Study of high-throughput distributed
caching system based of Intel DAOS
for ATLAS Phase-Il Dataflow
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ATLAS Dataflow -
overview

Dataflow is the TDAQ sub-system
that manages the movement of
data from the detector readout
system to the processing farm that
analyses and selects interesting
physics events



Intel DAQOS -
Overview

“DAQOS is an open-source software-defined object
store, providing high bandwidth, low latency
and high IOPS storage for HPC

https://github.com/daos-stack/daos

Optimized specificly for the new drive
technologies (NVMe, SCM)

Provides key-value interface, non
blocking I/O operations, end-to-end
data integrity and transactional
access

Allows for massively distributed
deployments

Test cluster hosted at openlab

How can it be used as a caching
solution for dataflow?


https://github.com/daos-stack/daos

Phase-Il Dataflow
IN numbers

~500 nodes producing 10 kB
fragments (on average)

Data comes in at 1Mhz
(synchronized)

Very high overall
throughput: 5 TB/s

~3500 consumer machines



Proposed design

I To investigate the performance
— characteristics of the proposed
solution, existing emulators have
| been extended. Storage Handler
D iImplementation making use of
%\ DAOS capabilities has been
— PPuluallh implemented.
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Proposed design — tradeoffs

Advantages Disadvantages

e Separation between tightly e Persistent storage solution requires:
constrained real-time system and the o High throughput
processing farm o High IOPS

e Previously event filter farm needed to e Big upfront cost
be sized to accommodate for the e Big maintenance cost — drive wear
peak data production, big enough (can be limited by the use of
buffer allows for sizing it for the persistent memory devices)
average

e Persistent storage of metadata



1e6 Total producer rate

ReSUItS - data Number of consumer nodes
handlers

e As expected the number of consumer nodes
does not impact the performance of the dh 08
machines

e As expected given big enough storage
backend the rate of pushing fragments scales
linearly with the number of producers

e Currently the biggest problem to overcome is
the rate at which we are able to access the
storage (this is true for both producer and
consumers of the buffer)

e Limited to 1 thread per machine
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Total consumer rate

Number of consumer nodes
Results — event filters N :
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e The rate of consumption is much smaller \ \
than the production rate: |

o  Additional calls needed for the transfer c000 H""ﬂ-x-xhﬁm
of event metadata e
o  Additional synchronization required for
the event building
o Ongoing collaboration with DAOS
team to optimize it
e Decrease of consumption rate is expected

due to the need to collect more fragments
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Summary

e Dataflow emulators have been extended and modified to make use of DAOS
capabilities

e Suite of different benchmarks has been performed

e The work on optimising the system is still ongoing

Thank you for your attention!



Benchmarking system

All the benchmarks have been run on the Intel Endevour cluster
e DAOQOS Cluster composed of 7 x Intel Cascade Lake nodes
(2 DAOS engines per node)

e Each node equiped with

® 2 x Intel Xeon Platinum 8260L @ 2.40 GHz
196GB of RAM
2 x ConnectX-6-HDR addapters (100Gbps)
12 x 1.5 TB of Optane 100 PMem
64 TB of NVMe drives



DAOS system

Intel DAOS - Basic concepts

® Pool — unit of provisioning, isolation and
collection of targets

® Container — namespace for objects

® Object — stores user data, and has a
unigue object id

® Object id — unique location in the container
(can be used to specify the way in wich
associated data should be spread out)

® Distribution key (dkey) — all entries with
the same dkey are located on the same
target

® Attribute key (akey) — index into an array
located at dkey
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ATLAS — DAOS mapping

RUN NUMBER / EVENT NUMBER /

run id event id

32 bits 64 bits (~10™4)
Name Container
Strategy 4 | Container per run
Strategy 5 | Container per run
Strategy 6 | Container per run

MODULE ID /
subdetector id

16 bits (~10°2)

Object id
event_id
module_id

event_id + module_id

dkey
module_id
event_id

None

akey
None
None

None
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Producer — consumer notification

Queue producer algorithm

1.

Choose EF_THREAD_K that should
process given event (either uniformly or
by taking into account states of
EF_QUEUES and EF_COUNTERS)

Push event metadata at offset
one bigger than last pushed

Queue consumer algorithm

1.

EF_THREAD_K queries associated

EF QUEUE K at offset O

if element at offset O exists process it
and increment EF_COUNTER_K by one
if element at offset O does not exist sleep
for XXXX (this is XXXHz)

uuuuuuuu

EF_COUNTER_K

EF_FARM

EF_QUEUE_K

LOCATIONS_ACCORDING_TO_STRATEGY

contains
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Results — number of nodes comparison
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Results — metadata transfer

w/ metadata transfer

w/o metadata transfer
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