

EMP²:

Environmental Modelling and Prediction Platform

Christian Lessig, <u>Ilaria Luise</u>, Martin Schultz, Alberto Di Meglio, Anna Ferrari, Sofia Vallecorsa et al.

> CERN OpenLab Technical Workshop 16th March 2023

Motivation and scientific challenge

Atmosphere:

- Complex phenomena involving multiple scales
- No complete classical model to simulate the dynamics
- Very large amounts of **observational** data available

We have hundreds of TB of available atmospheric observations.

Can we use the information in these datasets for the next generation of improved weather and climate models?

Introduction

Why CERN?

Solve common scientific challenge(s) in high-energy physics and weather/climate science using AI/ML

Model complex, nonlinear phenomena and improve current simulations

Access multi-scale dependencies of a given process Earth science: eg. better understand convection phenomena CERN: eg. particle-jet showers reconstruction

Condense dataset information in a compact representation

better handle the information in downstream applications. eg. condense the info in a few GB rather than TB

Explore potential of unsupervised learning for scientific applications

Extract new information directly from data eg. learn unknown correlation patterns Earth science: eg. early detection of extreme events CERN: eg. anomaly detection

Common Goal:

Develop a proof of concept of representation learning for scientific applications based on observations

Representation Learning

The EMP² model architecture

The beauty of foundation models

New concept: representation learning

The beauty of foundation models

Can we transfer the concept of representation learning from language models to fundamental science?

Learn a domain-specific but task-independent representation that is useful for a large range of scientific applications. Challenge: Need to deal with much more complex processes and datasets than in NLP

The project in a nutshell

First proof-of-concept of a machine-learning based global environmental model trained on terabytes of observational data

ERA5 reanalysis

 \sim

 $\sim \sim$

 \sim

The project in a nutshell

First proof-of-concept of a machine-learning based global environmental model trained on terabytes of observational data

Forschungszentrum

Applications: one model for multiple purposes

Use the learned representation to improve the state-of-the-art of specific weather & climate-related scientific applications

Applications: one model for multiple purposes

Use the learned representation to improve the state-of-the-art of specific weather & climate-related scientific applications

Publicly available pre-processed dataset of hourly spaced interpolated Earth observations: The <u>ERA5 reanalysis</u> from ECMWF

Subset of ERA5 reanalysis used at the moment for training:

- Physical fields: vorticity, divergence, temperature, geopotential height, specific humidity, orography
- Space: 721 x 1440 x 6 vertical layers
- Time: randomly sample over 24 time steps per day for 365 days for 70 years

721x1440 horizontal grid (0.25 degree)

The training protocol

Use a variation of BERT masked language model from self supervised trainings in NLP

Random sampling of neighbourhoods for training \rightarrow stochastic gradient descent

Split cube in small space-time regions (3D cubes) \rightarrow tokens Mask random tokens within the hyper-cube and try to predict them back

visually: learn representation dynamics through interpolation

Preliminary results: 1h forecasting

Generalisation from HPC centres to clouds

Future: develop the API & the user interface

.. see last talk about the InterTwin project

Goal: test EMP² within a digital twin existing architecture.

EMP² will be implemented as one of the use cases to test the Digital Twin architecture developed through the InterTwin Project

Conclusions

EMP²: Environmental Modelling and Prediction Platform

- Exciting scientific challenges ahead on how to better exploit the large amounts of available unlabelled data using AI/ML.
- Transformers have been proven a powerful and scalable architecture. Can we use them for scientific applications to solve some of these challenges?

EMP² current status:

- Implementing the machine learning architecture. Now testing the multi-field and multi-level architecture. Long runs at JSC planned in the next weeks.
- Efforts to test the model on downscaling and bias correction applications are ramping up.

.. and some long term plans:

 Implementation in the Digital Twin engine as use case to test the InterTwin architecture

Questions for EMP² 2.0:

- How to integrate "raw" observations?
- Coupled atmosphere+ocean system?

