

SUPERCONDUCTING MAGNETS EXERCISES

Ezio Todesco, S. Izquierdo Bermudez, A. Milanese CERN TE Department

S. Farinon, INFN Genova

F. Toral, CIEMAT Madrid

CERN Accelerator School, Normal and Superconducting Magnets – St. Pölten, Austria, November 2023

PLAN

- This is a 6 hour module, spilt in two days (3+), and repeated four times
 - Each time it is given to about 25 participants
- The six-hour module is structured as follows
 - Day 1:
 - 30 minutes: recap of the main equations, plus exercise description
 - 2 h: exercise on analytical tools
 - 30 minutes correction and discussion
 - Day 2:
 - 30 minutes: tutorials about how using a finite element model, plus exercise description
 - 2 h: exercise on finite element tools
 - 30 minutes corrections and discussion

CONTENTS

• Day 1

- Recap of the theory
- Exercise
- (solutions in a separate word file)

• Day 2

- The FEMM code
- Exercise

Units

- All the equations are given in the international system
 - Once you gain experience, you can use mixed variables but we suggest to start with homogeneous variables
- Length: m
 - For the dimension of magnet cross-sections, practical units are mm
 - In some codes for physics (Fluka, ...) practical units are cm
- Mass: kg
- Field B: T
 - 1 tesla = 10 000 gauss; remember magnetic field on earth surface is 0.5 gauss
- Current density: A/m²
 - Practical units are A/mm² = 10^6 A/m²
- Pressure: Pa
 - Practical units are MPa = 10⁶ Pa

Constants

- We discuss magnets to achieve fields up to 2 T (resistive) or 10 T and beyond
 - Highest field in a accelerator dipole: order of 15 T
 - Highest field achieved in a solenoid in a static way: order of 50 T
 - Highest field in explosive devices: order of 100 T
- In the international system, the permeability of vacuum is μ_0 = $4\pi 10^{-7}$ T m /A, i.e. about 10^{-6} T m /A
 - This means that 1 A in a coil of 1 cm radius make in the centre a field of 0.5×10^{-4} T , that is close to the Earth magnetic field
 - Never forget that μ_0 is small: you need millions of ampere to make some teslas

$$B = \frac{\mu_0 I}{2r}$$

Field multipolar expansion

- Reference system is (x,y), that is the transverse plane to the beam trajectory (or to the magnet axis)
- The multipolar expansion of the field is

$$B_{y} + iB_{x}(x,y) = \sum_{n=1}^{\infty} C_{n} \left(\frac{x + iy}{R_{ref}} \right)^{n-1} \qquad C_{n} = B_{n} + iA_{n}$$

- Order n=1 is dipole, n=2 quadrupole, ...
- Where R_{ref} is usually selected as the 2/3 of the aperture radius
- The coefficients of the multipolar expansion C_n are expressed in T
- For a dipole, the normalized coefficients are

$$B_{y} + iB_{x}(x, y) = 10^{-4} B_{1} \sum_{n=1}^{\infty} (b_{n} + ia_{n}) \left(\frac{x + iy}{R_{ref}}\right)^{n-1}$$

• The normalized multipolar coefficients b_n and a_n are adimensional

Magnetic field of a sector coil

 The multipoles of a sector coil with dipole symmetry and overall current density j are

$$C_{n} = -\frac{2\mu_{0}R_{ref}^{n-1}}{\pi n(2-n)} \left(\sin n\alpha_{2} - \sin n\alpha_{1}\right) \left(\rho_{2}^{2-n} - \rho_{1}^{2-n}\right) j \qquad n \neq 2$$

The field is given by

$$B_1 = \left[\frac{2\mu_0}{\pi} \left(\sin \alpha_2 - \sin \alpha_1\right)\right] \left(\rho_2 - \rho_1\right) j$$

Magnetic field of a sector coil

• Main field for a sector of inner radius r (ρ_1 =r), width w (ρ_2 - ρ_1 =w) and angle from 0 to α (α_2 = α), (α_1 = θ)

$$B_1 = \left[\frac{2\mu_0}{\pi} \sin \alpha\right] wj$$

Definition of coil efficiency

$$B_1 = \gamma_c w j$$

• For this case of 60° sector coil

$$\gamma_c = \frac{2\mu_0}{\pi} \sin \alpha = 6.9 \times 10^{-7} \text{ Tm/A}$$

Multipoles of a sector coil

• Multipoles or a sector of inner radius $r(\rho_1=r)$, width $w(\rho_2-\rho_1=w)$ and angle from 0 to $\alpha(\alpha_2=\alpha)$, $(\alpha_1=0)$

$$B_3 = -\frac{2\mu_0 R_{ref}^2}{3\pi} \sin 3\alpha \left(\frac{1}{r+w} - \frac{1}{r}\right) j$$

$$B_5 = -\frac{2\mu_0 R_{ref}^4}{15\pi} \sin 5\alpha \left(\frac{1}{(r+w)^3} - \frac{1}{r^3} \right) j$$

$$B_7 = -\frac{2\mu_0 R_{ref}^6}{35\pi} \sin 7\alpha \left(\frac{1}{(r+w)^5} - \frac{1}{r^5} \right) j$$

Effect of iron

• Field increase due to non saturated iron

$$\Delta_I \equiv \frac{\Delta B_1}{B_1} = \frac{r(r+w)}{r_I^2}$$

$$B_{1} = \gamma_{c} (1 + \Delta_{I}) w j$$

Shielding condition

$$t_{I} = \frac{rB_{1}}{B_{sat}}$$

• $B_{sat} \approx 2 \text{ T}$

Cable filling factor

- v: copper to superconductor ratio
 - v=1 means v/(1+v)=50% of Cu and 1/(1+v)=50% of superconductor
 - v=2 means v/(1+v)=66% of Cu and 1/(1+v)=33% of superconductor
- *d*: strand diameter
- N_s = number of strand per cable
- t_m = mid thickness of bare cable
- t_w = width of bare cable
- t_i = insulation thickness

- Filling factor: fraction of superconductor in the insulated cable
 - (This expression neglects the twist pitch)

$$\kappa = \frac{1}{1 + v} \frac{\pi N_{s} d^{2}}{4} \frac{1}{(t_{m} + 2t_{i})(t_{w} + 2t_{i})}$$

Critical surface linearization

- Example of linearization of the critical surface of low temperature superconductors $j_{sc}(B) = s(b-B)$
- Nb-Ti: s=600 A/(T mm²)=600×10⁶ A/(T m²) and b=12.9 T at 1.9 K and b=9.5 T at 4.5 K
- For Nb₃Sn s=400 A/(T mm²)=400×10⁶ A/(T mm²) and b=19.4 T at 1.9 K and b=17.8 T at 4.5 K

Linearization for Nb-Ti critical surface

Linearization for Nb₃Sn critical surface

12

Short sample conditions

Short sample field

$$B_{ss} = b \frac{ks\gamma_c (1 + \Delta_I)w}{1 + \lambda ks\gamma_c (1 + \Delta_I)w}$$

- γ_{χ} (T m/A) coil efficiency (see slide 8)
- w (m) width of the coil (see slide 8)
- Δ_I (adim) iron contribution (see slide 10)
- κ (adim) fraction of superconductor in the insulated cable (see slide 11)
- s (A/T m), b (T) slope and intercept of critical surface (see slide 12)
- λ ratio peak field in the coil / bore field
- Can be written as
 - with X (adim) defined as

$$X = ks\gamma_c (1 + \Delta_I)w$$

$$B_{ss} = b \frac{X}{1 + \lambda X}$$

Margin on the loadline

Loadline fraction

Loadline margin

$$f = \frac{j_{op}}{j_{ss}} \approx \frac{B_{op}}{B_{ss}}$$

Temperature margin

- Temperature margin: how much you have to heat the superconductor to cross the critical surface with your operational point
 - In Nb-Ti at 1.9 K, about 1 K for each 10% of loadline margin

Enthalpy margin

- Enthalpy margin: how much energy density you need to increase the temperature above the temperature margin
 - Depends on coil property, below the plot for a typical Nb3Sn and Nb-Ti coil

Forces and stress

• Stress due to the accumulation of forces in the midplane for a sector coil of aperture α on the bore radius

$$\sigma_{\theta\theta}(r,0) = (\cos\alpha - 1)Bjr$$

- j: overall current density (A/m²)
- *r*: aperture radius (m)
- σ will be in Pa

• For a 60° sector coil $cos(60^\circ)=1/2$ and

$$\sigma_{\theta\theta}(r,0) = -\frac{1}{2}Bjr$$

Magnetic pressure, stored energy and forces in the heads

Magnetic pressure or energy density of magnetic field

- Note that this is a pressure (N/m^2)
- Indeed, it is also an energy density $(N.m/m^3) = J/m^3$

$$\sigma_B = \frac{B^2}{2\mu_0}$$

- Stored energy in a magnet
 - Can be approximated by
 - B: bore field
 - *r*: aperture radius
 - w: coil width
 - l_m : magnet length

$$U = \int_{V} \frac{\left[B(x, y, z)\right]^{2}}{2\mu_{0}} dx dy dz$$

$$U \approx \frac{B^2}{2\mu_0} \pi (r+w)^2 l_m$$

$$F = \frac{U}{l_m} \approx \frac{B^2}{2\mu_0} \pi (r + w)^2$$

CONTENTS

• Day 1

- Recap of the theory
- Exercise
- (solutions in a separate word file)

Day 1 - exercise 1: electromagnetic design

• We consider a dipole made as a 60° sector coil, with 50 mm aperture (diameter) and 15 mm width cable.

• Exercise 1:

• Compute the overall current density needed to have a 5 T bore field , and compute the field harmonics b_3 , b_5 and b_7 , using 17 mm as reference radius ;

Note: computing the field harmonics is the most complex equation – I suggest you to do it at the end, when you have completed excercise 6

Day 1 – exercise 2: iron

Exercise 2: iron

 Estimate the relative field increase due to the presence of nonsaturated iron assuming 25 mm thick collars;

• Keeping the same 5 T field, estimate the reduction of the current density given by the iron contribution;

• Estimate the iron thickness needed to avoid fringe fields outside the

Day 1 – exercise 3: cable filling factor and short sample

- Exercise 3: cable filling factor and short sample
 - Considering a cable with 36 strands of 0.825 mm diameter, copper to superconductor ratio of 1.95, bare cable mid-thickness of 1.480 mm and width of 15.100 mm, and insulation thickness of 0.13 mm, compute the fraction of superconductor in the insulated cable (filling factor)
 - In this case, compute the current density in the superconductor to have 5 T dipole field with iron

Day 1 – exercise 4: short sample conditions and margins

- Exercise 4: short sample conditions and margins
 - Assuming that the conductor is Nb-Ti, and that the peak field/bore field is 1.05, compute the loadline margin at 4.5 K and at 1.9 K, with iron;
 - Assuming an operational temperature of 1.9 K, give an estimate of the temperature margin and the enthalphy margin using the plots given in slides 15 and 16;

Day 1 – exercise 5 and 6: mechanics and protection

• Exercise 5: mechanics

- Compute the accumulation of azimuthal stress in the midplane on the bore, for the case without iron and with iron;
- Compute the magnetic pressure and the forces on the coil heads;

• Exercise 6: protection

- Compute the ratio between magnet stored energy and insulated coil volume; check if this is lower than 0.05 J/mm³;
- Compute the current density in the copper at the beginning of quench; check if this is lower than 1000 A/mm²;

Day 1 – bonus exercise

Bonus exercise

- Compare the volumetric energy density (J/m³) of a 5 T field to the volumetric energy density of gasoline and to the volumetric energy density of a battery for electric car; which field is needed to have the same volumetric energetic density as gasoline?
- Assuming that Nb-Ti cost is 200\$/kg, stainless steel is 10 \$/kg and iron is 3 \$/kg, compute the cost of the raw materials take as density of Nb-Ti 5700 kg/m³

Day 1 – Further development

- Sensitive analysis for the previous case :
 - What is the sextupole for a 61 degrees sector ?
 - What is the increase of the short sample field if the copper fraction is decreased from 1.95 to 1.5?
 - What is the increase of the short sample field if the iron is placed on directly the outer layer of the coil ?

Day 1 – Further development (for the enthusiast)

Double layer case:

- Implement the equation of page 7 in a spreadsheet for the case of a dipole based two layers of width 7.5 mm width each: find the angles of the inner and of the outer layer that allow cancel both b_3 and b_5 ;
- For the same configuration, compute the current density needed to have the bore field of 5 T in the case without iron; compare with the result of tje pervious exercise