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Introduction

Quantum Machine Learning (QML) 

▪ Intersection between Machine Learning (ML) and Quantum Computing (QC) 

- Potential to improve the existing ML techniques 

- Can be efficiently simulated on the real quantum hardware

▪ Application of QML on images still challenging

→ Large input dimensionality, quantum embedding methods

→ Limited to standard dataset (MNIST, Fashion MNIST, etc) [1] 
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Introduction

Earth observation images

▪ Highly benefit from ML

- Complex, unlabelled dataset with large number of features 

- Increasing number of studies on QML applied on EO 

▪ Explore practical QML models for a realistic EO use-case  

EuroSAT image samples [3]

SAT4 image samples [4]

Application of QML in EO [2]
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Classification of 
images
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Hybrid Quantum-Classical model

▪ Multiclass-classification of large images

▪ Perform reconstruction & classification at the 
same time

→ Combine feature extractions & classification 

▪ Latent space constrained in [0, 𝜋]

▪ Autoencoder = Classical

Classifier = Classical / Quantum

Training schema of the hybrid model



▪ Mapping of classical data 𝑥 into quantum state 𝜙(𝑥) in Hilbert space

▪ Crucial for the performance of quantum algorithm

1) Amplitude Encoding 

2) Dense Qubit Encoding

3) Hybrid Angle Encoding (HAE) [5]

Quantum Embedding
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Compromise between 
amplitude encoding and qubit 
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Quantum Convolutional Neural Networks 

▪ Quantum analogue of CNN → Preserve translational invariance

▪ Avoid barren plateau problem

▪ Start with the model proposed by T. Hur et al. [5]

▪ Consists of convolutional filters & pooling layers 

→ Different Ansatz to be investigated

PQC ansatzes used as convolutional filters [4] QCNN for multiclass-classification
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Results

Training set Test set 

▪ Train the hybrid model with Circuit7 & L =  2 for SAT4 (4 classes) 
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Results

Training set Test set 

▪ Train the hybrid model with Circuit7 & L = 1 for EuroSAT (10 classes) 



▪ Evaluate pretrained model on IBMQ Montreal with 600 training samples
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Results – Evaluation on real quantum hardware 

DQE + Circuit 3 (91% w/o noise)  
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Generation of 
images
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Hybrid Approach for image generation

Training schema of the hybrid GAN

▪ Quantum Generative Adversarial 
Networks : Quantum Generator + 
Classical Discriminator

▪ Features extracted from images via a 
pretrained autoencoder used as GAN 
training set 

▪ Generated features passed back to the 
autoencoder to reconstruct images 
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Results
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Results

Quality Diversity



▪ Hybrid quantum-classical model for EO image classification 

→ Successful multi-class classification (99% for training, >75% for test) 

▪ Two-step approach for generation of images 

→ Higher generalization power compared to the classical counterpart

Would it be possible to define the quantum advantage in a more solid way? 
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Conclusion
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