
Integrating oneAPI/SYCL 
in the ATLAS Software

Attila Krasznahorkay
on behalf of many people



Overview

● Computing challenge(s) for ATLAS
● Accelerated code development in ATLAS
● Using SYCL in the Acts Parallelization R&D projects
● Latest performance results

2



Overview

● Computing challenge(s) for ATLAS
● Accelerated code development in ATLAS
● Using SYCL in the Acts Parallelization R&D projects
● Latest performance results

3

Way too much material to cover in ~12 
minutes. Will mostly focus on performance.



The HL-LHC Computing Challenge

● The problem is well known / widely 
advertised at this point

○ The “more complex” proton-proton collision 
events that we will record at the 
High-Luminosity LHC will require much 
more CPU power than we can afford

● This is in a large part due to the 
behaviour of charged particle tracking 
in ATLAS’s reconstruction

○ Though the CPU code did become a lot 
better since we made these original plots…

4



The HL-LHC Computing Challenge

● The problem is well known / widely 
advertised at this point

○ The “more complex” proton-proton collision 
events that we will record at the 
High-Luminosity LHC will require much 
more CPU power than we can afford

● This is in a large part due to the 
behaviour of charged particle tracking 
in ATLAS’s reconstruction

○ Though the CPU code did become a lot 
better since we made these original plots…

5



Past and Ongoing Work

● Accelerator code development is happening in multiple areas in ATLAS, and since 
many years

○ I pointed to those last year already 
(https://indico.cern.ch/event/1100904/timetable/?view=standard#13-exploring-heterogeneous-arc)

● What I focus on today is just one of these areas
○ However one of the more significant ones…

6

https://indico.cern.ch/event/1100904/timetable/?view=standard#13-exploring-heterogeneous-arc


The ACTS Parallelization R&D

● A number of projects were brought to 
life in the R&D effort

○ It seemed to be a good idea to create 
functionally distinct units independently. 
Even if eventually they’ll likely end up in a 
unified repository.

● Algorithmic development is happening 
in traccc and detray

○ The rest are providing “non-algorithmic” 
helper code for the project

7

algebra-plugins

vecmem

detray

traccc

covfie

https://github.com/acts-project/traccc
https://github.com/acts-project/detray
https://github.com/acts-project/algebra-plugins
https://github.com/acts-project/algebra-plugins
https://github.com/acts-project/vecmem
https://github.com/acts-project/vecmem
https://github.com/acts-project/detray
https://github.com/acts-project/detray
https://github.com/acts-project/traccc
https://github.com/acts-project/traccc
https://github.com/acts-project/covfie
https://github.com/acts-project/covfie


8

The traccc Algorithms

● Multiple algorithms were developed for for every step
○ Black: CPU/C++, Blue: SYCL, Green: CUDA, Brown: Futhark

● Sharing as much code between the GPU implementations (and even between the 
CPU and GPU implementations) as possible in the form of “common functions”



State of the Track Reconstruction Chain

9

Also experim
enting with 

Kokkos and Alpaka, but no 

significant algorith
ms with 

them yet.

https://github.com/acts-project/traccc


Throughput Measurement Code

● Introduced multi-threaded 
executables that process events 
pre-loaded into host memory using 
TBB

○ One task per event

● For GPU devices multi-threading 
helps because:

○ Our algorithm chain still executes some 
operations on the CPU, even when a GPU 
is used

○ Our kernels often don’t fully utilise GPUs, 
so multiple kernels can run in parallel

10

https://github.com/acts-project/traccc/blob/main/examples/run/sycl/full_chain_algorithm.sycl


11

CUDA and SYCL

● Both our CUDA and 
SYCL code is 
sub-optimal still (not 
taking full advantage 
of parallel / 
asynchronous 
execution)

● Current SYCL code 
performs better with 
MT, so only showing 
those results in the 
rest of the plots

Logarithmic scale!



Throughput Measurements

12

● This is “low pile-up”
● Only showing SYCL 

results
● High-end CPUs still 

beat GPUs
● The RX6700 card is 

doing something 
weird (take with 
huge grain of salt!)



13

Throughput Measurements

● This is “high pile-up”
● GPU relative 

performance close to 
constant

● CPUs losing to even 
low-end GPUs



Throughput Measurements

14

● Putting it all 
together…

● GPUs (all) beat 
CPUs in throughput 
at HL-LHC event 
complexities

● Will use such results 
in our final decisions 
about ATLAS 
development 
strategies…

Logarithmic scale!



Integration Into Athena

● All of this only lives in our R&D 
projects at the moment

● The plan is to start moving the code 
into the main Acts repository this year

○ And then to pick up the code in Athena 
from Acts

● Still some strategic questions will 
need to be decided for this about the 
way Acts and Athena would handle 
“event data”

○ No blocker issues on the horizon however

15

https://github.com/acts-project/acts
https://gitlab.cern.ch/atlas/athena


Summary

● Don’t take any of these results as the end-all-be-all!
○ We’re in the process of making our performance testing code even faster with both CUDA and SYCL

● We seem to be well on track to produce maintainable code for track reconstruction 
that would minimise the duplication between CPU and GPU codebases

● Performance numbers are very encouraging at the moment
○ But do take them, especially the AMD ones, with some amount of salt…

16



http://home.cern 

17

http://home.cern

