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Basics (only 5 minutes): 
- Phenomenology of Special relativity
- Lorentz Force

The classic pendulum described in three different formalisms:
- Differential equations

- Matrix formalism

- Hamiltonian formalism

Main application of magnets in accelerators:

- dipoles: - bending, orbit/trajectory corrections

- spectrometer, separation of positive and negatively charged particles

- quadrupoles:

- transverse focusing (FODO)

- high luminosity insertions in colliders

- sextupoles:

- correction of momentum dependence of quadrupole magnet strength

- solenoids:

- magnetic field in HE physics detectors

- wigglers, undulators:   light generation

Content

Main Dish:  Primer on linear beam optics

1st hour

2nd hour
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1: Relativistic particles

Conservation of transverse momentum

→ A moving object in its frame S’  has a mass  m’ = Τ𝑚 𝛾

Or  𝑚 = 𝛾𝑚0 =
𝑚0

1−(
𝑣

𝑐
)2
≅ 𝑚0+ 

1

2
𝑚0𝑣

2(
1

𝑐2
)  (approximation for small v)

Multiplied by 𝑐2:

𝑚𝑐2 ≅ 𝑚0𝑐
2 +

1

2
𝑚0𝑣

2 = 𝑚0𝑐
2 + 𝑇

Interpretation:

→ Total energy  𝐸 𝑖𝑠 𝐸 = 𝑚 ∙ 𝑐2

→ For small velocities the total energy is the sum of the kinetic energy plus the rest 

energy

→ Particle at rest has rest energy 𝐸0 = 𝑚0 ∙ 𝑐
2

→ Always true (Einstein):  𝑬 = 𝒎 ∙ 𝒄𝟐 = 𝜸𝒎𝟎 ∙ 𝒄
𝟐
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Relativistic momentum 𝑝 = 𝑚𝑣 = 𝛾𝑚0𝑣 = 𝛾𝑚0β𝑐

From page before (squared):

𝐸2 = 𝑚2𝑐4 = 𝛾2𝑚0
2𝑐4 = ( 

1

1−𝛽2
)𝑚0

2𝑐4= ( 
1−𝛽2+𝛽2

1−𝛽2
)𝑚0

2𝑐4 = (1 + 𝛾2𝛽2)𝑚0
2𝑐4

𝐸2 = (𝑚0𝑐
2)2 + (𝑝𝑐)2

𝐸

𝑐
= (𝑚0𝑐)

2 + 𝑝2

Or by introducing new units [E] = eV ; [p] =eV/c ; [m] = 

eV/c2

𝐸2 = 𝑚0
2 + 𝑝2

Due to the small rest 

mass electrons reach 

already almost the 

speed of light with 

relatively low kinetic 

energy, but protons only 

in the GeV range
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Electromagnetic Fields and forces onto charged particles

• Described by Maxwell’s equations and by the Lorentz-force

• Lots of mathematics, we will only “look” at the equations

• Only electric fields can transfer momentum to charged particles

→ EM cavities for acceleration

• Magnetic fields are used to bend or focus the trajectory of charged 

particles

→ construction of different types of accelerator magnets

• Also electrostatic forces can bend and focus beams; but since the 

forces are small we neglect this part in most cases
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But: for specific cases we also use electrostatic elements

quadrupole

Separators for electron and positron beams in the same vacuum chamber
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Different Mathematical descriptions for

Particle motion in an accelerator…a real pain?

We use differential equations, matrix – formalism, Hamiltonians, perturbation 

theory…

- Is there a right or wrong?

- Is it personal likings?

→ Depending on the problem to solve (or the phenomenon to describe)

one mathematical tool is more adequate than the other.

→ One should be aware of many of them in order to be able to choose 

the most adequate one.

In the following slides we will look at the very simple example of the classical 

spring-oscillator and describe it with a differential equation, with a matrix 

formalism and by using the Hamiltonian equations of motion.

But first another important concept: Definition of phase space
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Phase Space

This shows only one of the three 

possible phase space projections

qx

px

- We are used to describe a particle by its 3D position 

(x,y,z in carthesian Coordinates) (blue arrows below)

- In order to get the dynamics of the system, we need to know the momentum

(px, py, pz); red arrows below

- In accelerators we describe a particle state as a 6D phase space point.
Below the projection into a 2 D phase space plot.

The points correspond to the x-position (qx) and the x component of the p-vector (px).



x

x’

x

px

Trace space Phase space

Warning: We often use the term phase space for the 6N dimensional space 

defined by x, x’ (space, angle), but this the “trace space” of the particles.

At constant energy phase space and trace space have similar physical 

interpretation

An important argument to use the trace space is that in praxis we can 

measure angles of particle trajectories, but it is very difficult to measure the 

momentum of a particle.
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Action functional S

Define action as S:= න
𝑡1

𝑡2

𝑝 𝑑𝑞

“Stationary” action principle:= 

Nature chooses path from t1 to t2
such that the action integral is a 

minimum and stationary

→ we have a new invariant, 

which we can use to study the 

dynamics of the system

p: Generalized momentum; q: generalized space coordinate

No immediate physical interpretation of S

Much more important: 
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Harmonic oscillator (1/4)

Solved by using a Differential equation

Starting from:

Newton’s Kraftansatz (F = m * a)   and Hook’s law (F = - k * x)

As at school we “guess” the solution:

And we find that with the angular frequency ω

we have found a description of the motion of our system. 
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Harmonic oscillator (2/4)

Solved by using a matrix formalism

The general solution to the previous differential equation is a linear 

combination of a cosinus- and a sinus-term.

So after an additional differentiation we get:

So we can stepwise 

develop our solution 

from a starting point 

x0, p0
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Harmonic oscillator (3/4)

A little reminder of classical mechanics:

- Take a set of “canonical conjugate variables” 

(generalized coordinate q, momentum p in a single one dimensional case) 

- Construct a function H, which satisfies the dynamical equations of the 

system:

- H “= the Hamiltonian “ of the system is a constant of motion 

(= H does not explicitly depend on t) .

- The Hamiltonian of a system is the total energy of the system: H = T +V 

(sum of potential and kinetic energy)

𝜕𝑞

𝜕𝑡
= ሶ𝑞 =

𝜕𝐻

𝜕𝑝

𝜕𝑝

𝜕𝑡
= ሶ𝑝 = −

𝜕𝐻

𝜕𝑞
and 

Proof:

Used x instead of q just to test your attention
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Harmonic oscillator (4/4)

Back to our Example: Mass-spring system

𝑆𝑡𝑎𝑟𝑡 𝑤𝑖𝑡ℎ: 𝐻 = 𝑇 + 𝑉 =
1

2
k 𝑥2+ 

𝑝2

2𝑚
= E

→ Hamiltonian formalism to obtain the equations of motion:

𝛿𝑥

𝛿𝑡
= ሶ𝑥 =

𝜕𝐻

𝜕𝑝
=
𝑝

𝑚
or p=m ሶ𝑥 = mv

𝛿𝑝

𝛿𝑡
= ሶ𝑝 = −

𝜕𝐻

𝜕𝑥
= -kx

This brings us back to the differential equation of solution 1:

𝐹 = 𝑚𝑎 = 𝑚 ሷ𝑥 = - kx

With the well known “guessed” sinusoidal solution for x(t).

Instead of guessing a solution for x(t) we look at the trajectory of the system in phase space. 

In this simple case the Hamiltonian itself is the equation of an ellipse in phase space.
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Outlook on Hamiltonian treatments

𝑡 = 𝑡0

t = 𝑡0 + Τ𝑇 4

- In the example, the free parameter along the trajectory is time ( we are used to express the 

space-coordinate and momentum as a function of time)

- This is fine for a linear one-dimensional pendulum, but it is not an adequate description for 

transverse particle motion in an accelerator.

→ we will choose soon “s”, the path length along the particle trajectory as free parameter

- Any linear motion of the particle between two points in phase space can be written as a matrix 

transformation:    𝑥
𝑥′

(𝑠)= 
𝑎 𝑏
𝑐 𝑑

𝑥
𝑥′

(𝑠0)

- In matrix annotation we define an action “J” as product J:= 
1

2

𝑥
𝑥′

(𝑠)  𝑥
𝑥′

(𝑠0).

- J is a motion invariant and describes also an ellipse in phase space. The area of the ellipse is 2𝜋𝐽

Increasing t

We get already a deep understanding of the motion by looking at phase space diagrams!
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Such a field 

(force) we need 

for focusing
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Weak focusing from dipoles

This means that we can construct a focusing circular accelerator based only on 

dipoles…in particular when ρ is small.

This has been done in the 1950’s and it was called “ a weak focusing synchrotron”

(vacuum chamber: about 2m wide)

How about the vertical plane? There is no vertical dipole field. 

Why do the particles not fall down?  Discuss over a beer ☺



Now: how to describe particle motion in an accelerator?

1. Differential equations? - yes, but:
longitudinal plane: acceleration AND focusing done by a sinusoidal field in an 

RF cavity → need linearization for small amplitudes around working point

transverse plane: some people do (“Hill’s equation”). There is only a solution 

for fully symmetric accelerator designs…but no real accelerator is fully 

symmetric.

2. Hamiltonian approach: Yes, but too involved for this course.

3. Matrix approach: That is what we will do!

In short: “Find” a matrix describing the motion of a particle in each element of 

the accelerator→ find the transport matrix through the whole chain by

the Multiplication of all matrix elements → ideal for computer simulations!

And the result we display as phase(trace)-space trajectory.

Of course the matrix approach works only for linear forces!

A more general approach is to use Maps instead of Matrices

(in our case needed for sextupoles)
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Sarah Cousineau, Jeff Holmes, Yan Zhang  USPAS 2011
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Sarah Cousineau, Jeff Holmes, Yan Zhang  USPAS 2011
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Sarah Cousineau, Jeff Holmes, Yan Zhang  USPAS 2011
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Sarah Cousineau, Jeff Holmes, Yan Zhang  USPAS 2011
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Sarah Cousineau, Jeff Holmes, Yan Zhang  USPAS 2011
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Transfer-Matrix/Map of

- Solenoids

- combined function magnets

are out of scope of this lecture

- Sextupoles

(quadratic dependence of force from centre)

first non-linear element in our lecture → transfer map M

the impact on the phase space trajectories we shall see later.



So far: Motion of ONE particle → Now a whole BEAM
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We focus on “bunched” beams, i.e. many (10 11) particles bunched together 

longitudinally.

From the generation of the beams the particles have transversally a spread 

in their original position and momentum.
Nevertheless for some studies the beam can be treated as one Macro-Particle!

Source: ISODAR (Isotope at rest 

experiment)



A beam (bunch): Motion of individual particles 

(1/4)
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• Generate 10000 particle as a Gaussian distribution in x and px

• For illustration mark 3 particle in colours red, magenta and 

yellow

• The average (centre of charge) is indicated as cyan cross

• Make some turns (100 turns with 3 degrees phase advance 

par turn)



A beam (bunch): Motion of individual particles 

(2/4)
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turn 0                   turn 10                     turn 53                 turn 100

Trajectory in x over 100 turns

Individual particles perform betatron oscillations (incoherently!), the whole 

beam is “quiet”, it propagates without a coherent transverse motion. 



A beam (bunch): Motion of individual particles 

(3/4)
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• The whole bunch receives (for example at injection) a 

transverse kick (additional momentum q) of 2 units

• Tracing over 100 turns as before



A beam (bunch): Motion of individual particles 

(4/4)
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Turn 0                    Turn 10                  Turn 53                  Turn 100

The incoherent motion of the particles remains the same, but this time the 

center of charge also moves (cyan curve). The beam beforms a betatron

oscillation.



Definition of beam emittance ε
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• From last slides: Individual particles 

continuously perform oscillations in 

phase space with constant action.

• Independent of the actual phase space 

distribution of the particles the average 

action is a very useful quantity to 

describe the volume in phase space 

occupied by the whole beam.

• We call this quantity emittance ε.

ε = <J>

• The shape of the emittance rotates in 

phase space exactly as the phase 

space ellipses of single particles. 

• Just now the ellipse is “full of particles” 

and not only a trajectory of a single 

particle!



Liouville’s Theorem (1/2)
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1. All particle rotate in phase space with the same angular velocity (in the 

linear case)

2. All particle advance on their ellipse of constant action

3. All constant action ellipses transform the same way by advancing in “s”

→ Since volumes in phase space are preserved, (1)+(2) means  that the whole 

beam phase space density distribution transforms the same way as the 

individual constant action ellipses of individual particles.



Liouville’s Theorem (2/2)
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There are several different definitions of the emittance ε, also different 

normalization factors. This depends on the accelerator type, but the definition 

as average action describes best the physics. The RMS emittance below is 

useful in the world of real measurements.

Another often used definition is called RMS emittance

𝜀 = 𝑐𝑜𝑛𝑠𝑡 ∗ 𝑥2 𝑝2 − 𝑥𝑝 2 or 𝜀 = 𝑐𝑜𝑛𝑠𝑡 ∗ 𝑥2 𝑥′2 − 𝑥𝑥′ 2

*

1. We have already identified the action as a preserved quantity in a 

conservative system, therefore as average action…

…the emittance of a particle beam is preserved in a conservative beam 

line/accelerator.

Attention: As soon as synchrotron light emission plays a role, the system 

is no longer conservative!

(one of the next slides: radiation damping)

2. Let us be picky: The sentence above is often quoted as Liouville’s

theorem, but this is incorrect. Liouville’s theorem describes the 

preservation of phase space volumes, the preservation of the phase space 

of a beam is then just results from the Hamiltonian description.



More on beam emittance
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The reference momentum increases during acceleration

𝑃0 = 𝛽0𝛾0𝑚𝑐 → 𝑃1 = 𝛽1𝛾1𝑚𝑐 𝛽, 𝛾 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑖𝑠𝑡𝑖𝑐 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠

we can show:            𝛽0𝛾0𝜖0 = 𝛽1 𝛾1𝜖1
So the transverse emittance scales with the product 𝛽𝛾

For this reason we define:

Other ways to influence the emittance (advanced subjects):

- make it bigger by error (injection errors, resonances….)

- make it smaller by cooling (stochastic cooling; electron-cooling….)

Not to be confused with:

Radiation damping = Reduction in emittance due to the emission of 

photons as synchrotron radiation

normalized emittance 𝜀𝑁: = 𝛽𝛾𝜀 while we call 𝜀 the geometric emittance

The “shrinking” of the transverse emittance during acceleration is called 

“adiabatic damping



What do we normally measure from the phase-space ellipse?

• At a given location in the 
accelerator we can measure 
the position of the particles, 
normally it is difficult to 
measure the angle…so we 
measure the projection of 
the phase space ellipse onto 
the space dimension:
→called a profile monitor

Attention! The standard 2 D image of a 

synchrotron light based beam image is 

NOT a phase space measurement
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Radiation damping
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Synchrotron radiation 

predominantly in electron storage 

rings leads to a shrinking of 

transverse momenta 

→emittance not preserved

Figures “stolen” from

Y.Papaphillipou



Keywords concerning beam motion in

circular accelerators at a glance
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1. Dispersion (wherever we have dipoles)

2. Twiss parameters:
Phase advance μ(s)

Beta function β(s) 

3. Betatron tunes (determined by quadrupoles),

working diagram

4. Chromaticity 

(when we talk about sextupoles, 2nd hour)
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“off-momentum” particles in a synchrotron 

What happens: A particle with a 

momentum deviation 𝛿 =
𝛿𝑝

𝑝
> 0 

gets bent less in a dipole.

• In a weakly focusing synchrotron it would 

just settle to another circular orbit with a 

bigger diameter

• In an alternate gradient synchrotron it is 

more complicated: The focusing/defocusing 

is also dependent on the momentum, so 

the resulting orbit follows the optics of the 

accelerator.

We describe the dispersion as a function of s as 

𝐷 𝑠 ; the resulting position of a particle is thus 

simply:

𝑥𝛿𝑝= 𝑥0+ 𝐷 𝑠
𝛿𝑝

𝑝

Typical values of D(s) are some meters, with
𝛿𝑝

𝑝
= 

10−3 the orbit deviation becomes millimeters



p

p
sDxD


= *)(

Dispersion Measurement example

HERA typical orbit measurement

dedicated momentum change of the stored beam

→ closed orbit is moved to a  

dispersion orbit

HERA Dispersion Orbit

1) Measure orbit

2) Change momentum

3) Measure orbit again

4) Calculate Dispersion from 

difference orbit

H.Schmickler, ex-CERN 42



H.Schmickler, CERN 43

Twiss parameters (1/2)

• Introduced in the late 50’s by Corant/Snyder
• The classical way to parametrize the evolution of the phase space 

ellipse along the accelerator

Basic concept of this formalism:

1) Write the transfer matrix in this form (2 dimensional case):

𝑀 = 𝐼 𝑐𝑜𝑠𝜇 + 𝑆 ∙ 𝐴 𝑠𝑖𝑛𝜇

I =
1 0
0 1

; S =
0 1
−1 0

;  A= 
𝛾 𝛼
𝛼 𝛽

2) M must be symplectic → 𝛽𝛾 − 𝛼2 = 1

3) Four parameters: 𝛼 𝑠 ; 𝛽 𝑠 ; 𝛾 𝑠 𝑎𝑛𝑑 𝜇 𝑠 , with one interrelation (2)
→ Three independent variables

4) 𝑥 𝑠 = 𝜀 ∙ 𝛽 𝑠 ∙ 𝑐𝑜𝑠ሼ𝜇 𝑠 + ሽ𝜑



Twiss parameters (2/2)
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What is the power of this approach?

• Instead of computing step by step with consecutive Matrix-

operations the phase space at a given point, the values of the 

Twiss parameters β(s), α(s) and µ(s) describe the beam at any 

point in the accelerator.

• It looks like as if we had found a closed solution of the 

differential equation (for ex. Hill’s equation) for the accelerator.

• The twiss parameters are the output of any accelerator 

simulation tool.

βH(s)

βv(s)

Beam size σ(s) =√ ε β(s)



H.Schmickler, ex-CERN 45

Importance of the Twiss parameters (1/2)

• Focusing quadrupole → low beta values

• The transverse beam envelope follows like a 

“squashed sausage” the square root of the beat 

function

• The shape of phase space changes along s. 

The projection of the phase space onto the space 

co-ordinate (=beam size) can perform a quasi 

harmonic oscillation with variable amplitude 

(again modulated by 𝛽 𝑠 )  

called BETATRON-Oscillation

𝑥 𝑠 = ε𝛽 𝑠 ∙ 𝑐𝑜𝑠ሼ𝜇 𝑠 + ሽ𝜑

J. Jowett

𝜇 = 𝑠1׬
𝑠2 1

𝛽
ds
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𝛼 = −
1

2

𝑑𝛽

𝑑𝑠

α indicates the rate of change of β along 

s

α zero at the extremes of beta (waist)

𝜇 = 𝑠1׬
𝑠2 1

𝛽
ds Phase Advance: Indication how much a 

particle rotates in phase space when 

advancing in s

Of particular importance: Phase advance around a complete turn of a 

circular accelerator, called the betatron tune Q (H,V) of this accelerator

𝑄𝐻,𝑉 = 
1

2𝜋
0׬
𝐶 1

𝛽𝐻,𝑉
𝑑𝑠

Importance of the Twiss parameters (2/2)

2.)

3.)
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The betatron tunes 𝑄𝐻,𝑉

• One of the most important parameters of a circular accelerator

• For a circular accelerator it is the phase advance over one turn 

in each respective plane.

• The equivalent in a linac is called “phase advance per cell”

• In large accelerators the betatron tunes are large 

numbers (LHC ˜ 65), i.e. the phase space ellipse 

turns about 65 times in one machine turn.

• We measure the tune by exciting transverse 

oscillations and by spectral analysis of the motion 

observed with one pickup.

But this way we measure the fractional part of 

the tune; often called 𝒒𝑯,𝑽

• Integer tunes (fractional part= 0) 

lead to resonant infinite growth of 

particle motion even in case of 

only small disturbances.
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Importance of betatron tunes

The couple (QH ,QV ) is called 

the working point of the 

accelerator.

Below: tune measurement 

example from LEP
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Coffee break



Let’s talk about magnets!

• What is important for an accelerator physicist?

- basic function: following slides

- imperfections → direct impact on accelerator

performance and operation

- operational parameters:

excitation curve, hysteresis, reproducibility, quench-limits,

powering (single, serial), reference magnets

- production tolerances→ evtl. Measurement setups

multipole components

- theory, design, design-tools…
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Later

This

Course



Dipoles

• Main purpose: Bending of particle beams
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Beam rigidity: 

Example: LHC main dipole:

B ≈ 8T ; pc ≈ 13000 GeV→ ρ ≈ 5420 m



Dipole as particle/antiparticle separator
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Stanford Linear Collider

(SLC):

So far the one and only

e+e- linear collider using

one linac!

e+ and e- accelerated on 

negative and positive 

crest of RF-wave.

Separated into collision 

arcs by a dipole



•Dipoles as Separators

Consider particles with fixed p but 

different M and Q in a dipole field B

– assume B·L same for all M, Q

– deflection angle given by

Charge separation

– assume same M, but different Q

– let only one angle θ pass and vary B, 

then Q proportional to 1/B

Mass separation

– assume same Q, but different M

– let only one angle θ pass and vary B, 

then M proportional to B

53

θ = Q/M · B·L/p

Some separator magnets are rather large...

...and one can build separators with more dipoles.

Taken from D.Oneka (GSI)



•Example: Spectrometer

54

Charge separation behind gas stripper

Mass (isotope) separation

Taken from D.Oneka (GSI)
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Dipole Errors

error effect correction

strength (k) change in deflection
change excitation current, 

replace magnet

lateral shift none

tilt additional vertical deflection corrector dipole magnet
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Quadrupole Errors (1/3)
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Quadrupole Errors 2/3

Error type effect on beam  correction(s) 

strength Change in focusing, 
“beta-beating” 

Change excitation current, 
Repair/Replace magnet 

Lateral shift Extra dipole kick Excitation of a corrector 
dipole magnet 

tilt Coupling of the beam 
motion in the two planes 

Excitation of a additional 
“skewed quadrupoles (450) 

 



Need for steering dipoles

• Tilted dipoles give unwanted kicks in the vertical plane

• Shifted quadrupoles behave like an additional dipole 

(“downfeed”)
 (Shifted sextupoles behave like an additional quadrupole)

• For best accelerator performance need extra small 

corrector dipoles with individual power-converter

• Placement: 

horizontal Dipoles on each F quadrupole

vertical Dipoles on each D quadrupole

• Correction: Either by operator intervention (see example)

or by automatic orbit-feedback software (in circular 

lightsources up to 1 kHz repetition rate)

• Needs best possible knowledge of optical functions!
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Orbit Acquisition

Horizontal

•This orbit excursion
is too large!
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Orbit Correction (Operator Panel)
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Orbit Correction (Detail)
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Quadrupole strength error: Beta-beating (1/2)
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Quadrupole strength error: Beta-beating (2/2)
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Quadrupole Errors 3/3

Any tilted quadrupole 

is seen as a normal 

quadrupole plus 

another quadrupole 

tilted by 450. (skew 

quad)

Note that in a skew 

quad 

Fx = ksy and Fy = ksx

produce coupling 

between the x and y 

planes

Additional skew quads 

in an accelerator are 

used to compensate 

coupling



Quadrupoles

• Main purpose: Transverse Focusing

• FODO lattice or more involved acromat layouts for 

circular lightsources

• Important design parameters:

- gradient [Tm], 

- beam aperture (in the defocusing plane the beam is 

biggest in the quadrupole)

• in the arcs often powered in series →

testbenches, sorting…

additional “trombone” quadrupoles for corrections (with 

individual powersupplies)

• Operational daily procedure: Change betatron tunes of

accelerator by changing strength of quadrupoles

• Insertion quadrupoles in colliders → next slides
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Particle Collider figures of merit:

• First: The cross section of a physics process:
The cross-section sev expresses the likelihood of a process to be produced by a particle 

interaction. Each production channel has its own cross-section.

• sev can be understood as an “area” hit by the beam. 

• Unit for cross-section: [m2]

• in nuclear- and high energy physics we need smaller units:

= barn (1 b = 10-24 cm2)
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1. c.m.s. energy: higher energy means 

particles with higher masses can be 

produced

2. Luminosity: A number characterizing a 

collider to produce a certain number of 

events of a given process in a given time→
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Nev =s ev L t( )dtò

R =
dNev

dt
= L(t)s ev

definition: Luminosity (L)

• luminosity L relates cross-section s
and event rate R = dNev/dt at time t: 

– quantifies performance of collider

– relativistic invariant and independent of 
physical reaction

• accelerator operation aims at 
maximizing the total number of events 
Nev for the experiments
 sev is fixed by Nature for every event 

type

– aim at maximizing ∫L(t)dt

• Luminosity unit : [m-2 s-1]

• The integrated luminosity ∫Ldt

is frequently expressed as the inverse of a cross section

pb-1 = 1036 cm-2 or fb-1 = 1039 cm-2
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Example: LHC
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Total integrated luminosity LHC Run 2: 150 fb-1

Total cross section pp collisions: 100 mb

→ Ncollisions = 150 * 1012 mb-1 * 100 mb = 15 * 1015 events !!!

→ On average a bit less than 100 charged tracks per event!

→ Only a small fraction gets recorded….still Pbytes of data

→ Total cross section for Higgs production: About 60 pb→ About 9 * 106 Higgs produced

→ Higgs cross-section for Diphoton-decay: About 60 fb → 9000 events to analyse
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L from machine parameters -1-
• intuitively: more L if there are more protons and they more tightly 

packed

LµNb1Nb2K r1(
x,y,z,z0

ò x, y, z,-z0 )r2(x, y, z, z0 ) dx dy dz dz0

• K = kinematic factor (CAS lecture, “Kinematics of Particle Beams I - Relativity”)

• Nb1, Nb2: bunch population

• r1,2: density distribution of the particles (normalized to 1)

• x,y: transverse coordinates

• z: longitudinal coordinate

• z0: “time variable”, z0 = c t

• Wx,y: overlap integral

LµNb1Nb2Wx,y

Nb1r1(x,y,z,-z0)

Nb2r2(x,y,z,z0)

z0
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L from machine parameters -2-

• f: revolution frequency

• nb: number of colliding bunch pairs at that Interaction Point 
(IP)

• Nb1, Nb2: bunch population

• sx,y: transverse beam size at the collision point

L = 2 f nbNb1Nb2 r1x x( )r1y y( )r1z z- z0( )r2x x( )r2y y( )r2z z+ z0( )
x,y,z,z0

ò dx dy dz dz0

• for a circular machine can reuse the beams f times per 
second (storage ring)

• for nb colliding bunch pairs per beam

• for uncorrelated densities in all planes: 

• for Gaussian bunches:

• for equal beams in x or y: s1x = s2x,
s1y = s2y

• can derive a closed expression:

ru(u) =
1

s u 2p
exp -

(u-u0 )2

2s u

2

ì
í
î

ü
ý
þ

; u = x, y

L =
nbNb1Nb2 f

4ps xs y

LHC

nb = 2808

Nb1,Nb2 = 1.15 1011

ppb

f = 11.25 kHz

sx, sy = 16.6 mm

L = 1.2 1034 cm-2s-1

r(x, y, z, t) = rx (x)ry(y)rz(z-vt)
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J. Jowett

need for small b*
• expand physical beam size sx,y: 

– * means “at the IP”

• try and conserve low e from injectors
– In addition explicit dependence on energy (1/gr)

• intensity Nb pays more than e and b* 

• →design low b* insertions
– limits by triplet aperture, protection by collimators

– in LHC nominal cycle: “squeeze”

L =
nbNb1Nb2 f g r

4p b*e
s x

* =s y

* =
b*e

g r

LHC

b* = 18 ➔ 0.55 m

e = 3.75 mm

gr = 7463

sx,y = 16.6 mm

➔
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Example: Propagation of twiss parameters along s between two focusing 

quadrupoles

2 2
0

0

2 2
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2

2
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
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
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
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Example: Beta function between two strong focusing 

quadrupoles

𝐴𝑠
0
= 

𝛾 𝛼
𝛼 𝛽 → 𝐴𝑠= 𝑀𝑇 𝐴𝑠

0
𝑀

1 𝑠
0 1

Drift M =

Starting from waist       𝛼 =
0

And in Matrix-Annotation:

𝐴𝑠
0
=
𝛾0 𝛼0
𝛼0 𝛽0

= 
𝛾0 0
0 𝛽0

=
ൗ1 𝛽0

0

0 𝛽0

Using: 𝛽𝛾 − 𝛼2 = 1

𝐴𝑠 = 
1 0
𝑠 1

∙
ൗ1 𝛽0

0

0 𝛽0
∙
1 𝑠
0 1

=
ൗ1 𝛽0 Τ𝑠 𝛽0

Τ𝑠 𝛽0
𝛽0 + ൗ𝑠2

𝛽0

𝛽𝑠 = 𝛽0 + ൗ𝑠2
𝛽0

𝛽𝑠 = 𝐶2𝛽0 - 2SC 𝛼0 + 𝑆2𝛾0 = 𝛽0+ ൗ𝑠2
𝛽0



Sextupoles: A first taste of non-linearities (1/4)
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• So far we have completely neglected the longitudinal plane

• Also in the longitudinal plane the beam has an emittance, which means a 

spread in momentum and a finite length of the bunches.

• We have “off momentum particles” with a longitudinal momentum 
∆𝑝

𝑝0
≠ 0.

• We already defined the Dispersion function, which describes the resulting 

change in orbit

• Now we look at what happens to the focusing in the quadrupoles:
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• Due to the change in focusing strength of the quadrupoles with 

varying momentum, particles have different betatron-tunes:

• Definition: Chromaticity (H,V) := Dependence of tune on momentum

• ∆𝑄 = 𝑄′ ∆𝑝

𝑝
or relative chromaticity ξ =

𝑄′

𝑄

• Is this bad? : Yes, the working point gets a “working blob”

• We need to correct. How?
i) Inserting a magnetic element where we have dispersion (this separates in 

space particles with lower and higher momenta

ii) Having there a “quadrupole”, for which the strength grows for larger 

distances from the centre: a sextupole

Sextupoles: A first taste of non-linearities (2/4)
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We will have a high price to pay for this chromaticity correction!

→ we have introduced the first non-linear element into our accelerator

The map M (no longer a matrix) of a single sextupole represents a “kick” 

in the transverse momentum:

0
'

*
'

ss
x

x
M

x

x








=









We choose a fixed value k2L = - 600 m-2  and  we construct phase 

space portraits after repeated application of the map.

We vary the phase advance per turn (fractional part of the tune) from

0.2 ∙ 2𝜋 𝑡𝑜 0.5 ∙ 2 𝜋

Sextupoles: A first taste of non-linearities (3/4)
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Sextupoles: A first taste of non-linearities (4/4)
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Last not least: Sextupole errors (1/2)
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Last not least: Sextupole errors (2/2)

Error type effect on beam  correction(s) 

strength Change in chromaticity 
correction, beta-beating 

Change excitation current, 
Repair/Replace magnet 

Lateral shift Extra quadrupole and skew 
quadrupole, beat-beating, 
tune change, coupling 

Compensation with 
quadrupoles and skew 
quadrupoles, realignment 

tilt Error in the chromaticity 
correction 

Excitation of a additional 
“skewed sextupoles (450) 

 

A horizontally 

(vertically) 

displaced 

sextupole is seen 

as a centred 

sextupole plus an 

offset quadrupole 

(skew quadrupole)



Higher order-pole magnets

• Octupoles, Decapoles…

• Increasingly stronger non-linearities

• Used in several accelerators to compensate 

non-linear beam effects

• Beyond the scope of this presentation

• But  example: Landau damping

- take a forest with all trees of same length

- during a storm resonant behaviour → trees fall

- make length of trees different → no resonance

- for beams: make betatron tunes for high amplitude 

particles different → beam more stable

• → need highly non-linear magnets
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“Other magnets”
• Solenoids

- Helmholtz coils in beam instrumentation

for beam imaging

- huge detector magnets in colliders for the identification 

of secondary particles

(need skewed quadrupoles to compensate coupling 

introduced by the solenoid field)

• Magnet assemblies 
(sequence of small dipoles, often Permanent magnets) 

for light production

• Acromats (lightsources)

• Combined function magnets
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CMS detector at the LHC
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Magnets for light production
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Max IV : arc layout



Max IV multifunction magnet block

H.Schmickler, ex-CERN 84



PS(CERN) combined function magnet
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