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Google “supremacy”

Sample bitstrings from a random circuit

200s (quantum) vs 10,000 years (classical) !!

… with total fidelity 0.2%!

Quantum advantages
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… vs “practical” quantum advantage

No killer app yet!

How to measure practical advantage?

1. Simulating large circuits
with a finite fidelity

2. An application-centric 
benchmark: the Q-score



Simulating large 
circuits with a finite
fidelity

1.



Goal: compute 𝑃𝑈 𝑥 = 𝑥 Ψ 2 = 𝑥 𝑈 0 2

Tensor network primer: 
Matrix:                  Vector:             Tensor: 

Matrix-matrix:

Contraction:

Classical simulation of quantum circuits
From a tensor-network perspective
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A v T

A B
𝑖 𝑗 𝑘

= 𝐴𝑖𝑗𝐵𝑗𝑘

C = 𝐶𝑖𝑘𝑖 𝑘



Goal: compute 𝑃𝑈 𝑥 = 𝑥 Ψ 2 = 𝑥 𝑈 0 2

Tensor network primer: 
Matrix:                  Vector:             Tensor: 

Matrix-matrix:

Contraction:

Order matters:

• Naive contraction: 

𝑠 = σ𝑖𝑗𝑘𝑙𝐴𝑙𝑖𝐵𝑖𝑗𝐶𝑗𝑘𝐷𝑘𝑙 , 𝑶(𝑵
𝟒)

• Clever contraction:

𝑠 = σ𝑙[σ𝑘 σ𝑗(σ𝑖𝐴𝑙𝑖𝐵𝑖𝑗) 𝐶𝑗𝑘 𝐷𝑘𝑙], 𝑶(𝑵𝟑)

Classical simulation of quantum circuits
From a tensor-network perspective

5

A v T

A B
𝑖 𝑗 𝑘

= 𝐴𝑖𝑗𝐵𝑗𝑘

C = 𝐶𝑖𝑘𝑖 𝑘

A B

CD

𝑖

𝑗
𝑘

𝑙

ሚ𝐴

CD

𝑗
𝑘

𝑙 መ𝐴

D

𝑘𝑙



Goal: compute 𝑃𝑈 𝑥 = 𝑥 Ψ 2 = 𝑥 𝑈 0 2

Tensor network primer: 
Matrix:                  Vector:             Tensor: 

Matrix-matrix:

Contraction:

Order matters:

• Naive contraction: 

𝑠 = σ𝑖𝑗𝑘𝑙𝐴𝑙𝑖𝐵𝑖𝑗𝐶𝑗𝑘𝐷𝑘𝑙 , 𝑶(𝑵
𝟒)

• Clever contraction:

𝑠 = σ𝑙[σ𝑘 σ𝑗(σ𝑖𝐴𝑙𝑖𝐵𝑖𝑗) 𝐶𝑗𝑘 𝐷𝑘𝑙], 𝑶(𝑵𝟑)

Computing ⟨𝑥|𝑈|0⟩

• Corresponding tensor network

• Find ⟨𝑥|𝑈|0⟩: contract the tensor network.

Note: storage cost

• 3 qubits: 2x2x2 = 8

• 𝑛 qubits: 2𝑛!

Classical simulation of quantum circuits
From a tensor-network perspective
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1. Schrödinger

• CPU cost: 𝑁gatesexp(𝑛)

• Storage cost: exp(𝑛)

All amplitudes at once: “strong”

Three main classical simulation methods
… as three contraction strategies!
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1. Schrödinger

• CPU cost: 𝑁gatesexp(𝑛)

• Storage cost: exp(𝑛)

All amplitudes at once: “strong”

2. Feynman (sum over paths)

𝑥 𝑈 0

= 

𝑎1,𝑎2,…𝑐1,𝑐2

𝜓0 𝑎1𝑏1𝑐1 𝑢1 𝑎1𝑎2

𝑢2 𝑎2𝑏1,𝑎3𝑏2 𝑢3 𝑏2𝑐1,𝑏3𝑐2

𝛿𝑎3𝑥1𝛿𝑏3𝑥2𝛿𝑐2𝑥3

• CPU: ∝ 𝑁path𝑠 ∼ exp(𝑁gates)

• Storage: const.

One amplitude: “closed”

Three main classical simulation methods
… as three contraction strategies!
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1. Schrödinger

• CPU cost: 𝑁gatesexp(𝑛)

• Storage cost: exp(𝑛)

All amplitudes at once: “strong”

2. Feynman (sum over paths)

𝑥 𝑈 0

= 

𝑎1,𝑎2,…𝑐1,𝑐2

𝜓0 𝑎1𝑏1𝑐1 𝑢1 𝑎1𝑎2

𝑢2 𝑎2𝑏1,𝑎3𝑏2 𝑢3 𝑏2𝑐1,𝑏3𝑐2

𝛿𝑎3𝑥1𝛿𝑏3𝑥2𝛿𝑐2𝑥3

• CPU: ∝ 𝑁path𝑠 ∼ exp(𝑁gates)

• Storage: const.

One amplitude: “closed”

3. “Tensor network”

1. Find (close to) optimal 
contraction strategy (NP 
hard problem!)

2. Contract (GPUs, TPUs…)

• CPU : exp(Treewidth)

• Storage: exp(Treewidth)

One amplitude: “closed”

Three main classical simulation methods
… as three contraction strategies!
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Markov & Shi ‘08



• Previous attempts: 

Surrender fidelity by summing 
fewer Feynman paths.

Idea: use key quantum property: 
entanglement

• Trivial case: Product states

Beating the exponential with a finite fidelity
Matrix Product States (MPS)
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See e.g
Schollwöck ‘11



• Previous attempts: 

Surrender fidelity by summing 
fewer Feynman paths.

Idea: use key quantum property: 
entanglement

• Trivial case: Product states

• Example: an entangled state: 

= “Matrix product state”. 

Beating the exponential with a finite fidelity
Matrix Product States (MPS)
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• Previous attempts: 

Surrender fidelity by summing 
fewer Feynman paths.

Idea: use key quantum property: 
entanglement

• Trivial case: Product states

• Example: an entangled state: 

= “Matrix product state”. 

Compressing any state? Singular value decomposition (SVD)

Beating the exponential with a finite fidelity
Matrix Product States (MPS)
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𝜓0 𝑎1𝑏1𝑐1 =
1

2
𝜓0
1
𝑎1 𝜓0

2
𝑏1 𝜓0

3
𝑐1 + 1

2
𝜒0
1
𝑎1 𝜒0

2
𝑏1 𝜒0

3
𝑐1

=

𝐴𝑖𝑗 = 𝑈𝑖𝛼𝑠𝛼𝑉𝛼𝑗
+= 𝒔

𝛼

𝒔𝜶 Truncation of
singular values

Key result:

𝑓 = 𝜓 𝜓compressed
2

= 

𝛼<𝜒

𝑠𝛼
2

𝝌: bond dimension

See e.g
Schollwöck ‘11



Algorithm to compute 𝑥 𝑈 0 :

• Final fidelity: 𝐹 = 𝑓1𝑓2

• Works… but not enough to reproduce Google

A first step towards reproducing the experiment
with “grouped” Matrix Product States
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Algorithm to compute 𝑥 𝑈 0 :

• Final fidelity: 𝐹 = 𝑓1𝑓2

• Works… but not enough to reproduce Google

Improvement: Schrödinger + MPS

• “Group tensors together”

Useful for 2D qubit grids:

• Vertical gates are “exact”

• Horizontal gates are “compressed”

Improves fidelity… but still not enough!

A first step towards reproducing the experiment
with “grouped” Matrix Product States
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Previous approach: apply 1 gate and compress

Here: apply several layers of gates, 

… and find “optimal” MPS:

This work: a triply hybrid strategy
MPS + Schrödinger + tensor networks via a Density Matrix Renormalization Group method

15

?
Initial 
(grouped) 
MPS

𝐾 layers of 
gates

TA, Louvet, Zhou, Lambert, Stoudenmire, Waintal, 2207.05612 



Previous approach: apply 1 gate and compress

Here: apply several layers of gates, 

… and find “optimal” MPS:

How to find optimal MPS?

• DMRG: find MPS with maximal overlap

• Tensor-by-tensor optimization: 𝑛𝑠 “sweeps”

This work: a triply hybrid strategy
MPS + Schrödinger + tensor networks via a Density Matrix Renormalization Group method
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Overlap: Best 𝑀(2) tensor:

? ∝∗

A tensor network!

Initial 
(grouped) 
MPS

𝐾 layers of 
gates

TA, Louvet, Zhou, Lambert, Stoudenmire, Waintal, 2207.05612 



Closing the supremacy gap
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Better XEB error rate than Google Sycamore



An application-centric
benchmark: 
The Q-score

2.



• Must quantify the 
“usefulness” of a processor

Solution of a concrete problem

• hard… 

• … for the best classical 
algorithm

19

Relevant criteria for a benchmarking protocol
A HPC-driven wish list
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Relevant criteria for a benchmarking protocol
A HPC-driven wish list

• Must be scalable

Computable for systems of 
100, 1000, etc “qubits”



• Must quantify the 
“usefulness” of a processor

Solution of a concrete problem

• hard… 

• … for the best classical 
algorithm

21

Relevant criteria for a benchmarking protocol
A HPC-driven wish list

• Must be scalable

Computable for systems of 
100, 1000, etc “qubits”

• Must not be platform-
specific

Do not unduly favor

• A platform

• A computation paradigm 
(gate-based, analog…)

• etc.



Gate-level

• Gate error rates

• Readout error rates

• Coherence times

Gate tomography

22

Existing characterization protocols

Usefulness

Scalability

Agnosticity



Gate-level

• Gate error rates

• Readout error rates

• Coherence times

Gate tomography
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Existing characterization protocols

Circuit-level

Ability to generate “nonclassical” 
distributions:

• Google: cross-entropy 
benchmarking

• IBM: quantum volume

(random circuits)

Usefulness

Scalability
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Gate-level

• Gate error rates

• Readout error rates

• Coherence times

Gate tomography
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Existing characterization protocols

Circuit-level

Ability to generate “nonclassical” 
distributions:

• Google: cross-entropy 
benchmarking

• IBM: quantum volume

(random circuits)

Application-level

Solving linear systems

Computing the GS energy of the 1D 
Hubbard model

Usefulness

Scalability

Agnosticity

Usefulness

Scalability

Agnosticity

Usefulness

Scalability

Agnosticity

Dong & Lin (2020)

Dallaire-Demers et al (2020)



Problem to be solved : MaxCut

Find the set of vertices

that maximizes the 

number of outgoing edges

• Hard to approximate

(and used in many application domains)

• Quantum formulation: 

Ising Hamiltonian:

𝐻 = 

𝑖,𝑗∈𝐸

𝜎𝑧
(𝑖)
𝜎𝑧
(𝑗)

+ 𝑐𝑜𝑛𝑠𝑡.

25

Our proposal: the Q-score protocol Martiel, TA, Allouche
(Transactions in Quantum 
Engineering, 2102.12973)
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• Hard to approximate
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Ising Hamiltonian:
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Our proposal: the Q-score protocol

Reference point: classical state-of-the-art

• Average optimal cost:

𝐶 𝑆0 =
𝑛2

8
+ 0.18𝑛3/2

• Random algorithm:

𝐶random 𝑆 =
𝑛2

8

Martiel, TA, Allouche
(Transactions in Quantum 
Engineering, 2102.12973)
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Our proposal: the Q-score protocol

Reference point: classical state-of-the-art

• Average optimal cost:

𝐶 𝑆0 =
𝑛2

8
+ 0.18𝑛3/2

• Random algorithm:

𝐶random 𝑆 =
𝑛2

8

• “Above random” approximation ratio:

𝛽 𝑆 =
𝐶 𝑆 − 𝑛2/8

0.18𝑛3/2

• 𝛽random 𝑆 = 0

• 𝛽optimal 𝑆 = 1

Martiel, TA, Allouche
(Transactions in Quantum 
Engineering, 2102.12973)
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The Q-score protocol in practice

a. For a size-𝑛 graph 𝐺:

i. Execute an algorithm to find a 
solution 𝑆

ii. Compute cost 𝐶𝐺(𝑆)

b. Average costs: 𝐶𝑛 = 𝐶𝐺 𝑆 𝐺 and 
compute 𝛽(𝑛)

Without decoherence

The longer the preparation circuit (𝑝 =
1 → 2), the higher the quality (constant 
w.r.t size)

Martiel, TA, Allouche (TQE, 2102.12973)

Graph size 𝒏

𝑝 = 2

𝑝 = 1
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The Q-score protocol in practice

a. For a size-𝑛 graph 𝐺:

i. Execute an algorithm to find a 
solution 𝑆

ii. Compute cost 𝐶𝐺(𝑆)

b. Average costs: 𝐶𝑛 = 𝐶𝐺 𝑆 𝐺 and 
compute 𝛽(𝑛)

Without decoherence

The longer the preparation circuit (𝑝 =
1 → 2), the higher the quality (constant 
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The Q-score protocol in practice

a. For a size-𝑛 graph 𝐺:

i. Execute an algorithm to find a 
solution 𝑆

ii. Compute cost 𝐶𝐺(𝑆)

b. Average costs: 𝐶𝑛 = 𝐶𝐺 𝑆 𝐺 and 
compute 𝛽(𝑛)
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Preparation of 𝑈
𝜃
|0⟩

Q-score value

Quantum algorithm:

User’s choice (gate-based, analog).

Here, variational algorithm (“QAOA”)

𝜓 = 𝑈
𝜃∗
|0⟩ with Ԧ𝜃∗ minimizing ⟨𝜓

𝜃
𝐻 𝜓

𝜃
⟩

Without decoherence

The longer the preparation circuit (𝑝 =
1 → 2), the higher the quality (constant 
w.r.t size)

Martiel, TA, Allouche (TQE, 2102.12973)

With (simulated) decoherence

(here, depolarizing noise)

• Quality decreases with size

• Qubit connectivity plays a role 
(compilation)
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The Q-score protocol in practice

With (simulated) decoherence

(here, depolarizing noise)

• Quality decreases with size

• Qubit connectivity plays a role 
(compilation)

a. For a size-𝑛 graph 𝐺:

i. Execute an algorithm to find a 
solution 𝑆

ii. Compute cost 𝐶𝐺(𝑆)

b. Average costs: 𝐶𝑛 = 𝐶𝐺 𝑆 𝐺 and 
compute 𝛽(𝑛)

𝑹(𝜽𝟏)
𝑹(𝜽𝟒)

𝑹(𝜽𝟐)
𝑹(𝜽𝟓)

𝑹(𝜽𝟔)
𝑹(𝜽𝟑)

𝑹(𝜽𝟕)

𝑹(𝜽𝟖)

𝑹(𝜽𝟗)

Preparation of 𝑈
𝜃
|0⟩

Usefulness Scalability Agnosticity

Q-score value

Quantum algorithm:

User’s choice (gate-based, analog).

Here, variational algorithm (“QAOA”)

𝜓 = 𝑈
𝜃∗
|0⟩ with Ԧ𝜃∗ minimizing ⟨𝜓

𝜃
𝐻 𝜓

𝜃
⟩

Without decoherence

The longer the preparation circuit (𝑝 =
1 → 2), the higher the quality (constant 
w.r.t size)

Q-score : number of “useful” qubits to solve a 
difficult problem

Martiel, TA, Allouche (TQE, 2102.12973)



• QAOA example: in principle, more layers: better results. But…

32

Maximizing the Q-score for NISQ

More noise

Simon Martiel, TA, Cyril 
Allouche (arxiv 2102.12973, 
Transactions in Quantum 
Engineering)



Conclusions

Part I:
finite fidelity
classical simulation

Part II: Q-score

• Key to quantum advantage: increased fidelity!
• Combination of methods can beat finite-fidelity processor
• Scalable!
• Available as a QLM simulator: qat-qpeg

• Application-centric
• Can change application: why not many-body HEP problem? 

(qat-fermion lib on QLM)

• Hardware-agnostic
• Scalable
• Recently applied to annealing (D-wave, Rydberg atoms)
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The supremacy sequency An easier sequence A “useful” sequence 

The influence of the type of circuit

34



Fixed depth 𝐷: 

• Error per gate increases… then stagnates:

But more gates, XEB decreases…: must increase 
𝑁samples to reduce variance.

Keep 𝒏𝑫 fixed (fixed XEB: fixed experimental time!): 

• better and better error per gate!

How to understand the stagnation?

Can compute “optimal” error rate after SVD 
compression:

𝜀opt =
1

𝐷
log2 −

log4𝜒

2𝑁

when 𝜀SVD reaches 𝜀opt [~chaotic limit], actual 
error rate deviates from 𝜀SVD

A scalable method: what happens when increasing the qubit count?
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actual 
error rate𝜀opt

𝜀SVD



• Github repo: 
https://github.com/myQLM/qscore
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Try Q-score yourself ▶ … with you own QPU (simulated/actual
hardware): 

▶ … with myQLM-compatible hardware 
(myqlm-interop)

https://github.com/myQLM/qscore

