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SC magnet design ─ EM part I

Recap of field harmonics

How to make multipoles with current lines
Perfect dipoles

Canted cosq dipoles

Sector dipoles

Block-coils

Perfect quadrupoles

Sector quadrupoles
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Accelerator magnets exhibit a cross-section that 
extends over a length significantly greater than 
their cross-sectional dimensions:

electromagnetic design can effectively be treated as a 2D 
problem

coil heads can be considered as end effects

The main accelerator magnet families are:
Dipoles
to achieve uniform beam bending, dipoles must generate a constant 
magnetic field across the aperture

Quadrupoles
Quadrupoles generate a linear variation (gradient) in the magnetic field 
across the aperture; beam that is radially focused is vertically defocused 
or vice-versa

Sextupoles
Sextupoles generate a quadratic variation (gradient) in the magnetic field 
across the aperture and correct beam chromaticity

ACCELERATOR MAGNETS
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Magnets developed for High Luminosity LHC
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A complex number is an element of a number system that extends the real 
numbers with a specific element denoted i, called the imaginary unit and 
satisfying the equation i2=-1.

A complex number has two components and can be written:
In cartesian form as z=a+ib

In exponential form as z=reiq

Both the notations can be represented in the complex plane:
r=√(a2+b2)

q=atan(b/a)

COMPLEX NUMBERS
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In complex notation:

𝑩 𝒛 =
𝜇0𝐼

2𝜋(𝒛−𝒛𝟎)
, con 𝒛 = 𝑟𝑒𝑖𝜗 e 𝒛𝟎 = 𝜌𝑒𝑖𝜑

This can be easily checked:

𝑩 𝒛 =
𝜇0𝐼

2𝜋(𝑟𝑒𝑖𝜗 − 𝜌𝑒𝑖𝜑)

=
𝜇0𝐼

2𝜋 𝑟 cos 𝜗 − 𝜌 cos𝜑 + 𝑖(𝑟 sin 𝜗 − 𝜌 si𝑛 𝜑)

=
𝜇0𝐼 𝑟 cos 𝜗 − 𝜌 cos𝜑 − 𝑖(𝑟 sin 𝜗 − 𝜌 si𝑛 𝜑)

2𝜋 𝑟2 + 𝜌2 − 2𝑟𝜌 cos(𝜑 − 𝜗)

=
𝜇0𝐼

2𝜋𝑅

𝑟 cos 𝜗 − 𝜌 cos𝜑 − 𝑖(𝑟 sin 𝜗 − 𝜌 si𝑛 𝜑)

𝑅

=
𝜇0𝐼

2𝜋𝑅
sin 𝛾 + 𝑖 cos 𝛾

= 𝐵𝑦 + 𝑖𝐵𝑥

FIELD FROM A CURRENT LINE
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𝑩 𝒛 = 𝐵𝑦 + 𝑖𝐵𝑥 =
𝜇0𝐼

2𝜋(𝒛−𝒛𝟎)
=

𝜇0𝐼

2𝜋(𝑟e𝑖𝜗−𝜌e𝑖𝜑)
= −

𝜇0𝐼

2𝜋𝜌e𝑖𝜑
1

1−
𝑟

𝜌
e𝑖(𝜗−𝜑)

If 𝜖 < 1:
1

1−𝜖
= σ𝑛=1

∞ 𝜖𝑛−1

𝐵𝑦 + 𝑖𝐵𝑥 = −
𝜇0𝐼

2𝜋𝜌
e−𝑖𝜑 σ𝑛=1

∞ 𝑟

𝜌
e𝑖 𝜗−𝜑

𝑛−1
= −

𝜇0𝐼

2𝜋𝜌
σ𝑛=1
∞ e−𝑖𝑛𝜑e𝑖 𝑛−1 𝜗 𝑟

𝜌

𝑛−1

𝐵𝑦 + 𝑖𝐵𝑥 = σ𝑛=1
∞ −

𝜇0𝐼

2𝜋𝜌
e−𝑖𝑛𝜑

𝑅𝑟𝑒𝑓

𝜌

𝑛−1
e𝑖(𝑛−1)𝜗

𝑟

𝑅𝑟𝑒𝑓

𝑛−1

𝐵𝑦 + 𝑖𝐵𝑥 = σ𝑛=1
∞ (𝐵𝑛 + 𝑖𝐴𝑛)(cos 𝑛 − 1 𝜗 + 𝑖 sin 𝑛 − 1 𝜗)

𝑟

𝑅𝑟𝑒𝑓

𝑛−1

FIELD FROM A CURRENT LINE inside the filament (r<r)
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Dimensionless term that includes 
information about the location 

where the field is calculated 𝒛 = 𝑟𝑒𝑖𝜗

Dimensioned term [T] that includes 
information about the location of 

the current line 𝒛𝟎 = 𝜌𝑒𝑖𝜑
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𝐵𝑦 + 𝑖𝐵𝑥 = σ𝑛=1
∞ −

𝜇0𝐼

2𝜋𝜌
e−𝑖𝑛𝜑

𝑅𝑟𝑒𝑓

𝜌

𝑛−1
e𝑖(𝑛−1)𝜗

𝑟

𝑅𝑟𝑒𝑓

𝑛−1

𝐵𝑦 + 𝑖𝐵𝑥 = σ𝑛=1
∞ (𝐵𝑛 + 𝑖𝐴𝑛)(cos 𝑛 − 1 𝜗 + 𝑖 sin 𝑛 − 1 𝜗)

𝑟

𝑅𝑟𝑒𝑓

𝑛−1

With 𝐵𝑛 = −
𝜇0𝐼

2𝜋𝜌

𝑅𝑟𝑒𝑓

𝜌

𝑛−1
cos 𝑛𝜑 and   𝐴𝑛 =

𝜇0𝐼

2𝜋𝜌

𝑅𝑟𝑒𝑓

𝜌

𝑛−1
sin 𝑛𝜑

HARMONICS FROM A CURRENT LINE
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=
𝜇0𝐼

2𝜋𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓

𝜌

𝑛

sin 𝑛𝜑𝐵𝑛 = −
𝜇0𝐼

2𝜋𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓
𝜌

𝑛

cos 𝑛𝜑
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The field harmonics 𝐵𝑛 and 𝐴𝑛 [T] can be rewritten in normalized multipoles 
𝑏𝑛 and 𝑎𝑛[dimensionless] as:

𝐵𝑦 + 𝑖𝐵𝑥 = 10−4𝐵𝑅𝑟𝑒𝑓 ෍

𝑛=1

∞

(𝑏𝑛 + 𝑖𝑎𝑛)(cos 𝑛 − 1 𝜗 + 𝑖 sin 𝑛 − 1 𝜗)
𝑟

𝑅𝑟𝑒𝑓

𝑛−1

bn are the normal components, an are the skew components (dimensionless)

The reference radius is introduced to separate, in the series, the term with information on the 
current line position to the term with information about the location where the field is 
calculated. It has no physical meaning and is usually chosen as 2/3 of the aperture radius.

We factorize 10-4 since the deviations from ideal field in superconducting magnets for particle 
accelerators should be of the order of 1‱ (per ten thousand)

𝐵𝑅𝑟𝑒𝑓 is the amplitude [T] of the fundamental harmonic at the reference radius. For example, in 

dipoles 𝐵𝑅𝑟𝑒𝑓 = 𝐵0, in quadrupoles 𝐵𝑅𝑟𝑒𝑓 = 𝐺 × 𝑅𝑟𝑒𝑓, etc.

FIELD HARMONICS
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Multipoles given by a current line decay with the order:

𝐵𝑛 + 𝑖𝐴𝑛 = −
𝜇0𝐼

2𝜋𝜌
e−𝑖𝑛𝜑

𝑅𝑟𝑒𝑓

𝜌

𝑛−1

𝑏𝑛 + 𝑖𝑎𝑛 = −
𝜇0𝐼

2𝜋𝜌

104

𝐵𝑅𝑟𝑒𝑓
e−𝑖𝑛𝜑

𝑅𝑟𝑒𝑓

𝜌

𝑛−1
= −

𝜇0𝐼

2𝜋𝑅𝑟𝑒𝑓

104

𝐵𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓

𝜌e𝑖𝜑

𝑛
= −

𝜇0𝐼

2𝜋𝑅𝑟𝑒𝑓

104

𝐵𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓

𝒛𝟎

𝑛

ln 𝑏𝑛 + 𝑖𝑎𝑛 = ln
𝜇0 𝐼

2𝜋𝑅𝑟𝑒𝑓

104

𝐵𝑅𝑟𝑒𝑓
+ 𝑛ln

𝑅𝑟𝑒𝑓

𝒛𝟎

In a semi-logarithmic scale, the slope of the 

linear decay is ln
𝑅𝑟𝑒𝑓

𝒛𝟎
This explains why only low order multipoles, 
in general, are relevant

It can help can detecting assembly errors in 
real magnets

FIELD HARMONICS DECAY OF A CURRENT LINE
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𝒛𝟎 = 𝜌𝑒𝑖𝜑 is the location of the current line
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EXAMPLES OF MAGNETS WITH bn0, an=0
(skew harmonics are obtained by rotating the magnets by 𝜋/2𝑛)
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The function 𝑩(𝒛) is expressed through a Fourier series, enabling the utilization of 
corresponding inverse formulae to deduce the harmonic components from the 
field map:

HARMONICS FROM MAGNETIC FIELD

11

𝑎𝑛 =
104𝑛

𝜋𝑅𝑟𝑒𝑓𝐵𝑅𝑟𝑒𝑓
න

0

2𝜋

𝐴𝑧(𝑅𝑟𝑒𝑓, 𝜃) sin 𝑛 𝜃𝑑𝜃

=
104

𝜋𝐵𝑅𝑟𝑒𝑓
න

0

2𝜋

𝐵𝑥(𝑅𝑟𝑒𝑓, 𝜃) cos( 𝑛 − 1)𝜃𝑑𝜃

= −
104

𝜋𝐵𝑅𝑟𝑒𝑓
න

0

2𝜋

𝐵𝑦(𝑅𝑟𝑒𝑓, 𝜃) sin( 𝑛 − 1)𝜃𝑑𝜃

𝑏𝑛 = −
104𝑛

𝜋𝑅𝑟𝑒𝑓𝐵𝑅𝑟𝑒𝑓
න

0

2𝜋

𝐴𝑧(𝑅𝑟𝑒𝑓, 𝜃) cos 𝑛 𝜃𝑑𝜃

=
104

𝜋𝐵𝑅𝑟𝑒𝑓
න

0

2𝜋

𝐵𝑥(𝑅𝑟𝑒𝑓, 𝜃) sin( 𝑛 − 1)𝜃𝑑𝜃

=
104

𝜋𝐵𝑅𝑟𝑒𝑓
න

0

2𝜋

𝐵𝑦(𝑅𝑟𝑒𝑓, 𝜃) cos( 𝑛 − 1)𝜃𝑑𝜃

skew normal
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The beam sees the field along the whole magnet:

Integrated strength [T· m]:     ׬−∞
+∞

𝐵1(𝑧)𝑑𝑧

Main component:     ሜ𝐵1 ≡
straight׬ part 𝐵1(𝑧)𝑑𝑧

straight׬ part 𝑑𝑧

(average over the straight part)

Magnetic length: 𝐿𝑚 ≡
∞−׬
+∞

𝐵1 𝑧 𝑑𝑧

ሜ𝐵1
(length of the magnet as if there were no heads and 
the integrated force was the same as that of the actual magnet)

Average multipoles:     ሜ𝑏𝑛 ≡
∞−׬
+∞

𝐵1 𝑧 𝑏𝑛 𝑧 𝑑𝑧

∞−׬
+∞

𝐵1 𝑧 𝑑𝑧

(weighted average with the main component)

INTEGRATED HARMONICS

12



Stefania Farinon, CAS – November 2023

how to make dipoles with current lines

DIPOLES
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Biot-Savart law for finite conductors:

𝐵 =
𝜇0

4𝜋
׬
𝑉

Ԧ𝑗× Ԧ𝑟

Ԧ𝑟 3 d𝑉

Each wall contributes with:

𝐵𝑦 =
𝜇0

4𝜋
𝑑׬
𝑑+𝑤

∞−׬
∞

∞−׬
∞ 𝑥𝑗

𝑥2+𝑦2+𝑧2 3/2 d𝑥d𝑦d𝑧

=
𝜇0𝑗

4𝜋
𝑑׬
𝑑+𝑤

𝑥d𝑥 ∞−׬
∞

d𝑦 ∞−׬
∞ d𝑧

𝑥2+𝑦2+𝑧2 3/2

=
𝜇0𝑗

4𝜋
𝑑׬
𝑑+𝑤

𝑥d𝑥 ∞−׬
∞

d𝑦
2

𝑥2+𝑦2
=

𝜇0𝑗

2𝜋
𝑑׬
𝑑+𝑤

𝑥d𝑥 ∞−׬
∞ d𝑦

𝑥2+𝑦2

=
𝜇0𝑗

2𝜋
׬
𝑑

𝑑+𝑤
𝑥d𝑥

𝜋

𝑥
=

𝜇0𝑗

2
׬
𝑑

𝑑+𝑤
d𝑥 =

𝜇0𝑗𝑤

2

The total magnetic field is then given by 

𝐵𝑦 = 𝜇0𝑗𝑤 (𝐵𝑥 = 0)

PERFECT DIPOLE 1: wall dipole

14

Ԧ𝑗 × Ԧ𝑟 =
ො𝑥 ො𝑦 Ƹ𝑧
0 0 𝑗
𝑥 𝑦 𝑧

=
−𝑦𝑗
𝑥𝑗
0

mechanical structure and winding look easy

the coil is infinite

truncation gives reasonable field quality only for 
rather large height
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PERFECT DIPOLE 2: intersecting circles (ellipses)

15

A cylinder carrying a uniform current generates 
a magnetic field given by 𝐵 = 𝜇0𝑗𝑟/2
(Ampere’s law at r gives ׯ𝐵𝑑ℓ = 𝜇0𝐼 → 𝐵 × 2𝜋𝑟 = 𝜇0𝑗𝜋𝑟

2)

Combining the effect of the 2 cylinders:

𝐵𝑦 =
𝜇0𝑗

2
−𝑟1 cos 𝜃1 + 𝑟2 cos 𝜃2 = −

𝜇0𝑗𝑤

2

𝐵𝑥 =
𝜇0𝑗

2
+𝑟1 sin 𝜃1 − 𝑟2 sin 𝜃2 = 0

the aperture is not circular

the shape of the coil is not easy to wind with a flat 
cable (ends?)

need of internal mechanical support that reduces 
available aperture
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Let’s consider a current density J=jcosq distributed in a hollow 
cylinder of thickness w and inner radius R

To calculate the resulting magnetic field, we can recall the field 
harmonics of a current line 

𝐵𝑛 𝜌, 𝜃 = −
𝜇0𝐼

2𝜋𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓

𝜌

𝑛

cos 𝑛 𝜃

and integrate over the cross-section
I → 𝐽𝑑𝑆 = 𝑗 cos 𝜃 ⋅ 𝜌𝑑𝜌𝑑𝜃

PERFECT DIPOLE 3: jcosq current density distribution
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Symmetry operation on current line

17

𝐵𝑛 = −
𝜇0𝐼

2𝜋𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓

𝜌

𝑛

cos 𝑛 𝜃 −
𝜇0 −𝐼

2𝜋𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓

𝜌

𝑛

cos 𝑛 (𝜋 − 𝜃)

𝐵𝑛 = −
𝜇0𝐼

2𝜋𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓

𝜌

𝑛

cos 𝑛 𝜃 − cos 𝑛 (𝜋 − 𝜃)

𝐵𝑛 = −
𝜇0𝐼

2𝜋𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓

𝜌

𝑛

cos 𝑛 𝜃 1 − cos 𝑛 𝜋

= ൞−2
𝜇0𝐼

2𝜋𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓

𝜌

𝑛

cos 𝑛 𝜃 if 𝑛 odd

0 if 𝑛 even

𝐵𝑛 = −
𝜇0𝐼

2𝜋𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓

𝜌

𝑛

cos 𝑛 𝜃 −
𝜇0𝐼

2𝜋𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓

𝜌

𝑛

cos 𝑛 −𝜃

= −2
𝜇0𝐼

2𝜋𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓

𝜌

𝑛
cos 𝑛 𝜃

Up-down symmetry

Left-right anti-symmetry
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Let’s consider a current density J=jcosq distributed in a hollow 
cylinder of thickness w and inner radius R

To calculate the resulting magnetic field, we can recall the field 
harmonics of a current line 

𝐵𝑛 𝜌, 𝜃 = −
𝜇0𝐼

2𝜋𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓

𝜌

𝑛

cos 𝑛 𝜃

and integrate over the cross-section
I → 𝐽𝑑𝑆 = 𝑗 cos 𝜃 ⋅ 𝜌𝑑𝜌𝑑𝜃

PERFECT DIPOLE 3: jcosq current density distribution

18

𝐵𝑛 = −4
𝜇0𝑗

2𝜋𝑅𝑟𝑒𝑓
𝑅׬
𝑅+𝑤 𝑅𝑟𝑒𝑓

𝜌

𝑛
𝜌𝑑𝜌0׬

𝜋

2 cos 𝜃 cos 𝑛 𝜃𝑑𝜃, if 𝑛 odd

since 0׬
𝜋/2

cos 𝜃 cos 𝑛 𝜃𝑑𝜃 = ቊ
𝜋/4 se 𝑛 = 1
0 se 𝑛 ≠ 1

, the only surviving term is:

𝐵1 = −4
𝜇0𝑗

2𝜋𝑅𝑟𝑒𝑓
න

𝑅

𝑅+𝑤
𝑅𝑟𝑒𝑓

𝜌
𝜌𝑑𝜌 ⋅

𝜋

4
= −

𝜇0𝑗𝑤

2

self supporting structure
(roman arch)

the aperture is circular, the
coil is compact

winding is manageable
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A current I flowing in an inclined solenoidal winding of equation 

𝑷 𝜗 = ൞

𝑟 cos𝜗
𝑟 sin𝜗
𝑝𝜗

2𝜋
+ 𝐴 sin𝜗

, corresponds to a current density ቐ
𝑗𝑟
𝑗𝜗
𝑗𝑧

=
𝐼

𝑟𝑝
൞

0
𝑟
𝑝

2𝜋
+ 𝐴 cos𝜗

(fully developed math in DOI:10.1109/TASC.2021.3053346)

In a double winding with opposite inclination (+𝐴1/−𝐴2) and opposite current 
(±𝐼), inner radius 𝑟1 and outer radius 𝑟2:

The solenoidal magnetic field cancels out (if the pitch is the same):

𝐵𝑧 = 𝜇0
𝐼

𝑝
+ 𝜇0

−𝐼

𝑝
= 0

The axial components adds up:

𝐵1 = −
𝜇0𝐼

2

𝐴1
𝑟1𝑝

−
𝜇0 −𝐼

2

−𝐴2
𝑟2𝑝

= −
𝜇0𝐼

2𝑝

𝐴1
𝑟1

+
𝐴2
𝑟2

PERFECT DIPOLE 4: canted cosq winding

19

some conductor wasted to 
produce the solenoidal field

easily generalized to quadrupoles 
and higher orders

a former has grooves where the 
conductor (cable or wire) is 
wound

no tooling, no collaring but no 
prestress

R.Meinke
https://accelconf.web.cern.ch/p03/papers/wpae025.pdf
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Sector coils are the practical solution to approximate the cos-theta layout by 
sectors with uniform current density (https://doi.org/10.15161/oar.it/143359)

SECTOR DIPOLE – main field

20

To calculate the resulting magnetic field, we can recall 
the field harmonics of a current line 

𝐵𝑛 𝜌, 𝜃 = −
𝜇0𝐼

2𝜋𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓

𝜌

𝑛

cos 𝑛 𝜃

and integrate over the cross-section
I → 𝑗𝑑𝑆 = 𝑗 ⋅ 𝜌𝑑𝜌𝑑𝜃

𝐵1 = −4
𝜇0𝑗

2𝜋𝑅𝑟𝑒𝑓
𝑅׬
𝑅+𝑤 𝑅𝑟𝑒𝑓

𝜌
𝜌𝑑𝜌0׬

𝛼
cos 𝜃 𝑑𝜃 = −

2𝜇0𝑗𝑤 sin 𝛼

𝜋

𝐵1  current density (obvious)

𝐵1  coil width w (less obvious)

𝐵1 is independent on the aperture r (much less obvious)

https://doi.org/10.15161/oar.it/143359
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SECTOR DIPOLE – higher harmonics

21

𝐵𝑛 = −4
𝜇0𝑗

2𝜋𝑅𝑟𝑒𝑓
𝑅׬
𝑅+𝑤 𝑅𝑟𝑒𝑓

𝜌

𝑛
𝜌𝑑𝜌 0׬

𝛼
cos 𝑛 𝜃𝑑𝜃 if 𝑛 odd

= −
2

𝑛(𝑛−2)

𝜇0𝑗𝑅𝑟𝑒𝑓
𝑛−1

𝜋
sin 𝑛 𝛼

1

𝑅𝑛−2
−

1

(𝑅+𝑤)𝑛−2

Normalizing to the dipole field:

𝑏𝑛 =
1

𝑛(𝑛 − 2)

𝑅𝑟𝑒𝑓
𝑛−1 𝐬𝐢𝐧𝒏𝜶

𝑤 sin 𝛼

1

𝑅𝑛−2 −
1

(𝑅 + 𝑤)𝑛−2
⋅ 104if 𝑛 odd

a B1 (T)
b3

(units)
b5

(units)
b7

(units)
b9

(units)

77.1 -5.9 -914 106 0 -8

60 -5.2 0 -239 61 0

51.4 -4.7 632 -298 0 22

36 -3.5 1844 0 -99 -17

25.7 -2.6 2560 431 0 -31

The only free term that can be made equal 
to zero is sin 𝑛 𝛼, leading to the solution 

α =
𝜋

𝑛
+ 𝑘

𝜋

𝑛
, 0 < 𝛼 <

𝜋

2
, 𝑘>0 integer

→ with one sector only one multiple can 
be made equal to zero

b3=0 if a=60˚

b5=0 if a=36˚, 72˚ 

b7=0 if a=25˚.7, 51˚.4, 77˚.1
R=50 mm, w=15 mm, j=5·108 A/m2
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To calculate the resulting magnetic field, we can recall the field harmonics of a current line  

𝐵𝑛 𝜌, 𝜃 = −
𝜇0𝐼

2𝜋𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓

𝜌

𝑛
cos 𝑛 𝜃 and integrate over the cross-section I → 𝑗𝑑𝑆 = 𝑗 ⋅ 𝜌𝑑𝜌𝑑𝜃

𝐵1 = −4
𝜇0𝑗

2𝜋𝑅𝑟𝑒𝑓
𝑅׬
𝑅+𝑤 𝑅𝑟𝑒𝑓

𝜌
𝜌𝑑𝜌 0׬

𝛼1 cos 𝜃 𝑑𝜃 + 𝛼2׬
𝛼3 cos 𝜃 𝑑𝜃 = −

2𝜇0𝑗𝑤 (sin 𝛼1−sin 𝛼2+sin 𝛼3)

𝜋

2-SECTOR DIPOLE

22

Higher harmonics:

𝑏𝑛 =
104

𝑛(𝑛 − 2)

𝑅𝑟𝑒𝑓
𝑛−1 (𝒔𝒊𝒏𝒏𝜶𝟏 − 𝒔𝒊𝒏𝒏𝜶𝟐 + 𝒔𝒊𝒏𝒏𝜶𝟑)

𝑤 (sin 𝛼1 − sin𝛼2 + sin 𝛼3)

1

𝑅𝑛−2 −
1

(𝑅 + 𝑤)𝑛−2

3 components can be set to zero, as example:

൞

sin 3𝛼1 − sin 3𝛼2 + sin 3 𝛼3 = 0 𝑏3 = 0

sin 5𝛼1 − sin 5𝛼2 + sin 5 𝛼3 = 0 𝑏5 = 0

sin 7𝛼1 − sin 7𝛼2 + sin 7 𝛼3 = 0 𝑏7 = 0
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Intercepting circles 𝐵1 = −
𝜇0𝑗𝑤

2

cosq distribution 𝐵1 = −
𝜇0𝑗𝑤

2

1-sector dipole 𝐵1 = −
2𝜇0𝑗𝑤 sin 𝛼

𝜋

2-sector dipole 𝐵1 = −
2𝜇0𝑗𝑤 (sin 𝛼1−sin 𝛼2+sin 𝛼3)

𝜋

The 60° sector dipole (𝛾𝑐 =
2𝜇0 sin 60

𝜋
= 6.9 ∙ 10−7 Tm/A) can be used to compare other layouts

Example 1: cosq distribution and intercepting circle

𝛾𝑐 = 6.3 ∙ 10−7 Tm/A

Example 2: 2 sector dipole with 𝛼1 = 43. 2∘,
𝛼2 = 52. 2∘, 𝛼3 = 67. 3∘ (b3=b5=b7~0)

𝛾𝑐 = 6.5 ∙ 10−7 Tm/A

Example 3: the SIS300 dipole
j=347 A/mm2

B1=3.35 T (without iron, with iron B1=4.5 T)
w=15 mm 

𝛾𝑐 = 6.4 ∙ 10−7 Tm/A

COMMENTS ON THE DIPOLE FIELD
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𝐵1 = −𝛾𝑐𝑗𝑤

𝛾𝑐 = −
𝐵1
𝑗 𝑤

https://www.lnf.infn.it/sis/preprint/getfilepdf.php?filename=INFN-13-06-GE.pdf
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It is possible to take into account the effect of an iron yoke of linear permeability 𝜇𝑟, inner 
radius 𝑅𝐼 and thickness 𝑡𝐼
The correction to the field harmonics of a current line is given by:

𝐵𝑛(𝜌, 𝜑) = −
𝜇0𝐼

2𝜋𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓

𝜌

𝑛
cos 𝑛 𝜑 1 + 𝒌

𝝆

𝑹𝑰

𝟐𝒏

𝑘 =
𝜇𝑟−1
𝜇𝑟+1

1−
𝑅𝐼

𝑅𝐼+𝑡𝐼

2𝑛

1−
𝜇𝑟−1
𝜇𝑟+1

2
𝑅𝐼

𝑅𝐼+𝑡𝐼

2𝑛
≈ 1 if 𝜇𝑟 >> 1

The derivation of the main physical quantities 
can be found at https://doi.org/10.15161/oar.it/143359

The iron contribution has no additional angular 
dependence, so the contribution is independent on the dipole layout

depending on 𝒌 𝝆/𝑹𝑰
𝟐𝒏 can be relevant only for:           

EFFECT OF THE IRON YOKE
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small coil widths

low order multipoles (main component)

small collar widths
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Main dipole field in presence of the iron yoke:

𝐵1𝐼 = −4
𝜇0

2𝜋𝑅𝑟𝑒𝑓
𝑅׬
𝑅+𝑤 𝑅𝑟𝑒𝑓

𝜌
1 + 𝑘

𝜌

𝑅𝐼

2
𝜌𝑑𝜌׬𝑎𝑛𝑔.𝑒𝑥𝑡. 𝑗 𝜃 cos 𝜃 𝑑𝜃

= 𝐵1 1 +
𝑘

𝑅𝐼
2

(𝑅+𝑤)3−𝑅3

3𝑤
~𝐵1 1 +

𝑅(𝑅+𝑤)

𝑅𝐼
2

Field increase due to non saturated iron:

𝐵1𝐼 = 𝐵1 1 + ∆𝐼 ,            ∆𝐼=
𝑅(𝑅+𝑤)

𝑅𝐼
2

Limit of validity: 

Iron yoke saturation (𝐵sat~2 T)

Shielding condition:    𝑡𝐼 =
𝑅𝐵1

𝐵sat

EFFECT OF THE IRON YOKE
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R=50 mm
w=15 mm
RI=75 mm
tI=25 mm

𝜇𝑟~4000

𝜇𝑟 = 1
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A block layout has vertical cables

Need of internal support, reducing available aperture

Lack of roman arch gives a different distribution of forces

Saddle shape ends – no need of wedges, very simple coil

Can field quality be optimized in a block layout?
without wedges there are 3 free parameters:

the total width of the coil

the height of the blocks (i.e. the cable width)

the indentation of the upper deck

one parameter can be used to increase the coil width, the 
other two to cancel b3 and b5

BLOCK COILS

26

FRESCA II magnet cross section, E.Rochepault and P.Ferracin
https://link.springer.com/chapter/10.1007/978-3-030-16118-7_12
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COMMON COILS

27

The common coil design is based on the superposition of 
“racetrack coils” with simple ends that have a large bend radius 

The bend radius is determined by interbeam distance

The dipole field is generated between the straight parts of the 
racetrack coils

It is an intrinsically double aperture configuration

Design studies performed for 16 T common coil dipole for FCC by F.Toral ,CIEMAT
R.Gupta, https://wpw.bnl.gov/rgupta/wp-content/uploads/sites/9/2023/09/Snowmass-common-coil-white_paper-03-16-2022.pdf

Field quality ca be optimized 
piling up several racetracks with 
different dimensions

Mechanics can be tricky
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To derive other quantities (Lorentz forces, stored energy) we need to determine the magnetic field 
generated by a current line at r>r

𝑩 𝒛 =
𝜇0𝐼

2𝜋(𝒛−𝒛𝟎)
=

𝜇0𝐼

2𝜋(𝑟𝑒𝑖𝜗−𝜌𝑒𝑖𝜑)
=

𝜇0𝐼

2𝜋𝑟𝑒𝑖𝜗
1

1−
𝜌

𝑟
𝑒𝑖(𝜑−𝜗)

If 𝜖 < 1:
1

1−𝜖
= σ𝑛=1

∞ 𝜖𝑛−1 = 1 + σ𝑛=2
∞ 𝜖𝑛−1 = 1 + σ𝑚=1

∞ 𝜖𝑚

𝑩 𝒛 =
𝜇0𝐼

2𝜋𝑟𝑒𝑖𝜗
1 + σ𝑛=1

∞ 𝜌

𝑟
𝑒𝑖(𝜑−𝜗)

𝑛
=

𝜇0𝐼

2𝜋𝒛
1 + σ𝑛=1

∞ 𝑒𝑖𝑛𝜑
𝜌

𝒛

𝑛

To be noted that

lim
𝑧→∞

𝑩 𝒛 =
𝜇0𝐼

2𝜋𝒛
as expected from a current-carrying wire

FIELD FROM A CURRENT LINE outside the filament (r>r)

28
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Complete derivation for cosq and sector coils with and without iron yoke in 
https://doi.org/10.15161/oar.it/143359

The Lorentz force density is given by Ԧ𝑓𝐿 = Ԧ𝑗 × 𝐵. 

𝒋𝟎cosq. If the current density is Ԧ𝑗 = (0,0, 𝑗0 cos 𝜃) and the magnetic field is 𝐵 = 𝐵𝑟 , 𝐵𝜃 , 0

𝑓𝑟(𝑟, 𝜃) = −𝑗0 cos 𝜃 𝐵𝜃 = −
𝜇0𝑗0

2

2
cos2𝜃

𝑟3−𝑅3

3𝑟2
− (𝑅 + 𝑤 − 𝑟)

𝑓𝜃 𝑟, 𝜃 = +𝑗0 cos 𝜃 𝐵𝑟 = −
𝜇0𝑗0

2

2
cos 𝜃 sin 𝜃

𝑟3−𝑅3

3𝑟2
+ (𝑅 + 𝑤 − 𝑟)

𝑓𝑧 𝑟, 𝜃 = 0

Sector dipole. If the current density is Ԧ𝑗 = (0,0, 𝑗0) when 0<q<a1 and the magnetic field is 𝐵 =
𝐵𝑟 , 𝐵𝜃 , 0

𝑓𝑟 𝑟, 𝜃 = −𝑗0𝐵𝜃 = −σ𝑛 𝑜𝑑𝑑
2𝜇0𝑗0

2

𝑛𝜋
cos 𝑛𝜃 sin 𝑛a1

𝑟2+𝑛−𝑅2+𝑛

2+𝑛 𝑟1+𝑛
− 𝑟𝑛−1

𝑅+𝑤 2−𝑛−𝑟2−𝑛

2−𝑛

𝑓𝜃 𝑟, 𝜃 = +𝑗0𝐵𝑟 = −σ𝑛 𝑜𝑑𝑑
2𝜇0𝑗0

2

𝑛𝜋
sin 𝑛𝜃 sin 𝑛a1

𝑟2+𝑛−𝑅2+𝑛

2+𝑛 𝑟1+𝑛
+ 𝑟𝑛−1

𝑅+𝑤 2−𝑛−𝑟2−𝑛

2−𝑛

𝑓𝑧 𝑟, 𝜃 = 0

OTHER QUANTITIES THAT CAN BE CALCULATED:
Lorentz forces

29

https://doi.org/10.15161/oar.it/143359
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Complete derivation for cosq and sector coils with and without iron yoke in 
https://doi.org/10.15161/oar.it/143359

The easiest way to derive the stored energy is to calculate 
𝐸

ℓ
=

1

2
conductors׬

Ԧ𝐴 ∙ Ԧ𝑗 d𝑆

𝒋𝟎cosq. If the current density is Ԧ𝑗 = (0,0, 𝑗0 cos 𝜃) and Ԧ𝐴 = 0, 0, 𝐴𝑧 inside the conductors

𝐴𝑧(𝑟, 𝜃) =
𝜇0𝑗0

2
cos 𝜃 𝑟 𝑅 + 𝑤 − 𝑟 + 𝑟3 − 𝑅3

𝐸

ℓ
=

1

2
0׬
2𝜋
d𝜃 𝑅׬

𝑅+𝑤
𝐴𝑧𝑟d𝑟 =

𝜋𝜇0𝑗0
2

24
(𝑅 + 𝑤)4+3𝑅4 − 4𝑅3(𝑅 + 𝑤)

Sector dipole. If the current density is Ԧ𝑗 = (0,0, 𝑗0) when 0<q<a1 and Ԧ𝐴 = 0, 0, 𝐴𝑧 inside the 
conductors

𝐴𝑧(𝑟, 𝜃) = σ𝑛 𝑜𝑑𝑑
2𝜇0𝑗0

𝑛2𝜋
cos 𝑛𝜃 sin 𝑛a1

𝑟2+𝑛−𝑅2+𝑛

2+𝑛 𝑟𝑛
+ 𝑟𝑛

𝑅+𝑤 2−𝑛−𝑟2−𝑛

2−𝑛

𝐸

ℓ
=

1

2
0׬

a1 d𝜃 𝑅׬
𝑅+𝑤

𝐴𝑧𝑟d𝑟 = σ𝑛 𝑜𝑑𝑑
4𝜇0𝑗0

2

𝑛3𝜋
sin2𝑛a1

2−𝑛 𝑅+𝑤 4+ 2+𝑛 𝑅4−4𝑅2+𝑛 𝑅+𝑤 2−𝑛

2(4−𝑛2)

ቚ
𝐸

ℓ first order
=

2

3

𝜇0𝑗0
2sin2𝑛a1
𝜋

𝑅 + 𝑤 4 + 3𝑅4 − 4𝑅3 𝑅 + 𝑤 =
𝜋𝐵1

2𝑅2

𝜇0
1 +

2

3

𝑅+𝑤

𝑅
− 1 +

1

6

𝑅+𝑤

𝑅
− 1

2

OTHER QUANTITIES THAT CAN BE CALCULATED:
stored energy

30

https://doi.org/10.15161/oar.it/143359
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how to make quadrupoles with current lines

QUADRUPOLES

31
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Let’s consider a current density J=jcos2q distributed in a hollow 
cylinder of thickness w and inner radius R

To calculate the resulting magnetic field, we can recall the field 
harmonics of a current line 

𝐵𝑛 𝜌, 𝜃 = −
𝜇0𝐼

2𝜋𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓

𝜌

𝑛

cos 𝑛 𝜃

and integrate over the cross-section
I → 𝐽𝑑𝑆 = 𝑗 cos 2𝜃 ⋅ 𝜌𝑑𝜌𝑑𝜃

PERFECT QUADRUPOLE: jcos2q current density distribution

32
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Symmetry operation on current line

33

𝐵𝑛 = −
𝜇0𝐼

2𝜋𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓

𝜌

𝑛

cos 𝑛 𝜃 −
𝜇0𝐼

2𝜋𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓

𝜌

𝑛

cos 𝑛 (𝜋 − 𝜃)

𝐵𝑛 = −
𝜇0𝐼

2𝜋𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓

𝜌

𝑛

cos 𝑛 𝜃 1 + cos𝑛 𝜋

= ൞−2
𝜇0𝐼

2𝜋𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓

𝜌

𝑛

cos 𝑛 𝜃 if 𝒏 even

0 if 𝑛 odd

45° anti-symmetry

Left-right symmetry

𝐵𝑛 = −
𝜇0𝐼

2𝜋𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓

𝜌

𝑛

cos 𝑛 𝜃 −
𝜇0 −𝐼

2𝜋𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓

𝜌

𝑛

cos 𝑛 (
𝜋

2
− 𝜃)

𝐵𝑛 = −
𝜇0𝐼

2𝜋𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓

𝜌

𝑛

cos 𝑛 𝜃 − cos 𝑛 (
𝜋

2
− 𝜃)

𝐵𝑛 = −
𝜇0𝐼

2𝜋𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓

𝜌

𝑛

cos 𝑛 𝜃 1 − cos
𝑛𝜋

2

=
−2

𝜇0𝐼

2𝜋𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓

𝜌

𝑛

cos 𝑛 𝜃 if
𝒏

𝟐
𝐨𝐝𝐝

0 if
𝑛

2
even

n even
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Let’s consider a current density J=jcos2q distributed in a hollow 
cylinder of thickness w and inner radius R

To calculate the resulting magnetic field, we can recall the field 
harmonics of a current line 

𝐵𝑛 𝜌, 𝜃 = −
𝜇0𝐼

2𝜋𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓

𝜌

𝑛

cos 𝑛 𝜃

and integrate over the cross-section
I → 𝐽𝑑𝑆 = 𝑗 cos 2𝜃 ⋅ 𝜌𝑑𝜌𝑑𝜃

PERFECT QUADRUPOLE: jcos2q current density distribution
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𝐵𝑛 = −8
𝜇0𝑗

2𝜋𝑅𝑟𝑒𝑓
𝑅׬
𝑅+𝑤 𝑅𝑟𝑒𝑓

𝜌

𝑛
𝜌𝑑𝜌0׬

𝜋

4 cos 2𝜃 cos 𝑛 𝜃𝑑𝜃, if 𝑛 even and
𝑛

2
odd

since 0׬
𝜋/4

cos 2𝜃 cos 𝑛 𝜃𝑑𝜃 = ቊ
𝜋/8 se 𝑛 = 2
0 se 𝑛 ≠ 2

, the only surviving term is:

𝐵2 = −8
𝜇0𝑗

2𝜋𝑅𝑟𝑒𝑓
න

𝑅

𝑅+𝑤
𝑅𝑟𝑒𝑓

𝜌

2

𝜌𝑑𝜌 ⋅
𝜋

4
= −

𝜇0𝑗𝑅𝑟𝑒𝑓

2
ln 1 +

𝑤

𝑅
𝐺 =

𝐵2
𝑅𝑟𝑒𝑓

=
𝜇0𝑗

2
ln 1 +

𝑤

𝑅
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To calculate the resulting magnetic field, we can recall 
the field harmonics of a current line 

𝐵𝑛 𝜌, 𝜃 = −
𝜇0𝐼

2𝜋𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓

𝜌

𝑛

cos 𝑛 𝜃

and integrate over the cross-section
I → 𝑗𝑑𝑆 = 𝑗 ⋅ 𝜌𝑑𝜌𝑑𝜃

𝐵𝑛 = −8
𝜇0𝑗

2𝜋𝑅𝑟𝑒𝑓
𝑅׬
𝑅+𝑤 𝑅𝑟𝑒𝑓

𝜌

𝑛
𝜌𝑑𝜌 0׬

𝛼
cos 𝑛𝜃 𝑑𝜃

𝐵𝑛 =

−
2𝜇0𝑗𝑅𝑟𝑒𝑓

𝜋
sin 2 𝛼 ln 1 +

𝑤

𝑅
𝑛 = 2

−
4

𝑛(𝑛 − 2)

𝜇0𝑗𝑅𝑟𝑒𝑓
𝑛−1

𝜋
sin 𝑛 𝛼

1

𝑅𝑛−2
−

1

(𝑅 + 𝑤)𝑛−2
𝑛 = 6,10,14, . . .

𝐺 =
𝐵2
𝑅𝑟𝑒𝑓

= −
2𝜇0𝑗

𝜋
sin 2𝛼 ln 1 +

𝑤

𝑅
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Normalizing to the quadrupole field 𝐵2:

𝑏𝑛 =
2

𝑛(𝑛−2)

𝑅𝑟𝑒𝑓
𝑛−2 sin 𝑛𝛼

sin 2𝛼 ln 1+
𝑤

𝑅

1

𝑅𝑛−2
−

1

(𝑅+𝑤)𝑛−2
⋅ 104

a
G 

(T/m)
b6

(units)
b10

(units)
b14

(units)

30 -91 0 -32 3

18 -62 660 0 -5

36 -100 -252 0 2

The only free term that can be made equal 
to zero is sin 𝑛 𝛼, leading to the solution 

α =
𝜋

𝑛
+ 𝑘

𝜋

𝑛
, 0 < 𝛼 <

𝜋

4
, 𝑘>0 integer

→ with one sector only one multiple can 
be made equal to zero

b6=0 if a=30˚

b10=0 if a=18˚, 36˚ 
R=50 mm, w=15 mm, j=5·108 A/m2

if 𝑛 even and
𝑛

2
odd (𝑛 = 6,10,14, . .)
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