Study of high-throughput distributed
caching system based of Intel DAOS
for ATLAS Phase-ll Dataflow

Mateusz Kojro
chnical Workshop 2023

ATLAS Dataflow -
overview

Dataflow is the TDAQ sub-system
that manages the movement of
data from the detector readout
system to the processing farm that
analyses and selects interesting
physics events

Intel DAQS -
Overview

“DAOS is an open-source software-defined object
store, providin% high bandwidth, low latency
and high IOPS storage for HPC

https://github.com/daos-stack/daos

Optimized specificly for the new drive
technologies (NVMe, SCM)

Provides key-value interface, non
blocking I/O operations, end-to-end
data integrity and transactional
access

Allows for massively distributed
deployments

Test cluster hosted at openlab

How can it be used as a caching
solution for dataflow?

https://github.com/daos-stack/daos

Phase-Il| Dataflow
In numbers

|
3 Storage system 3500x5MB at 300Hz

~500 nodes producing 10 kB
fragments (on average)

Data comes in at 1Mhz
(synchronized)

Very high overall
throughput: 5 TB/s

~3500 consumer machines

Proposed design

Data handler

Put event
metadata

Put fragment 0

Put fragment 1

p—————Put fragment———»|

ut event metadata
only one dh]

Storage handler

)

Event filter

/ Storage handler

~

¥~ Get evemt metadata

et fragment 0...N

———Put fragment N.

o [@ o
]]
=3 =
2. ’E.
=4 =
I]

To investigate the performance
characteristics of the proposed
solution, existing emulators have
been extended. Storage Handler
implementation making use of
DAOS capabilities has been
implemented.

Proposed design — tradeoffs

Advantages Disadvantages

e Separation between tightly e Persistent storage solution requires:
constrained real-time system and the o High throughput
processing farm o High IOPS

e Previously event filter farm needed to e Big upfront cost
be sized to accommodate for the e Big maintenance cost — drive wear
peak data production, big enough (can be limited by the use of
buffer allows for sizing it for the persistent memory devices)
average

e Persistent storage of metadata

le6 Total producer rate

ReSUItS —_— data Number ofconslumer nodes !
handlers o=
— 8
e As expected the number of consumer nodes
does not impact the performance of the dh 08
machines

e As expected given big enough storage
backend the rate of pushing fragments scales
linearly with the number of producers

e Currently the biggest problem to overcome is
the rate at which we are able to access the
storage (this is true for both producer and
consumers of the buffer)

e Limited to 1 thread per machine

o
o

Fragments/s

04

0.2

2 4 6 8 10
Number of producer nodes

Total consumer rate

Number of consumer nodes

Results — event filters §\ — i

e The rate of consumption is much smaller
than the production rate:

o Additional calls needed for the transfer 000 \
of event metadata I

o Additional synchronization required for
the event building
o Ongoing collaboration with DAOS 2000
team to optimize it
e Decrease of consumption rate is expected
due to the need to collect more fragments

Events/s

3000

2 4 6 8 10
Number of producer nodes

Summary

e Dataflow emulators have been extended and modified to make use of DAOS
capabilities

e Suite of different benchmarks has been performed

e The work on optimising the system is still ongoing

Thank you for your attention!

Benchmarking system

All the benchmarks have been run on the Intel Endevour cluster
e DAOS Cluster composed of 7 x Intel Cascade Lake nodes
(2 DAOS engines per node)

e Each node equiped with

® 2 x Intel Xeon Platinum 8260L @ 2.40 GHz
196GB of RAM
2 x ConnectX-6-HDR addapters (100Gbps)
12 x 1.5 TB of Optane 100 PMem
64 TB of NVMe drives

DAOS system

Intel DAOS - Basic concepts

® Pool — unit of provisioning, isolation and
collection of targets

® Container — namespace for objects

® Object — stores user data, and has a
unique object id

® Object id — unique location in the container
(can be used to specify the way in wich
associated data should be spread out)

® Distribution key (dkey) — all entries with
the same dkey are located on the same
target

® Attribute key (akey) — index into an array
located at dkey

11

ATLAS — DAOS mapping

RUN NUMBER / EVENT NUMBER /

run id event id

32 bits 64 bits (~1074)
Name Container
Strategy 4 | Container per run

Strategy 5

Strategy 6

Container per run

Container per run

MODULE ID /
subdetector id

16 bits (~1072)

Object id
event_id
module _id

event_id + module_id

dkey
module_id
event_id

None

akey
None
None

None

12

Producer — consumer notification

Queue producer algorithm

1.

Choose EF_THREAD_K that should
process given event (either uniformly or
by taking into account states of
EF_QUEUES and EF_COUNTERS)

Push event metadata at offset
one bigger than last pushed

Queue consumer algorithm

1.

2.

3.

EF_THREAD_ K queries associated

EF _QUEUE K at offset O

if element at offset O exists process it
and increment EF_COUNTER_K by one
if element at offset O does not exist sleep
for XXXX (this is XXXHz)

METADATA_CONTAINER

contains

,/’

EF_COUNTER_K

pushes to

13

Results — number of nodes comparison

29 procs

- 35000
zo - 30000 z - 30000
2 25000 2 25000
H 3 H

e 20000 2 ce 20000
g8 E g8

g 15000 & g 15000
23 - £3

g 10000 g 10000
& 5000 Ex

1000 2000 4000 000 16000 2000 w4000 100000 1000 2000 4000 w000 16000 w2000 w4000 100000
node_configuraton.fragment_size node_configuraton.fragment_size

3000 - 35000
- -

2
2

Eo 320104 3es04 3e+04 m 10104 E. 3304 33et04 EERCTIN 24ci0d | 24e004 |
S L 25000 o 25000
£o 35es0s 330404 320404 116404 £o 35ess 340404 330404 m
So 35et0s 3der0d 33e+04 | 26ei0d | 12004 20000 £ So 36et0s 3der0d 34e+04 4 20000
S8 35404 34es04 33e+04 5 [3604 34es04 3derod 21404 m
g 15000 5 15000
£3 35etds 3derd 33e+04 = £z 36e0s 35104 34er04
S8 35et0s 330404 330404 1.1e+04 10000 S8 acens 350404 34e+04 Py mm 10000
B8 aserm 34e+04 33e+04 120404 w00 Bg 36er0s 350004 34e+04 _ 226404 o0
1000 2000 4000 8000 16000 32000 64000 100000 1000 2000 4000 800 16000 32000 64000 100000
node_configuraion fragment_size node_configuration.fragment_size
~ - 35000 ~ 55000
- 30000 o - 30000
g | 25000 3 25000
3o 20000 £ Go 20000
58 5 59
s 15000 & H 15000
€3 £3
:\ & 10000 : 2 10000
o s . w0
1000 2000 4000 8000 16000 32000 64000 100000 1000 2000 4000 16000 32000 64000 100000

8000
node_configuration.fragment_size node_configuration.fragment_size

Fragments/s

Fragments/s

Fragments/s

Results — metadata transfer

w/ metadata transfer

=

configuraton
w

node
e 26 18

180403

220004
230004
270104
270104
270104
270104
268101

260004

220004
23004
260004
260004
260004
26004
260100

260404

216104
220004
260404
260400
260004
260404
260101

260004

000
node._confgurston fragment_size

SIRATEGYS

220004
220004
22604
220000

220004

node_confguration fragmen_

00 000
node._confgurston ragment_size

o000

o500

o0

—ast0

)

—as000

o0

H

w/o metadata transfer

- 35000

2500
10000
SIRATEGYS

35es04 adeins 4ss04 _ 128008 200

Fragmentsis

100 100000

“a000
node.confgursion fragment_size

ant

novents_n

000
node._configuraton fragment_size

15

