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• What is superconductivity?

• Defining properties: zero resistivity, flux expulsion

• Important properties

• Condensation Energy, superfluid density

• Fux(oid) quantization

• Limitations of superconductivity

• Field (type-I and type-II superconductors)

• Ginzburg Landau theory

• Temperature

• Current

• Flux pinning, critical currents

• BCS theory

Outline
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What is superconductivity?
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• Thermodynamic state of the electron system

• Defining properties: 

• Zero-resistivity (at least at low magnetic fields and currents)

• Meissner effect: flux expulsion (at low magnetic fields)

1



Meissner Effect
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normal     superconducting

• Perfect flux expulsion (except for a small surface layer)

• Ideal diamagnet: 𝜒 = −1: 𝑀 = χ𝐻 = −𝐻



Meissner Effect
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𝐵 = 𝜇0 𝐻 +𝑀 = 𝑀 = −𝐻 = 0

Superconductivity disappears at a 

certain field:

Thermodynamical critical field: 𝐻𝑐2



Meissner Effect
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𝐻𝑐 = 𝐻𝑐(0 𝐾) 1 −
𝑇

𝑇𝑐

2

Phenomenological observation, however in 

agreement with theory (within a few percent) 

ideal conductor

or

superconductor

superconductor

Independent of history: 

thermodynamic state!



What do we learn?
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(from these basic properties)

1) Condensation energy 𝐸𝑐:

Magnetization energy:

𝐸𝑀 = −න
0

𝐻

𝜇0𝑀𝑑𝐻 = 𝜇0න
0

𝐻

𝐻𝑑𝐻 =
𝜇0𝐻

2

2

𝐸𝑐+ 𝐸𝑀 = 0 at 𝐻 = 𝐻𝑐 →

𝑬𝒄 = −
𝝁𝟎𝑯𝒄

𝟐

𝟐



What do we learn?
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2) London penetration depth of the magnetic field 𝜆𝐿:

Graphically: Long cylindrical, ideal conductor. Parallel magnetic field is applied.

Induction voltage 𝑈 = −
𝑑𝜙

𝑑𝑡
induces a screening current. Field decreases 

towards the center.

Formally: Newton’s law: 𝑚𝑠
ሶԦ𝑣 = 𝑞𝑠𝐸 → ሶԦ𝑗 =

𝑛𝑠𝑞𝑠
2

𝑚𝑠
𝐸…1st London equation.

𝛻 × ሶԦ𝑗 =
𝑛𝑠𝑞𝑠

2

𝑚𝑠
𝛻 × 𝐸 → 𝛻 × 𝛻 ሶ𝐻 = −∆ ሶ𝐻 = −

𝑛𝑠𝑞𝑠
2

𝑚𝑠
𝜇0

ሶ𝐻

2nd London equation: ∆𝐻 =
𝜇0𝑛𝑠𝑞𝑠

2

𝑚𝑠
𝐻 =:

1

𝜆𝐿
2𝐻 (Meissner effect)

1 dimensional: 
𝑑2𝐻

𝑑𝑥2
=

1

𝜆𝐿
2𝐻; particular solution: 𝐻 = 𝐻0𝑒

−
𝑥

𝜆𝐿

Characteristic shielding length of the magnetic field: 𝜆𝐿 =
𝑚𝑠

𝜇0𝑛𝑠𝑞𝑠
2

𝐵
𝜌 = 0



What do we learn?
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3) Canonical momentum (within London theory)

Skipping the time derivative earlier (in 𝛻 × ሶԦ𝑗 = −
𝑛𝑠𝑞𝑠

2

𝑚𝑠
𝜇0

ሶ𝐻) leads to

−𝜇0 𝜆𝐿
2𝛻 × Ԧ𝑗 = 𝜇0𝐻 = 𝛻 × Ԧ𝐴 or   𝛻 × (𝜇0𝜆𝐿

2 Ԧ𝑗 + Ԧ𝐴) = 0

One possible choice: 𝜇0𝜆𝐿
2 Ԧ𝑗 + Ԧ𝐴 (London gauge)

Canonical momentum of a charged particle: Ԧ𝑝 = 𝑚 Ԧ𝑣 + 𝑞 Ԧ𝐴 = 𝑞(
𝑚

𝑛𝑞2
Ԧ𝑗 + Ԧ𝐴)

For a superconductor within London theory: 𝑝𝑠 = 𝑞𝑠(𝜇0𝜆𝐿
2 Ԧ𝑗 + Ԧ𝐴)

Meissner effect: 𝑝𝑠 = 0 (momentum that is conserved in a magnetic field)



Fluxoid quantization
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New ingredient: All superconducting particles are described by the same wave

function 𝜓!

Momentum operator: −𝑖ℏ𝛻 −𝑖ℏ𝛻𝜓 = 𝑝𝑠𝜓 ,  𝑝𝑠 = ℏ𝑘𝑠

𝜓 is a complex valued function: 𝜓 = 𝜓 𝑒𝑖𝜃,  𝛻𝜓 = 𝑒𝑖𝜃𝛻 𝜓 + 𝜓 𝑒𝑖𝜃𝑖𝛻𝜃 = 𝜓𝑖𝛻𝜃

−𝑖ℏ𝛻𝜓 = ℏ𝜓𝛻𝜃 = 𝑝𝑠𝜓 → 𝜵𝜽 =
𝟏

ℏ
𝒑𝒔

𝜃 𝑟2 − 𝜃 𝑟1 =
1

ℏ
න

𝑟1

𝑟2

𝑞𝑠(𝜇0𝜆𝐿
2 Ԧ𝑗 + Ԧ𝐴)dԦ𝑟

Closed path: 
𝑞𝑠

ℏ
𝜇0𝜆𝐿)ׯ

2 Ԧ𝑗 + Ԧ𝐴)dԦ𝑟 = 𝑛2𝜋



Fluxoid quantization
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ර(𝜇0𝜆𝐿
2 Ԧ𝑗 + Ԧ𝐴)dԦ𝑟 = 𝑛

ℎ

𝑞𝑠

Stokes theorem: ර Ԧ𝐴dԦ𝑟 = ඵ

𝐹

𝛻 × Ԧ𝐴d Ԧ𝑓 =ඵ

𝐹

Ԧ𝐵d Ԧ𝑓 = 𝜙𝑖

Fluxoid quantization:

𝜙𝑖 +
𝑚𝑠

𝑛𝑠𝑞𝑠
2ර Ԧ𝑗dԦ𝑟 = 𝑛

ℎ

𝑞𝑠



Flux quantization
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𝜙𝑖 +
𝑚𝑠

𝑛𝑠𝑞𝑠
2ර Ԧ𝑗dԦ𝑟 = 𝑛

ℎ

𝑞𝑠
≔ 𝑛𝜙0

Region of shielding currents (fluxoid qantization)

Integration path inside the superconductor:

Ԧ𝑗 ≈ 0: Flux quantization: 𝜙𝑖 = 𝑛𝜙0

Flux quantum: 𝝓𝟎 =
𝒉

𝟐𝒆
(experimental value)

→ paired electons (holes)



London Theory
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→ 𝑚𝑠= 2𝑚𝑒 , 𝑒𝑠 = 2𝑒, 𝑛𝑠 =
𝑛

2
(𝑛...density of condensed charge carriers)

London penetration depth:

Superfluid density: 𝑛 ∝
1

𝜆𝐿
2

𝜆𝐿 =
𝑚𝑒

𝜇0𝑛𝑒
2

Shortcomings of London theory: 

• Local theory (point particles, e.g. 𝑝𝑠 = 𝑞𝑠(𝜇0𝜆𝐿
2 Ԧ𝑗 + Ԧ𝐴))

• Superfluid density is assumed as constant. 



Type-II superconductors
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𝜙𝑠 +
𝑚𝑠

𝑛𝑠𝑞𝑠
2ර Ԧ𝑗dԦ𝑟 = 𝑛𝜙0

Meissner state 𝑛 = 0:

Flux penetrates only at the surface, shielding currents

given by fluxoid qantization.

High energy cost for magnetization:

𝐸𝑀 = −න
0

𝐻

𝜇0𝑀𝑑𝐻

What about 𝑛 > 0 ?

𝜙𝑠 + 𝑛𝜙0 +
𝑚𝑠

𝑛𝑠𝑞𝑠
2ර Ԧ𝑗dԦ𝑟 = 𝑛𝜙0



Type-II superconductors

16

e.g., 𝑛 = 1:

• Ad another flux quantum in the from of a vortex.

• Field of vortex is generated by currents fulfilling 

fluxoid quantization.

• Opposite orientation than surface currents.

• Flux (fluxuid) quantization is fulfilled everywhere.

• Seems to work!

𝜙𝑠 + 𝜙0 +
𝑚𝑠

𝑛𝑠𝑞𝑠
2ර Ԧ𝑗dԦ𝑟 = 𝜙0



Type-II superconductors
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Does it happen?

• Energy 𝐸𝑣 of this vortex (length 𝑙):

• Average field: 𝜙0 ≈ 𝐵𝑣𝜆𝐿
2𝜋 → 𝐵𝑣 ≈

𝜙0

𝜆𝐿
2𝜋

• 𝐸𝑣 ≈
𝐵𝑣

2

2𝜇0
𝜆𝐿
2𝜋𝑙 =

𝜙0
2

2𝜇0𝜆𝐿
2𝜋
𝑙

• Change of magnetization energy density in the 

Meissner state (𝐸𝑀 = 0׬−
𝐻
𝜇0𝑀𝑑𝐻) by increasing 

magnetic field by 𝑑𝐻 =
𝜙0

𝑅𝑠
2𝜋
: 𝑑𝐸𝑀 = 𝐻𝑑𝐻 =

𝐻𝜙0

𝑅𝑠
2𝜋

• Change of magnetization energy of the sample:

𝑑𝐸𝑀
𝑆 = 𝑑𝐸𝑀𝑅𝑠

2𝜋𝑙 = 𝐻𝜙0𝑙
• Adding a vortex is energetically favorable for 

• 𝐻𝑣𝜙0>
𝜙0
2

2𝜇0𝜆𝐿
2𝜋



Type-II superconductors
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It does happen if 𝐻𝑣 < 𝐻𝑐: Type-II superconductor

Problem: Phase of wave function in the very center of 

the vortex! 𝜓 and 𝑛 have to be zero there!

Not describable within London theory! 

⟹ Ginzburg-Landau theory 



Ginzburg-Landau theory
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• Based on Landau’s theory of order phase transition.

• Valid near the transition (𝑇𝑐)
• Order parameter identified with 𝜓 2.
• Energy functional: 

𝐹𝐺𝐿 𝑇, 𝐴 = 𝐹𝑛 + 𝛼 𝜓 2 + β 𝜓 4 +
1

2𝑚𝑠
(−𝑖ℏ𝛻 − 𝑞𝑠 Ԧ𝐴)𝜓

2
+
𝐵2

2𝜇0
• Optimization with respect to 𝜓 and 𝐴 leads to the two Ginzburg Landau 

equations 

𝛼𝜓 + β 𝜓 2𝜓 +
1

2𝑚𝑠
−𝑖ℏ𝛻 − 𝑞𝑠 Ԧ𝐴 𝜓 = 0

Ԧ𝑗 =
𝑞𝑠ℏ

2𝑚𝑠𝑖
𝜓∗𝛻𝜓 − 𝜓𝛻𝜓∗ −

𝑞𝑠
2

𝑚𝑠
𝜓 2 Ԧ𝐴



Ginzburg-Landau theory
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Solution:

• Two characteristic length scales

• Magnetic penetration depth 𝜆 (in general ≠ 𝜆𝐿)
• GL coherence length 𝜉 (in general ≠ 𝜉𝐵𝐶𝑆 or 𝜉0)

Variation length of the superconducting order parameter 𝜓 2

• 𝜓 2 is the (local) density of condensed charge carriers. Equilibrium 

value: 𝑛𝑠 = 𝜓0
2;

• 𝜆 =
𝑚𝑒

𝜇0𝑛𝑠𝑒
2; superfluid density: 𝑛𝑠 ∝

1

𝜆2
(cf. London theory)

• Ginzburg Landau parameter 𝜅 =
𝜆

𝜉

• 𝜅 <
1

2
: Type-I superconductor

• 𝜅 >
1

2
: Type-II superconductor



Ginzburg-Landau theory
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Reversible (thermodynamic) magnetic properties are entirely described by 

λ and 𝜉.

• Thermodynamic critical field: 𝐵𝑐 =
𝜙0

2𝜋 2𝜆𝜉

• Lower critical field: 𝐵𝑐1 =
𝜙0

4𝜋𝜆2
ln𝜅

• Upper critical field: 𝐵𝑐2 =
𝜙0

2𝜋𝜉2

Meissner state Mixed (or Shubnikov) state



Mixed state
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• Flux penetrates in the form of vortices each carrying the elementary flux 

quantum 𝜙0
• They arrange in a hexagonal lattice.

• The (average) magnetic field 𝐵 is proportional to the number of vortices.

Order parameter 𝜓 2 Local magnetic field



Mixed state
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• Useful at low fields 𝐵 < 0.5𝐵𝑐2 better 𝐵 < 0.2𝐵𝑐2

• Normal conducting core ( 𝜓 2 = 0) with radius 𝜉.

• Undisturbed superconductivity outside core 

( 𝜓 2 = 𝜓0
2) 

• Currents outside the core build the field in 

accordance with fluxoid quantization

Simplified (London-like) picture of single vortices

24

http://www.oettinger-physics.de/vortex.html



• Thermodynamic limit: depairing current density.

• Kinetic energy of the charge carriers exceeds the condensation energy.

• 𝐸𝑐 =
𝐵𝑐
2

2𝜇0
=

1

2𝜇0

𝜙0
2

8𝜋2𝜆2𝜉2

• 𝐸𝑘𝑖𝑛 =
𝑛𝑠𝑚𝑒𝑣

2

2
= 𝑗 = 𝑛𝑠𝑒𝑣 =

𝑛𝑠𝑚𝑒𝑗
2

2𝑛𝑠
2𝑒2

= 𝑛𝑠 =
𝑚𝑒

𝜇0𝜆
2𝑒2

=
𝜇0𝜆

2𝑗2

2

• 𝐸𝑐 = 𝐸𝑘𝑖𝑛:
𝜙0
2

8𝜋2𝜇0𝜆
2𝜉2

= 𝜇0𝜆
2𝑗2 → 𝑗 =

𝜙0

2 2𝜋𝜇0𝜆
2𝜉

• Ginzburg-Landau theory: 𝐽𝑑 =
𝜙0

3 3𝜇0𝜋𝜆
2𝜉

Currents in superconductors

25

3



• Three thermodynamic limitations:

1. Temperature (𝑇𝑐)

2. Magnetic field (𝐵𝑐, 𝐵𝑐2)

3. Current density (𝐽𝑑)

• Currents are not necessarily loss free in the mixed state

• Lorentz force acts on the superconducting condensate: 𝐹𝐿 = Ԧ𝐽 × 𝐵

• Losses due to the moving vortices (acceleration of normal electrons in the core)

• Flux pinning: loss free currents. 

• Limit: Maximum pinning force: Ԧ𝐹𝑝,𝑚𝑎𝑥: = −𝐽𝑐 × 𝐵 “critical state”

• (𝐽 ⊥ 𝐵) ∶ 𝐽𝑐 =
𝐹𝑝,𝑚𝑎𝑥

𝐵
: critical current density. 𝐽 > 𝐽𝑐: dissipative currents

Currents in type-II superconductors

26



Supercritical currents:

𝐼 < 𝐼𝑐 =ඵ

𝑆

𝐽𝑐𝑑 Ԧ𝑓

Inside of superconductor is free of current: Flux and current always penetrate 

from the borders of the superconductor. Current free regions inside the 

superconductor. (Bean model: 𝐽 = ±𝐽𝑐 or zero).

Currents in type-II superconductors

27



Critical current density: flux pinning

• Energy of vortex core per meter: 𝐸core = 𝐸𝑐𝜉
2𝜋 =

𝜙0
2

16𝜋𝜇0𝜆
2

𝑓𝑝
max =

𝐸core

𝜉
=

𝜙0
2

16𝜋𝜇0𝜆
2𝜉

• Critical state: 𝐹𝑝 = 𝐹𝐿 = 𝐽𝑐 × 𝐵

• Highest possible pinning force per vortex and unit length: 

cylindrical defect with 𝑟𝐷 ≥ 𝜉

• Force balance for one vortex (𝐵 ⊥ 𝐽𝑐): 𝑓𝐿 = 𝑓𝑝

𝑓𝐿 = ඵ𝐹𝐿d𝐴 =ඵ𝐽𝑐 × 𝐵d𝐴 = 𝐽𝑐𝜙0 ≤ 𝑓𝑝
max=

𝜙0
2

16𝜋𝜇0𝜆
2𝜉

• 𝐽𝑐
𝑚𝑎𝑥 =

𝑓𝑝
𝑚𝑎𝑥

𝜙0
=

𝜙0

16𝜋𝜇0𝜆
2𝜉
=

3 3

16
𝐽𝑑 ≈ 0.32𝐽𝑑

• Loss free currents are always limited by pinning, however, 𝐽𝑑
sets the scale.



The critical current density denpends on the defect structure and is hence an 

extrinsic property.

• Quantitative predictions are very difficult

• Useful: scaling laws

𝐹𝑝 = 𝐽𝑐𝐵 ∝ 𝑏𝑝(1 − 𝑏)𝑞 with 𝑏 =
𝐵

𝐵𝑐2

• 𝑝 = 0.5 planar defects (grain boundaries)

• 𝑝 = 1 spheric defects (artificial pinning)

• 𝑞 is expected to be 1 or 2, but is often higher.

Critical current density: flux pinning



𝐹𝑝 = 𝐽𝑐𝐵 ∝ 𝑏𝑝(1 − 𝑏)𝑞 with 𝑏 =
𝐵

𝐵𝑐2

• 𝑝 = 0.5, 𝑞 = 2 (grain boundaries): peak at 𝑏 = 0.2

• 𝑝 = 1, 𝑞 = 2 spheric defects (artificial pinning): peak at 𝑏 = 0.3

• Attempts to separate different pinning contributions. 

Pinning contributions

Ortino et al., Supercond. Sci. Technol. 34 (2021) 035028



The BCS explanation
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• Electrons (holes) pair to form bosonic particles

(pairing electrons have opposite spin and momentum −𝑘 ↑, 𝑘 ↓)

• Pairing due to an attractive interaction via virtual phonons.

• Cooper pairs immediately condense into one ground state.

• Elementary excitations: breaking pairs

• Breaking a Cooper pair requires a minimum energy of 2𝜟
Δ…energy gap

• Copper pairs are mobile.

• They cannot transfer moment (energy) to the lattice   



BCS predictions
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• Energy gap in the density of states at the Fermi level

• 𝑘𝐵𝑇𝑐 = 1.13ℏ𝜔𝐷𝑒
−

1

𝑁 𝐸𝐹 𝑉

• 2Δ 0 = 3.54𝑘𝐵𝑇𝑐
• Isotope effect….

• Ginzburg Landau equations can be derived from BCS theory


