
Study of high-throughput distributed
caching system based of Intel DAOS

for ATLAS Phase-II Dataflow
Mateusz Kojro

Openlab Technical Workshop 2023

1

ATLAS Dataflow -
overview

Dataflow is the TDAQ sub-system
that manages the movement of
data from the detector readout
system to the processing farm that
analyses and selects interesting
physics events

2

Intel DAOS -
Overview

“DAOS is an open-source software-defined object
store, providing high bandwidth, low latency

and high IOPS storage for HPC “

https://github.com/daos-stack/daos

● Optimized specificly for the new drive
technologies (NVMe, SCM)

● Provides key-value interface, non
blocking I/O operations, end-to-end
data integrity and transactional
access

● Allows for massively distributed
deployments

● Test cluster hosted at openlab
● How can it be used as a caching

solution for dataflow?

3

https://github.com/daos-stack/daos

Phase-II Dataflow
in numbers

● ~500 nodes producing 10 kB
fragments (on average)

● Data comes in at 1Mhz
(synchronized)

● Very high overall
throughput: 5 TB/s

● ~3500 consumer machines

4

Proposed design

To investigate the performance
characteristics of the proposed
solution, existing emulators have
been extended. Storage Handler
implementation making use of
DAOS capabilities has been
implemented.

5

Proposed design – tradeoffs

Advantages Disadvantages

● Separation between tightly
constrained real-time system and the
processing farm

● Previously event filter farm needed to
be sized to accommodate for the
peak data production, big enough
buffer allows for sizing it for the
average

● Persistent storage of metadata

● Persistent storage solution requires:
○ High throughput
○ High IOPS

● Big upfront cost
● Big maintenance cost – drive wear

(can be limited by the use of
persistent memory devices)

6

Results – data
handlers

● As expected the number of consumer nodes
does not impact the performance of the dh
machines

● As expected given big enough storage
backend the rate of pushing fragments scales
linearly with the number of producers

● Currently the biggest problem to overcome is
the rate at which we are able to access the
storage (this is true for both producer and
consumers of the buffer)

● Limited to 1 thread per machine

7

Results – event filters

● The rate of consumption is much smaller
than the production rate:

○ Additional calls needed for the transfer
of event metadata

○ Additional synchronization required for
the event building

○ Ongoing collaboration with DAOS
team to optimize it

● Decrease of consumption rate is expected
due to the need to collect more fragments

8

Summary

● Dataflow emulators have been extended and modified to make use of DAOS
capabilities

● Suite of different benchmarks has been performed

● The work on optimising the system is still ongoing

9

Thank you for your attention!

Benchmarking system

All the benchmarks have been run on the Intel Endevour cluster
● DAOS Cluster composed of 7 x Intel Cascade Lake nodes

(2 DAOS engines per node)
● Each node equiped with

● 2 x Intel Xeon Platinum 8260L @ 2.40 GHz
● 196GB of RAM
● 2 x ConnectX-6-HDR addapters (100Gbps)
● 12 x 1.5 TB of Optane 100 PMem
● 64 TB of NVMe drives

10

Intel DAOS - Basic concepts

● Pool – unit of provisioning, isolation and
collection of targets

● Container – namespace for objects
● Object – stores user data, and has a

unique object id

● Object id – unique location in the container
(can be used to specify the way in wich
associated data should be spread out)

● Distribution key (dkey) – all entries with
the same dkey are located on the same
target

● Attribute key (akey) – index into an array
located at dkey

11

ATLAS → DAOS mapping

Name Container Object id dkey akey

Strategy 4 Container per run event_id module_id None

Strategy 5 Container per run module_id event_id None

Strategy 6 Container per run event_id + module_id None None

RUN NUMBER /
run id

EVENT NUMBER /
event id

MODULE ID /
subdetector id

32 bits 64 bits (~10^4) 16 bits (~10^2)

12

Producer → consumer notification

Queue producer algorithm
1. Choose EF_THREAD_K that should

process given event (either uniformly or
by taking into account states of
EF_QUEUES and EF_COUNTERS)

2. Push event metadata at offset
one bigger than last pushed

Queue consumer algorithm
1. EF_THREAD_K queries associated

EF_QUEUE_K at offset O
2. if element at offset O exists process it

and increment EF_COUNTER_K by one
3. if element at offset O does not exist sleep

for XXXX (this is XXXHz)

13

Results – number of nodes comparison

1 proc29 procs

14

Results – metadata transfer
w/o metadata transferw/ metadata transfer

15

