reference nominal + two (small) unknown rotations Hall probe Sensing axis in Lab reference Measured field / mapped field $\Delta d = \arg \min \varepsilon(\delta)$ NMR probe $\mathcal{E}(\boldsymbol{\delta}) =$ $\boldsymbol{\delta}$ σ_d 2 $+$ > $j=1$ $\sum_{j=1}^{M} \int B_j - \left\| \boldsymbol{f} \left(\boldsymbol{\mathcal{C}}_j + [\boldsymbol{\Phi}]_j (\boldsymbol{d}_0 + \boldsymbol{\delta}) \right) \right\|$ σ_j 2

> 3D field asymmetry \rightarrow NMR direction-insensitivity is not relevant B(x) is known \rightarrow **best fit can also recover probe calibration** k=B/V_{Hall}

