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Overview: Design of Accelerator Magnets

Stephan Russenschuck, CAS, 2023
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Magnet Types

Coil dominatedIron dominated

Class 1

large area, 

“medium” field

Class 2

Small area

high B, high J

Normal

conducting Superferric

Permanent

magnet
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Solenoidal Magnet System for CMS (Superconducting Class 1 Magnet)

S

L
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String of LHC Magnets in the Tunnel (Class 2 Magnets)

High field and high current density
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LEP Dipole (Iron Dominated Magnet)
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H Magnet (LHC Transfer Line)
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Super-Ferric H Magnet
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Window Frame Magnet
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Example: SIS 100 Magnets
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Cos q (Warm iron yoke) - Tevatron Dipole (Coil Dominated Magnet)

Notice the lower field in the 

iron yoke compared to the 

window frame
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LHC Coil Test Facility for LHC (Based on HERA/RHIC Magnet Technology)
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Two-In-One Dipoles
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Conventional and Superconducting Accelerators Magnets

➔ Normal conducting magnets

– Important Ohmic losses require (water) cooling

– The field is defined by the iron pole shape (max 1.5 T)

– Easy electrical and beam-vacuum interconnections

– The voltage drop over one coil of the MBW magnets = 22 V

➔ Superconducting magnets

– The field is dominated by the coil layout

– The maximum field is limited to 10 T (Nb-Ti), 14 T (Nb3Sn)

– Strong electromagnetic forces (400 tons/m in MB for LHC)

– Quench detection and magnet protection system is required

– Cryogenic installation (1.8 K)

– Electrical interconnections in cryo-lines

– Voltage drop on LHC magnet string at nominal ramp rate (154 MB) 155 
V
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A Multiphysics Problem

➔ Beam physics – H. Schmickler

➔Material science: superconducting cable, steel, insulation

- M. Eisener (technical SC LTS), A. Ballariono (technical SC HTS), R. Piccin

(dielectric insulation), S. Sgobba (steel),  G. Le Bec (permanent magnets)

➔Mechanics and large-scale mechanical engineering

- F. Toral (SC magnet design – mechanical), S. Izquierdo Bermudez (fabrication)

➔ Vacuum technology

➔ Heat transfer – R. van Weelderen

➔Metrology and alignment – P. Bestmann

➔ Field measurements 

- M. Buzio (overview), M. Liebsch (mapping techniques), L. Fiscarelli (coil 

magnetometers)



Stephan Russenschuck, CERN  TE-MSC-TM, 1211 Geneva 23 1

5

A Multiphysics Problem

➔ Electrical engineering (power supplies, leads, buswork, quench 
detection, and magnet protection)

- S. Yammine (powering infrastructure), E. Todesco (quench)

➔ Analytical and numerical field computation

- H. De Gersem (field computation using FEM), S. Farinon (SC magnet design), 

A. Milanese (normal conducting magnet design), E. Todesco (hysteresis and 

dynamic effects)

➔ Bringing it all together

- A. Bernhard (insertion devices), G. Le Bec (permanent magnets), L. Bottura

(collider magnets), J. Borbough (injection and extraction), F. Toral (low 

emittance rings)
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Comparison NC and SC Magnets (EM-Design)

➔ Normal conducting (iron-dominated) magnets

– Ideal pole shape is known from potential theory

– One-dimensional (analytical) field computation for the main field

– Commercial FEM software can be used as a black box 

– Hysteresis modeling, eddy currents, and combined 3D effects

➔ Superconducting (coil dominated) magnets

– Accuracy of the field solution

– Modeling of the coils

– Decoupling of coil and yoke optimization

– Filament magnetization

– Dynamic effects (interfilament and interstrand coupling currents)

– Quench simulations
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The CERN Field Computation Program ROXIE 

➔ Automatic generation of coil and yoke geometries

– Feature-based design

➔ Field computation especially suited for magnet design 
(BEM-FEM)

– No meshing of the coil, no artificial boundary 
conditions

– Higher order quadrilateral meshes, parametric 
mesh generator, morphing

– Modeling of superconductor magnetization

– Permanent magnets

– Quench simulation of long accelerator magnets 
(2.5 D) 

➔ Mathematical optimization techniques

– Genetic optimization, Pareto optimization, Search 
algorithms

➔ Simulation of magnetic measurements

➔ CAD/CAM interfaces
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New Version 2023

CCT Magnets

Search-Coil Design

Curved Magnets

Maxwell-Stresses

Improved Pre-Processor

Eddy-Current Solver
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Analytical and Numerical Field Computation

➔ Linear algebra

➔ Vector analysis

➔ Harmonic fields

➔ Green’s functions and the 
method of images

➔ Complex analysis

➔ Differential geometry

➔ Numerical field computation

➔ Hysteresis modeling

➔ Coupled (thermal, magnetic, 
electric) systems

➔ Mathematical optimization
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New Edition, Summer 2024

➔ Field harmonics

– Toroidal harmonics

– Pseudo-multipoles

➔ Coil Magnetometers

➔ Stretched-Wire Measurements

➔ Synchrotron Radiation

➔ Faraday Paradoxes 

➔ Iron-dominated magnets

– Wigglers and Undulators

➔ Coil-dominated magnets

– CCT Magnets

– Strongly curved magnets
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Mathematical Foundations of Magnet Design

Maxwell Equations

Integral Form

Lumped circuit 

calc. of NC 

magnets

Local Form

Laplace’s Equation

Field quality in 

Accelerator magnets

Harmonic Fields Green’s Functions

The field of 

line-currents

Coil-dominated

magnets

Curl-Curl

Equation

Weak-

Forms

FEM

Kichhoff’s

Theorem

BEM

Global Form

DEM
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Main Field in Normal Conducting Dipole

r
dr

Ampere`s law
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Dipole with Varying Cut-Section

Conclusion: Magnet with large air gap is stabilized against variations in permeability
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Permanent Magnet Excitation

Conclusion: Operate PM in 

its BmHm maximum
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Permanent Magnet Circuits

s = - tan a
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Optimal Position of Permanent Magnets

Magnetic

Scalar 

Potential

Conclusion: Do not bother with reluctance models – use FEM codes
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Mathematical Foundations of Magnet Design
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Field Quality

2D Field map Good field region

3D Field map
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Solving of Boundary Value Problems

2. Chose a suitable coordinate system

1. Governing equation in the air domain

3. Find eigenfunctions and incorporate

some knowledge. Coefficients are not known yet

4. Calculate the field components
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Solving of Boundary Value Problems

5. Measure the field on a reference radius and perform Fourier

analysis (develop into the eigenfunctions). Coefficients are known here.

6: Equate the known and unknown coefficients

7. Put this into the original solution for the entire air domain 
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Rotating Coil Magnetometers

380 mm

8 mm

Rotating Coil Magnetometers
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The Electronic Rack

Power converters, 

DAC

(angular encoder)

Integrators, PC

(re-parametrization to arc 

length)

Patch panel

(compensation of 

signals)
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Mathematical Foundations of Magnet Design

Maxwell Equations

Integral Form

1D Calculation of 

NC Magnets

Local Form

Laplace’s Equation

Field quality in 

accelerator magnets

Harmonic Fields Green’s Functions

The field of 

line-currents

Coil-dominated

magnets

The Curl-Curl

Equation

Weak-

Forms

FEM

Kirchhoff’s
Theorem

BEM

Global Form

DEM
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Rutherford (Roebel) Kabel, Strand, Nb-Ti Filament
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Expanding the Green Function

This is a H1 cohomology solution: 

curl-free but cannot be expressed as 

the gradient of a scalar potential
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The Imaging Current Method
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The Image Current Method



Stephan Russenschuck, CERN  TE-MSC-TM, 1211 Geneva 23

The Image Current Method

Conclusion: Iron yoke contributes about 20% to the dipole 

field (and much less to the higher order harmonics)
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Ideal Current Distributions

“Allowed” Multipoles for fully symmetric magnets 

B1, b3, b5, b7, … B2, b6, b10, b14…
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Coil-Block Approximations
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Sources of Multipole Field Errors
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Superconductor Properties

➔ Hard Superconductors (Type 2)

– Magnetic field can penetrate

– Magnetization with hysteresis

➔ Critical current density Jc

– Current density at spec. electric field     (Ec = 

1 µV/cm)

➔ Critical surface

– Dependence of Jc on T and B
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Peter Lee`s Jc Tables https://fs.magnet.fsu.edu/~lee/plot/plot.htm

Non-stabilized

Be careful with the definition of

engineering current density
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Margins
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Margins

Enthalpy reserve

Heat capacity of the 

copper/SC strand until 

quench

Average heat reserve (copper, SC and 

helium) in the cable (slow losses). No 

heat transfer.
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Margins
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Excitation Cycle
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Bean’s Critical State Model (CSM)
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Screening Field in a Slab

q =1 center of filament

t = modulus of shielding field

Coffey, 1967
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Magnetization in SC Slab, Measured in LHC Strands
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Superconducting Magnetization (Hysteresis Model)
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Field Quality Calculation from Magnetization
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Field and SC Magnetization

B3(I) B3(M)
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Vector-Hysteresis in Combined Function Magnet (MCBX)
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Eddy Currents in Rutherford Cables

Nodes: 2 Ns * Nb + Ns 

Nb = L / pitch * Ns 

Pitch = 100 mm

Ns = 36 

Nodes = 30 000 / meter

LHC main dipole = 4.2 km cable 

126 Million Nodes
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Field Generated by ISCC

Computation relying on empirical parameters such as 

RRR, and adjacent/transversal contact resistances in the cable 
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Quench

➔ Quench: Transition from SC to normal conducting state caused by

beam losses, conductor movement, eddy currents etc. 

➔ Propagation:

– Normal conducting zone generates Ohmic heat

– Quench- und temperature distribution determined by loss-mechanisms 
and cooling capacity

U
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Quench Mechanism and Magnet Protection

V
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Switches and Dump Resistors

Heater failure and switch failure are not permitted

Anekdote: Dynamite switch
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Quench Simulation (Multi-Physics, Multi-Scale)

19

Quench Simulation
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Challenges I

➔ Multiscale

– Filaments 6 μm

– Strands 1 mm

– Cable 0.1 m

– Magnet 10 m

– String 3.2 km

➔ Multiphysics

➔ The smallest time constant determines 
the Runge-Kutta step
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Challenges II: Material Parameters

62

Electrical resistivity

Thermal

conductivity

Volumetric

heat capacity
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Validation 

Empirical parameters:

- RRR

- Ra/Rc

- IFCC effective res.

- heat conductivity

- heat capacity

➔ Different families of parameters yield exactly the same observable I(t)

➔ More than one solution exists

➔ Care must be taken to model 

– all relevant phenomena

– using realistic material parameters
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Our Test and Measurement Environment (SM18 and 311)

Everybody believes in the 

measurements, but the 

measurement engineer himself.

Nobody believes in the field 

simulations, but the field 

computation expert himself.
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Quench Simulation

Challenge

Model all relevant physical phenomena with adequate accuracy so that we 
can be confident to simulate the internal states of a quenching magnet and 
understand its behavior.

Validation

Measured quantities can be reproduced with all material- and 
model-parameters within their range of uncertainty.

Extrapolation and Introspection

If the above criteria are reached, extrapolated results will match 
measurements without adaptation of material- and model parameters. It is 
then also possible to simulate the internal states of the magnet that escape 
measurements.
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Introspection (Voltage Ripples)
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Defect on Quench Heater Circuit
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Defect on Quench Heater Circuit
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Defect on Quench Heater Circuit
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Raw signal

(voltages)

Processed data (fluxes)

Physical object (magnet)

Capture noise

(random, systematic)

Read-out noise

(electronics, maiinly

random=

AD-conversion

Digital integration,

Drift correction

Magnetic flux density in 

the magnet bore

The Avatar and Twin (classical black-box measurement)

Field  

Transducer

Modelling, 
Calibration,
Approximation errors

Bringing together Simulations Tests and Magnetic Measurements
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The Avatar and Twin (tracing of manufacturing tolerances and errors) 

Raw signal

(voltages)

Processed data (fluxes)

Physical object (magnet)
Num. magnet model (design)Modeling errors

Discretization errors

Approximation errors

Numerical errors

𝑋 ෨𝑋

Manufacturing 
tolerances/errors

Capture noise

Read-out noise

AD-conversion

Digital integration,

Drift correction

Prediction

Magnetic flux density in 

the magnet bore

Num. magnet model (as built)

Magnetic flux

density in W

Solver

Observation 

function

Post-processor Field 

Transducer

QA

Simulated                         ?????                         Measured

Bringing together Simulations and Magnetic Measurements
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The Avatar and Twin (generalized field description with updated model)

Raw signal

(voltages)

Processed data

Physical object (magnet)

𝑋 ෨𝑋

Observation functionPrediction

Comparable quantity 

Magnetic flux density in the 

magnet bore

Weighted least-

squares

Quantity of interest

Expected voltages in 

transducer, including 

uncertainty

Physical state variables

Boundary Sources (Single and Double-layer Potentials, or 

Harmonic coefficients on trivial domains)

Magnetic flux density in 

trivial domain W
Field 

Transducer

Avatar

Inverse field problem

Bringing together Simulations and Magnetic Measurements
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➔ The observation function 𝑠: 𝑩(𝒓, 𝑡) → 𝑈(𝒓, 𝑡) is determined by modelling the magnetic 

measurement technique which allows including calibration and the sources of uncertainty:

– Modelling errors (neglect of temperature dependent

– Approximation errors (coil parameters approximated by surface and radius)

– Calibration errors (e.g., errors in the surface and radius measurements) 

➔ The inverse observation function 𝑠−1: 𝑈 𝒓, 𝑡 → 𝑩(𝒓, 𝑡) may not exist

➔ The observation function allows the combination of different transducers (sensor fusion)

Coil couples with Br and Bz

The Observation Function
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Bringing together Simulations and Magnetic Measurements

Magnetic flux density parameterized by stream function on 3D domain boundary

Raw signal

(Hall voltages)

Physical object (magnet)

𝑋 ෨𝑋

Voltage response of the Hall probe
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𝑙(𝜃, 𝜑)

Observation function

Magnetic vector potential for particle tracking

Prediction

Comparable quantity 

Magnetic flux density in the 

magnet bore

Maximum a 

posteriori

3D Field inversion

Quantity of interest
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Model-Based Systems Engineering
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Field Description I-III

Stephan Russenschuck, CAS, 2023
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A Little Self-Test

➔ What is a vector? An arrow, a tuple of numbers,  a quantity having 
direction and magnitude, a solution of a linear equation system, a 
contravariant tensor? 

➔ What is the difference between coefficients, components, and 
coordinates?  

➔ We know (from school) how to add vectors represented as arrows by 
means of the parallelogram law. Why not add the position vector (units of 
meter) and the force vector (units of newton), represented by an arrow at 
the tip of the position vector? 

➔ What are field lines

➔ What are magnetic fields

➔ We say that fields are linear. So is the field in a sextupole non-linear?
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Mathematical Foundations of Magnet Design

Maxwell Equations

Integral Form

Lumped circuit 

calc. of NC 

magnets

Local Form

Laplace’s Equation

Field quality in 

Accelerator magnets

Harmonic Fields Green’s Functions

The field of 

line-currents

Coil-dominated

magnets

Curl-Curl

Equation

Weak-

Forms

FEM

Kichhoff’s

Theorem

BEM

Global Form

DEM
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Faraday’s Law (Inner Oriented Surface, Voltage along its Rim)

The potential to induce a voltage (electro-motive force)

B. Auchmann, S. Kurz and S. Russenschuck, "A Note on Faraday Paradoxes," in IEEE Transactions 

on Magnetics, vol. 50, no. 2, Feb. 2014
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Faraday Paradoxes
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Faraday Paradoxes

Convective derivative

Ohms law for moving media

Terminal voltage (measured)

p

p

p
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Decision Tree for Induction Problems

8

2

When slip rings or bulk materials are present, always use the local Ohm’s law. The symmetry of the device must allow 

to use “arbitrary” integration paths, otherwise a boundary value problem must be solved. The “naive” application of the 

“flux rule” works in cases where the loop is made of a thin wire.
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Ampere’s Law (Outer Oriented Surface - Current Crossing)

The current needed to cancel the longitudinal field component 

(magnetomotive force)
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Gauss Law (Outer Oriented Volume - Electric Charge Influenced)

+

+
+
+ +

+

+ + + +

- --

The capacity to induce charge
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Magnetic Flux Conservation Law (Inner Oriented Volume)

Conservation of flux
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Maxwell’s  Extension

Ampere Rate of change of 

charge
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Maxwell’s Equations in Global Form

Ampere

Faraday

Flux conservation

Gauss

Conservation of charge / Kirchhoff law

The current exiting a volume is equal to the negative rate of the charge in that volume 

For it is unworthy of excellent men to lose hours like slaves in the labor of calculation 
which could safely be regulated to anyone else if machines were used. 
Gottfried Wilhelm Leibniz (1646–1716) 
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Mathematical Foundations of Magnet Design

Maxwell Equations

Integral Form
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Maxwell’s Equations in Integral Form
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Electromagnetic Fields
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Flux Tubes of Mother Earth

What is a magnetic field?

What is more fundamental H or B?



Stephan Russenschuck, CERN  TE-MSC-TM, 1211 Geneva 23

Earth Magnetic Field (better representation)
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Different Renderings of the Same Vector Field
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Set

Affine space 

Vector space

Topology

Inner and outer orientation

Contractable

(or not)

Oriented Manifolds

Boundary
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Inner and Outer Oriented Surfaces

Outer oriented 

by the current
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Inner and Outer Oriented Surfaces

Embedding into oriented ambient 

space (Origin, Basis)

Inner oriented, 

because flux is a 

measure for the 

voltage that can be 

generated on the 

rim
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Set

Affine space  + Origin + Basis 

Vector space

Topology,

orientation

Embedded, 

consistently inner and 

outer oriented

g1

g2

g3

Consistently-Oriented and Embedded Manifolds

Bruno Touschek (1921-1978)
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Set

Affine space  + Origin + Basis 

Vector space

Metric space

Inner product

space

Orthonormal

basis

Topology

g1

g2

g3

u

v

Applications: Calibration of Helmholtz coils, calibration 

of 3-axis displacement stages and robots

Coordinates and Metric
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Set

Affine space  + Origin + Basis 

Vector space

Metric space

Inner product

space

Orthonormal

basis

Topology

Coordinates

ex

ey

ez

u

v

Differentiability

Tangent space

eu

ev

Tangent Space on Differential Surfaces
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Set

Affine space  + Origin + Basis 

Vector space

Metric space

Inner product

space

Orthonormal

basis

Topology

Coordinates

u

v

Differentiability

Tangent space

Vector fields

Basis field

E3 

Oriented 

Euclidean

Affine Space

ex

ey

ez

The Required Mathematical Structure of Vector Fields

Required: Orientable manifolds, origin, coordinate frame, metric, smoothness

No switches, no Moebius strips, no internal boundaries 
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Constitutive Equations

Linear (field independent), homogeneous (position independent), 

lossless, isotropic (direction independent), stationary 
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Hysteresis
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Surface Charge and (Fictitious) Surface Current

Fictitious quantities to define boundary values
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Continuity Conditions (1)
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Continuity Conditions (2)
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Surface Current and Surface Charge
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Continuity Conditions (3)

No surface currents:

or
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Continuity at Iron Boundaries 
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Stacking Factor for Yoke Laminations 
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The Homopolar Generator 

1

1

0

Einstein: All physics is local

dF = I dr x B
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Mathematical Foundations of Magnet Design

Maxwell Equations

Integral Form

1D Calculation of 

NC Magnets

Local Form

Laplace’s Equation

Field Quality in 

Accelerator Magnets

Harmonic Fields Green’s Functions

The Field of 

Line-currents

Coil-Dominated

Magnets

The Curl-Curl

Equation

Weak-

Forms

FEM

Kichhoff’s
Theorem

BEM

Global Form

DEM
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Space Curves (as Mappings)

Beam orbit

CCT magnets

End spacers
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Freney Frame of Space Curves
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Nested Helices
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Geodesic Strips
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Darboux and Frenet Frames
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v

ex

ey

ez

nBest linear approximation of f over displacement distance dr

grad f

Directional Derivative and the Gradient
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Grad, Curl and Div in Cartesian Coordinates
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The First Lemma of Poincare

Ugly and not even a universal proof (orthogonality assumed)
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Coordinate Free Definition of Grad, Curl, and Div
1

2

0
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Kelvin-Stokes Theorem

No jump discontinuities (for example, 

co-moving shielding devices)



Stephan Russenschuck, CERN  TE-MSC-TM, 1211 Geneva 23

Gauss’ Theorem
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The Boundary Operator and the First Poincare Lemma

Much nicer than proving it in coordinates

Reversal of arguments yields two important statements (next)
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The Second Lemma of Poincare on Contractible Domains

Point

Line

Surface Volume

Scalar

fie

l

d

Scalar

fie

l

d

Vector

fie

l

d

Vector

fie

l

d

0

const.

im(grad)

im(curl)

grad

div

curl



Stephan Russenschuck, CERN  TE-MSC-TM, 1211 Geneva 23

Lemmata of Poincare on Non-Contractible Domains
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Maxwell’s Equations in Local Form
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Maxwell’s House

curl B is ugly !Faraday complex

Inner oriented

Ampere-Maxwell complex

Outer oriented
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Maxwell’s Facade
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Field Quality

Field map Good field region
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Solving of Boundary Value Problems

2. Chose a suitable coordinate system

1. Governing equation in the air domain

3. Make a guess, look it up in a book, use the method of separation:

That is: find eigenfunctions. Coefficients are not know yet
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Solving of Boundary Value Problems

5. Calculate a field component

4. Incorporate a bit of knowledge and rename
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Solving of Boundary Value Problems

6. Measure or calculate the field on a reference radius and perform Fourier

analysis (develop into the eigenfunctions). Coefficients known here.
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Solving the Boundary Value Problem

7: Compare the known and unknown coefficients

8. Put this into the original solution for the entire air domain 
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Solving the Boundary Value Problem

9: Calculate fields and potential in the entire air domain
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Solving Boundary Value Problems

Take any 2p periodic function and develop according to 

We can use fields, potentials, fluxes, or wire-oscillation amplitudes as 

“raw data”. The linear differential operators grad and rot transform into 

simple algebra in the L2 space of Fourier coefficients. 

This is also the foundation for the method of superposition
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Complex Potentials

This implies

Which are the Cauchy Riemann equations of
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Complex Representation of the Field in Accelerator Magnets
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Feed-Down: Proof
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Feed-down: Enemy and Friend

➔ Measurement of magnetic axis in dipole by 
powering the coil as a quadrupole

➔ Feed-down can be used to center the 
measurement coil

– Minimizing B10 which can only occur as 
feed-down from B11

➔ Alignment tolerances of MCS and MCDO 
correctors w.r.t. MB

– 0.3 mm radially

➔ Dipole magnetic axis has to be well 
aligned with respect to the closed orbit

– ± 0.1 mm systematic, ± 0.5 mm 
random (r.m.s)
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Maclaurin Series and the Analytical Continuation  
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Ideal Pole Shape of Conventional Magnets

Cauchy-Schwarz inequality

For the directional derivative

The flux density B exits a highly permeable surface in the normal 

direction. Therefore, the pole shape of normal conducting magnets can 

be seen as an equipotential of the magnetic scalar potential.

The directional derivative takes its maximum when v points in the 

direction of the gradient. Therefore, the gradient points in the direction of 

the steepest ascent of Φ and is thus normal to the surface of 

equipotential.
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Ideal Pole Shape of Conventional Magnets
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Ideal Pole Shape of Conventional Magnets
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3D Field Harmonics
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Integrated Harmonics

Local transverse 

harmonics calculated at 

different reference radii 

and scaled with the 2D 

laws 

wrong
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Integrated Harmonics

The 2D scaling laws hold for the integrated harmonics
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Mathematical Foundations of Magnet Design

Maxwell Equations

Integral Form

1D Calculation of 

NC Magnets

Local Form

Laplace’s Equation

Field Quality in 

Accelerator Magnets

Harmonic Fields Green’s Functions

The Field of 

Line-currents

Coil-Dominated

Magnets

The Curl-Curl

Equation

Weak-

Forms

FEM

Kirchhoff’s
Theorem

BEM

Global Form

DEM
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8

Rutherford (Roebel) Kabel, Strand, Nb-Ti Filament
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The Field of Line Currents

Why bother?

Reciprocity; except for 

sign it does not matter if 

we exchange the 

source and field points 
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Greens Functions of Free Space
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Biot-Savart’s Law

This works only in Cartesian Coordinates
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Biot Savart’s Law

Current loops must always be closed and must not leave the problem domain

But wait a minute: Are we finished? Are we sure that the 

divergence of the vector potential is zero as it was required for 

the Laplace equation?
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Biot-Savart’s Law for Line Currents

1

5

3
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Vector Potential of a Line Current
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Field of a Line Current (Infinitely Long)

Arbitrarily large but constant
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Field of a Line Current Segment
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Field of a Ring Current
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Field of a Ring Current
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Field in the Return Yoke of CMS
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Field of a Ring Current (Helmholtz and Maxwell Coils)

On axis:

In the center:



Stephan Russenschuck, CERN  TE-MSC-TM, 1211 Geneva 23

Magnetic Dipole Moment

Far field approximation
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Measuring the Magnetization of PM Block in a Helmholtz Coil
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The Solid Angle and Magnetic Scalar Potential

Solid angle (easy to compute) yields the magnetic scalar potential of a current loop
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The Solid Angle and Magnetic Scalar Potential

Euler Theorem

(spherical excess)
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Elegant Proof of the Imaging Current Method
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Magnetic Energy

Linear !
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Inductance
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Combined Dipole Sextupole Corrector
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Mutual Inductance Matrix

A coil of multipole order N does not couple into one of order K
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Nonlinear Circuits (Differential Inductance)

For example, 

machine rotor motion
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Differential Inductance for the MQXY
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Nonlinear Circuits 

No hyseresis !
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The CERN Field Computation Program ROXIE 
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Objectives for the ROXIE Development

➔ Automatic generation of coil and yoke geometries

– Features: Layers, coil-blocks, conductors, strands, holes, keys

➔ Field computation specially suited for magnet design (Ar, BEM-FEM)

– No meshing of the coil

– No artificial boundary conditions

– Higher order quadrilateral meshes, Parametric mesh generator

– Modeling of superconductor magnetization

➔ Mathematical optimization techniques

– Genetic optimization, Pareto optimization, Search algorithms

➔ CAD/CAM interfaces

– Drawings, End-spacer design and manufacture
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The Problem Domain



Stephan Russenschuck, CERN  TE-MSC-TM, 1211 Geneva 23

Examples for FEM Meshes
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Shape Functions
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Transformation of Differential Operators

Complicated Easy
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Collinear Sides yield Singular Jacobi Matrices

Note: Bad meshing is not a trivial offence
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Curl-Curl Equation

Problem in 3-D: Gauging
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Weak Form in the FEM Problem
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Weak Form in the FEM Problem (Green’s First Theorem)

Removal of the second derivatives
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Meshing the Coil
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Magnet Extremities
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BEM-FEM Coupling (Elementary Model Problem)
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The Elementary Model Problem in Magnet Design
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Green’s First and Second Identities in FEM and BEM
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The FEM Part (Iron-Domain)

Vector-Laplace
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FEM Part (Iron Magnetization but no Current Sources)
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BEM Part (Air-Domain – No Iron, but Current Sources)

Apply Green’s second theorem:

Vector Laplace Weighted Residual

Biot-Savart
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BEM-FEM Coupling

FEM

BEM
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Open Boundary Problems (1)

LHC Beam Screen
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Open Boundary Problem (2)

Collared Coil 

Field Problem

Collared Coil 

Measurements in 

Industry
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Source Field
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Reduced Field
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Total Field
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Forces (N) in the Connection Ends of the LHC Main Dipole

I Fx Fy Fz

1 -39.7 -44.0 -45.4

2 -6.5 3.7 -41.7

3 -6.1 88.3 -38.2

4 1.25 3.9 -28.5

5 48.1 -46.7 -48.5

Sum -2.95 5.2 -202.3

I
I

I

II

I

5

4

3

2

1

x

y
z


