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Causal inference challenge 

Will statins reduce the risk of cardiovascular diseases?

Statins taken

Statins non taken

Sufficient to accept the
treatment effect?

NO, other variables must be 
considered: age, other 
diseases, meds exposure, etc. 

Random Patient 1

Random Patient 2
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Causal inference challenge 

Y

X

t

Confounders 

• Patient variables that affect the outcome and the 
treatment effect

Treatment (yes/no) 

• Treatment which effect is 
being studied

Outcome 

• Treatment effect on patient variables 

We study the treatment effect with the comparison of factual and counterfactual 
data
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Causal inference challenge 

Will statins reduce the risk of cardiovascular diseases?

Y

X

t

Confounders 

• Age
• Previous treatments
• Hypertension

Treatment (yes/no) 
• Statins

Outcome 

• Risk of Cardiovascular disease
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Randomized Controlled Trials (RCTs)

➢ Reductionist approach to provide causal estimates for single/two treatments for single

diseases
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x,t1

x,t0

Y0/1|t1

Y0/1|t0

Design

Y

X

t

Confounders: 
(e.g., Age, other treatments, 
Hypertension…)

Treatment
(e.g., Statins)

Outcome
(e.g., Cardiovascular disease)

Causal structure in RCTs

X

R



What if no RCTs are available?
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Y

X

t

Confounders: 
(e.g., Age, other treatments,
Hypertension…)

Treatment
(e.g., Statins)

Outcome
(e.g., Cardiovascular disease)

➢ Observational data can be used to estimate causal effects

X, t1

X’, t0

Y0/1|t1

Y0/1|t0

Matching

However, this is still reductionist approach 



RCTs for multimorbidity study
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x,t1

x,t2

Y0/1|t1

X

R
x,t3

x,tn

- You need millions of people

- RCTs are not feasible nor fundable

➢ Not good representation of all the multimorbid population (Selection Bias)

➢ The reductionist approach does not contemplate the relation confounder-treatment



Solutions to the challenge

➢The high dimensional observatinal data are potential for generating 

causal inferences for combinations of treatments for multimobidity

➢Convergent efforts are needed 
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Introduction to Causal Effect VAE

Y

X

t

Confounders

Outcome

Treatment (yes/no) 

• The patient observable confounders represents partially the full reality
• Selection Bias since x is a noisy version of the confounders 
• Heterogeneous groups of patients
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Introduction to Causal Effect VAE

Y

X t

Outcome

Treatment (yes/no) 

Z

Unmeasured confounders

Introducing a full picture of the reality reduces biased models!

Measured confounders
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Objectives of the Causal Effect VAE

Y

X t

Measured confounders

Outcome

Treatment 
(yes/no) 

Z

• P(X,Y,t): adquire all the combinations of X,Y,t

• Q(Y/Z,t): Predict factual & conterfactual 

data to understand the causal effect of t

Objectives
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Unmeasured confounders



Idea behind Causal Effect VAE

Y

X

t

Outcome

Obs. confouders

Treatment

P(X,Y,t) Q(X,Y/Z)P(Z)
[N(0,1)]

Y’

X’

Outcome

P(Z)=Q(Z/X,Y,t)

• Extract Z from X,Y,t (p(Z/X,Y,t)): acquire all the data responsible for the outcome Y

• Predict Y (q(Y/Z,t)): have conterfactual data to understand how t affects the outcome Y

What a VAE offers:

1) Understand the causality and map it into a gaussian distribution
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Idea behind Causal Effect VAE

X P(X) Q(X,Y/Z)P(Z)
[N(0,1)]

Y’

X’

Outcome

• Extract Z from X (p(Z/X,Y,t)): acquire all the data responsible for the outcome Y with only X

• Predict Y (q(Y/Z,t)): generate factual & conterfactual data for X to predict the causal effect for 

a single patient

What a CEVAE offers:

2) Map it into the same gaussian distribution only samples of observational data

P(Z)=Q(Z/X) =Q(Z/X,Y,t)
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Benefits of Causal Effect VAE

➢ Fully representation of the confounders

➢ Works well with heterogenous groups

➢ Very good for multidimensional problems (for more than one treatment, for

time dependent treatments, etc)

➢ Useful for benefit-harm studies where with drugs interaction through time

➢ Interpretability

Perfect tool to select treatment combinations with the best 
possible outcome for multimorbidity patients
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Plans and status

- Generated synthetic data with a toy model for 
patients (controled environment)

- We are now in the process of understanding the 
CEVAE with the toy data

- Test the model in a low dimensional case and 
compare it to traditional methods

- Scale to the fully multimorbidity case
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