Study of high-throughput distributed
caching system based of Intel DAOS
for ATLAS Phase-Il Dataflow

OOOOOOOOOOOOOOOOOOOOOOOOOOOO

ATLAS Dataflow -
overview

Dataflow is the TDAQ sub-system
that manages the movement of
data from the detector readout
system to the processing farm that
analyses and selects interesting
physics events

Intel DAQOS -
Overview

“DAQOS is an open-source software-defined object
store, providing high bandwidth, low latency
and high IOPS storage for HPC

https://github.com/daos-stack/daos

Optimized specificly for the new drive
technologies (NVMe, SCM)

Provides key-value interface, non
blocking I/O operations, end-to-end
data integrity and transactional
access

Allows for massively distributed
deployments

Test cluster hosted at openlab

How can it be used as a caching
solution for dataflow?

https://github.com/daos-stack/daos

Phase-Il Dataflow
IN numbers

~500 nodes producing 10 kB
fragments (on average)

Data comes in at 1Mhz
(synchronized)

Very high overall
throughput: 5 TB/s

~3500 consumer machines

Proposed design

I To investigate the performance
— characteristics of the proposed
solution, existing emulators have
| been extended. Storage Handler
D iImplementation making use of
%\ DAOS capabilities has been
— PPuluallh implemented.

DH1 tai EFOQ
Lontainer Getevemt metadata
e
Frax ents

et fragment 0...N

Proposed design — tradeoffs

Advantages Disadvantages

e Separation between tightly e Persistent storage solution requires:
constrained real-time system and the o High throughput
processing farm o High IOPS

e Previously event filter farm needed to e Big upfront cost
be sized to accommodate for the e Big maintenance cost — drive wear
peak data production, big enough (can be limited by the use of
buffer allows for sizing it for the persistent memory devices)
average

e Persistent storage of metadata

1e6 Total producer rate

ReSUItS - data Number of consumer nodes
handlers

e As expected the number of consumer nodes
does not impact the performance of the dh 08
machines

e As expected given big enough storage
backend the rate of pushing fragments scales
linearly with the number of producers

e Currently the biggest problem to overcome is
the rate at which we are able to access the
storage (this is true for both producer and
consumers of the buffer)

e Limited to 1 thread per machine

0.6

Fragments;s

0.4

0.2

2 4 & 8 10
Number of producer nodes

Total consumer rate

Number of consumer nodes
Results — event filters N :
6000 ‘\———_._____: - g
- 10
e The rate of consumption is much smaller \ \
than the production rate: |

o Additional calls needed for the transfer c000 H""ﬂ-x-xhﬁm
of event metadata e
o Additional synchronization required for
the event building
o Ongoing collaboration with DAOS
team to optimize it
e Decrease of consumption rate is expected

due to the need to collect more fragments

Events/s

4000

3000

2 4 3 8 10
Number of producer nodes

Summary

e Dataflow emulators have been extended and modified to make use of DAOS
capabilities

e Suite of different benchmarks has been performed

e The work on optimising the system is still ongoing

Thank you for your attention!

Benchmarking system

All the benchmarks have been run on the Intel Endevour cluster
e DAOQOS Cluster composed of 7 x Intel Cascade Lake nodes
(2 DAOS engines per node)

e Each node equiped with

® 2 x Intel Xeon Platinum 8260L @ 2.40 GHz
196GB of RAM
2 x ConnectX-6-HDR addapters (100Gbps)
12 x 1.5 TB of Optane 100 PMem
64 TB of NVMe drives

DAOS system

Intel DAOS - Basic concepts

® Pool — unit of provisioning, isolation and
collection of targets

® Container — namespace for objects

® Object — stores user data, and has a
unigue object id

® Object id — unique location in the container
(can be used to specify the way in wich
associated data should be spread out)

® Distribution key (dkey) — all entries with
the same dkey are located on the same
target

® Attribute key (akey) — index into an array
located at dkey

11

ATLAS — DAOS mapping

RUN NUMBER / EVENT NUMBER /

run id event id

32 bits 64 bits (~10™4)
Name Container
Strategy 4 | Container per run
Strategy 5 | Container per run
Strategy 6 | Container per run

MODULE ID /
subdetector id

16 bits (~10°2)

Object id
event_id
module_id

event_id + module_id

dkey
module_id
event_id

None

akey
None
None

None

12

Producer — consumer notification

Queue producer algorithm

1.

Choose EF_THREAD_K that should
process given event (either uniformly or
by taking into account states of
EF_QUEUES and EF_COUNTERS)

Push event metadata at offset
one bigger than last pushed

Queue consumer algorithm

1.

EF_THREAD_K queries associated

EF QUEUE K at offset O

if element at offset O exists process it
and increment EF_COUNTER_K by one
if element at offset O does not exist sleep
for XXXX (this is XXXHz)

uuuuuuuu

EF_COUNTER_K

EF_FARM

EF_QUEUE_K

LOCATIONS_ACCORDING_TO_STRATEGY

contains

13

Results — number of nodes comparison

29 procs

- 30001

16

£
£

10004

nada_configuration

2 256
nade_configuration.

2 256

16001 10000
pment_size node_configuration

= ; o

04

To azme dMess | dens TR PR PRI Gin | zieen | e |
o dew dmo |z e | = o dew e e)
So asen 2des04 23a404 | e | 5 So agen 2des04 24e404 5
w350 3da+04 23a404 | ttmos | & w2604 3da+04 2de+04 &
B3 aseM Jded 33l = B3 el 350 ddels i
58 es04 330004 334 EEEEEEEN 10000 S8 3604 34 3derd 10000
B3 st dees | asens IR T

& asest 2desd 230904 & 3sewd EES Eret]

! 2000 4000 8000 o o 2000 4000 8000 16000 2000 0acao
noda_configuration fragment_size noda_configuration fragment_size
- 35000

: H & 2000 §
g 3 H 1e000 8
€3 = &3 <
5g 5g
B B
B B

32000 1000 00000

200 4000 0o o
node_configuration fragment_size

Results — metadata transfer

w/ metadata transfer

w/o metadata transfer

15

