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Quantum advantages

Google “supremacy” - VS “practical” quantum advantage
Sample bitstrings from a random circuit No killer app yet!
200s (quantum) vs 10,000 years (classical) !! How to measure practical advantage?
.. With total fidelity 0.2%!
1. Simulating large circuits 2. An application-centric
with a finite fidelity benchmark: the Q-score
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1. Simulating large
circuits with a finite
fidelity
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Classical simulation of quantum circuits

From a tensor-network perspective

Goal: compute P, (x) = |[(x|¥)|? = |[{(x|U|0)|?

(I'ensor network primer:

Matrix: -a— Vector: o— Tensor: -ﬂ:
Matrix-matrix M—k = Ai;Bjk

~0—
\ Contraction: i == =Cy

~

J
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Classical simulation of quantum circuits
From a tensor-network perspective

Goal: compute P, (x) = |[(x|¥)|? = |[{(x|U|0)|?

(I'ensor network primer: \

Matrix: -a— Vector: o— Tensor: -ﬂ:
Matrix-matrix: M—k = Ai;Bjk
\ Contraction: i == =Cy /

N,

Order matters: RS
(S J
. . ~ =7
* Naive contraction: l Jj
s=Y.. A:B;;CpDp, O(NY EF— & (gl
= Lijkl Pk kD ( ) \ \\
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» Clever contraction: prad 13"
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Classical simulation of quantum circuits

From a tensor-network perspective

Goal: compute P, (x) = |[(x|¥)|? = |[{(x|U|0)|?

~

(I'ensor network primer:

Matrix: -a— Vector: o— Tensor: -ﬂ:
-0, =45

Matrix-matrix;

*
\ Contraction: ‘ _e_ k = Ci /
Order matters: ,:’ i \,
* Naive contraction: ] a %)
= Y AuBiiCi D, ONY) B8 (g
s = Xijit A1iBijCir Dy O(N™) 1 Y
l \ j
» Clever contraction: Se

s = DiZiZ(Xi AuBij) Cie} Dial. O(N?)

i

k

|0) |'V)

Computing (x|U|0) ‘(5

» Corresponding tensor network

X = (xl; X2, X3)

« Find (x|U|0): contract the tensor network.
Note: storage cost

* 3 qubits: 2x2x2= 8
* n qubits: 2™!
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Three main classical simulation methods
.. as three contraction strategies!

1. Schrédinger

—_——

(x[U]0) =

» CPU cost: Ny, iesexp(n)
 Storage cost: exp(n)

All amplitudes at once: “strong” AtOS




Three main classical simulation methods
.. as three contraction strategies!

1. Schrédinger 2. Feynman (sum over paths)

—_——

(x|U|0)
[IIJO]alblCl [ul]a1a2
= z [uZ]azbl,a3b2 [u3]b2C1,b3C2
a,,az,...C1,Cy 5a3x15b3x2662x3
paths
* CPU cost: Ng,esexp(n) * CPU: < Npaths ~ €xp(Ngates)
» Storage cost: exp(n)  Storage: const.

All amplitudes at once: “strong” || One amplitude: “closed” At‘gs
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Three main classical simulation methods
.. as three contraction strategies!

1. Schrédinger

—_——

2. Feynman (sum over paths)

(x|U]0)
[lpo]alblcl [ul]a1a2

= z [uZ]azbl,a3b2 [u3]b2C1,b3C2

a,,az,...C1,Cy 5a3x15b3x2662x3

paths

(x|U10) = E
@

« CPU cost: Nyyesexp(n)
« Storage cost: exp(n)

All amplitudes at once: “strong”

Markov & Shi ‘08
3. “Tensor network”

1. Find (close to) optimal
contraction strategy (NP
hard problem!)

2. Contract (GPUs, TPUs..)

* CPU: x Npaths ~ eXp(Ngates)
 Storage: const.

One amplitude: “closed”

min(depth, width)

* CPU: exp(Treewidth)
 Storage: exp(Treewidth)

One amplitude: “closed”
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Beating the exponential with a finite fidelity Seeeg
Matrix Product States (MPS) Schollwéck ‘11

* Previous attempts:

Surrender fidelity by summing
fewer Feynman paths.

|dea: use key quantum property:
entanglement

* Trivial case: Product states

[lpo]alblcl = [lp(l)]al [¢(2>]b1 [lPS]cl

b - 00O
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Beating the exponential with a finite fidelity
Matrix Product States (MPS)

« Example: an entangled state:

Seeeg
Schollwock ‘11

* Previous attempts: [Wolaybye, = FHlWola, [W8ls, [Wile, * 7 [X0lay X616, X6,

Surrender fidelity by summing

fewer Feynman paths. H — ‘_“

= "Matrix product state”.
|dea: use key quantum property:

entanglement

* Trivial case: Product states

[lpo]alblcl = [lp(l)]al [¢(2>]b1 [wg]cl

b - 00O

11
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Beating the exponential with a finite fidelity

Matrix Product States (MPS)

* Previous attempts:

Surrender fidelity by summing
fewer Feynman paths.

|dea: use key quantum property:
entanglement

* Trivial case: Product states

[lpo]alblcl = [lp(l)]al [¢(2>]b1 [wg]cl

b - 00O

Seeeg
Schollwock ‘11

« Example: an entangled state:

[Wola,bie, = FlWola, [W6ls, Wile, * 5 Wola, [xo ], [X5]e,

tmh - B00

= “Matrix product state”.

-
Compressing any state? Singular value decomposition (SVD)

— +
Aij = UigSaVyj

Key result:

f = |<7~/}|¢compressed)|2

=§S§
a

Truncation of
singular values

x. bond dimension

2 AtOS



A first step towards reproducing the experiment
with “grouped” Matrix Product States

Algorithm to compute (x|U|0):  vidal ‘04

1

SVD compression

SVD compression
f2
i—@
« Final fidelity: F = f;f,

* Works.. but not enough to reproduce Google

13

Zhou, Stoudenmire, Waintal PRX 20
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A first step towards reproducing the experiment  znou stoudenmire, Waintal PRX 20
with “grouped” Matrix Product States

Algorithm to compute (x|U|0):  vidal ‘04 Improvement: Schrodinger + MPS
: » “Group tensors together”

e8a-000 5 dmmb

SVD compression

Useful for 2D qubit grids:
« Vertical gates are “"exact”
SVD compression ¢ Horizontal gates are "compressed”

f2
!—@

* Final fidelity: F = f,f, Improves fidelity.. but still not enough!
* Works.. but not enough to reproduce Google
14 Aws




TA, Louvet, Zhou, Lambert, Stoudenmire, Waintal, 2207.05612

This work: a triply hybrid strategy

MPS + Schrodinger + tensor networks via a Density Matrix Renormalization Group method

Previous approach: apply 1 gate and compress

Here: apply several layers of gates,
. and find “optimal” MPS:

zR'?

K layers of
gateys l’ 15 At@S

Initial
(grouped)
MPS




TA, Louvet, Zhou, Lambert, Stoudenmire, Waintal, 2207.05612

This work: a triply hybrid strategy

MPS + Schrodinger + tensor networks via a Density Matrix Renormalization Group method

Previous approach: apply 1 gate and compress How to find optimal MPS?
* DMRG: find MPS with maximal overlap
Here: apply several layers of gates, * Tensor-by-tensor optimization: ng “sweeps”
. and find “optimal” MPS: - ~
Overlap: Best M(® tensor:

Initial
(grouped)
MPS

It

. A tensor network!

K layers of /
gates 16 At@S




Closing the supremacy gap

9
'] ‘\
- 54 qubits

K=1,n=4
Sequence |, D1/D;

mfl= closed D> =1

=x = closed D, =3
7 =@= open simulation

[

Error per gate € [%]
)

Fpsupremacy N

F supremacy

100 102

Better XEB error rate than Google Sycamore
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2. An application-centric
benchmark:

The Q-score

AtOeS



Relevant criteria for a benchmarking protocol
A HPC-driven wish list

« Must quantify the
“usefulness” of a processor

Solution of a concrete problem

* hard..

» .. for the best classical
algorithm

19
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Relevant criteria for a benchmarking protocol
A HPC-driven wish list

« Must quantify the * Must be scalable
“usefulness” of a processor

Solution of a concrete problem

* hard.. Computable for systems of
» .. for the best classical 100, 1000, etc “qubits”
algorithm

20
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Relevant criteria for a benchmarking protocol
A HPC-driven wish list

« Must quantify the * Must be scalable * Must not be platform-
“usefulness” of a processor specific
Solution of a concrete problem Do not unduly favor
* hard.. Computable for systems of * Aplatform
» .. for the best classical 100, 1000, etc “qubits” * A computation paradigm
algorithm (gate-based, analog..)
* etc.

21 A&g



Existing characterization protocols

Gate-level

* Gate error rates
* Readout error rates
e Coherence times

Gate tomography

5 ~ I~y
Scalc Sy
m

22
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Existing characterization protocols

Gate-level Circuit-level

» Gate error rates Ability to generate “nonclassical”
distributions:

+ Google: cross-entropy
benchmarking

* IBM: quantum volume
(random circuits)

* Readout error rates
e Coherence times

Gate tomography

Uselulnaces

5 ~ I~y
Scalc Sy
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Existing characterization protocols

Gate-level

* Gate error rates
* Readout error rates
e Coherence times

Gate tomography

Circuit-level

Ability to generate “nonclassical”
distributions:

+ Google: cross-entropy
benchmarking

* IBM: quantum volume
(random circuits)

Application-level

Solving linear systems
Dong & Lin (2020)

Computing the GS energy of the 1D
Hubbard model

Dallaire-Demers et al (2020)

Usefulness

Scalaaility

Agnosticity

24
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Our proposal: the Q-score protocol

Problem to be solved : MaxCut
Find the set of vertices
that maximizes the
number of outgoing edges

» Hard to approximate
(and used in many application domains)

¢ Quantum formulation:

Ising Hamiltonian:
H = Z az(i)az(j) + const.
i,jEE

25

Martiel, TA, Allouche
(Transactions in Quantum
Engineering, 2102.12973)
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Martiel, TA, Allouche

Our proposal: the Q-score protocol (Transactions in Quantum

Engineering, 2102.12973)

Problem to be solved : MaxCut Reference point: classical state-of-the-art
Find the set of vertices * Average optimal cost:
that maximizes the B n_2 3/2 E 10 ]
number of outgoing edges €(So) = +0.18n s E: '
5

. « Random algorithm: E E;
» Hard to approximate n2 2 — rarnctom
(and used in many application domains) Crandom (S) = ry 90T 10 w0 0 4o

Taille n

¢ Quantum formulation:

Ising Hamiltonian:

H = Z az(i)az(j) + const.
i,jEE

2 w88



Martiel, TA, Allouche

Our proposal: the Q-score protocol (Transactions in Quantum

Engineering, 2102.12973)

Problem to be solved : MaxCut Reference point: classical state-of-the-art
Find the set of vertices * Average optimal cost:
that maximizes the B n_2 3/2 E 10 ]
number of outgoing edges €(So) = +0.18n s E: 1
5

. « Random algorithm: E E;
» Hard to approximate n2 2 — rarnctom
(and used in many application domains) Crandom (S) = ry 90T 10 w0 0 4o

Taille n

(" )

« Quantum formulation: + “Above random" approximation ratio:
Ising Hamiltonian: B(S) = C(S) —n?*/8
M _() 0.18n%/
H = Z o, 0, + const. * Brandom(S) =0
LIEE ° ,Boptimal(s) =1

27 -




The Q-score protocol in practice

(a. Fora size-n graph G: Y- p=2
i. | Execute an algorithm to find a %
solution S Kb
ii. Compute cost C;(S) ','g 04
b. Average costs: C, = (C;(S)); and 20,
compute B(n) I .
~ / Graph size n
28

Martiel, TA, Allouche (TQE, 2102.12973)

Without decoherence

The longer the preparation circuit (p =
1 - 2), the higher the quality (constant
w.rtsize)

w88



The Q-score protocol in practice

(a. For a size-n graph G: A

i [ Execute an algorithm to find a}

solution S
i, Compute cost C;(S) \
b. /Average costs: C, = (C5(S))s and ',
\ // compute B(n) \‘),
)l, “\
ﬁuantum algorithm: )

User’s choice (gate-based, analog).

Here, variational algorithm (“*QAOA")

) = U5.|0) with 6* minimizing (p5|H|y3)
Preparation of Uz|0)

29

Graph size n

Martiel, TA, Allouche (TQE, 2102.12973)

Without decoherence

The longer the preparation circuit (p =
1 - 2), the higher the quality (constant
w.rtsize)

w88



The Q-score protocol in practice

4 ) D Yt
. Fofasizen 9raph S: "IN A A
i. | Execute an algorithm to find a %
solution S Kb
-u ) ‘
ii.,©~ Compute cost C;(S) \ S50
/ \ V]
b. /'Average costs: G, = (Cs(S))¢ and 3, '/ %03
L / compute B(n) ‘\‘ Vi 0 § ) .
l‘ ‘\ B =20% +‘\I
(/ \ 017 g perfect p=1 == noisy (all-to-all) "\'
- =f= perfect p=2  ={= noisy (grid)
Quantum algorlthm' 00 5 7 9 1 13 15 17 19 21

User’s choice (gate-based, analog).

Here, variational algorithm (“*QAOA")

) = U5.|0) with 6* minimizing (p5|H|y3)
Preparation of Uz|0)

30

number of qubits n

L)

Q-score value

Martiel, TA, Allouche (TQE, 2102.12973)

Without decoherence

The longer the preparation circuit (p =
1 - 2), the higher the quality (constant
w.rtsize)

With (simulated) decoherence

(here, depolarizing noise)
* Quality decreases with size

* Qubit connectivity plays a role
(compilation)

w88



The Q-score protoco[ Ta practice Martiel, TA, Allouche (TQE, 2102.12973)

(a. For a size-n graph G: Y-

i Execute an algorithm to find a

solution S
ii.,©~ Compute cost C;(S) \ ,/§
b. /Average costs: C, = (Cs(S))g andy, | /¢
\ // compute B(n) \‘//
/I ‘\\
\

Guantum algorithm:

User’s choice (gate-based, analog).
Here, variational algorithm (“*QAOA")

) = U5.|0) with 6* minimizing (p5|H|y3)

Preparation of Uz|0)

31

o - Without decoherence
061,

)4 The longer the preparation circuit (p =
94 ~ 1 - 2) the higher the quality (constant
o w.rtsize)

0.3 -
ol —thig YT @1 ..
B+ =20% + With (simulated) decoherence
017 g perfect p=1 == nnisygau-t:alu) '*\l L
=4 perfectp=2  ={= noisy (grid)
T T T 15 15 1 1e a (here, depolarizing noise)
g e t J+ Quality decreases with size
* Qubit connectivity plays a role
Q-score value (compilation)

Q-score : number of “useful” qubits to solve a
difficult problem

Usefulness Scalability Agnosticity



Simon Martiel, TA, Cyril

Maximizing the Q-score for NISQ Allouche (arxiv 210212073,

Transactions in Quantum
Engineering)

* QAOA example: in principle, more layers: better results. But..

0.7
0.6
0.5 0.6
Y == 2% noise, p=1 =] = 0.4% noise, p=2
] ~ _I =] = 2% noise, p=2 =f=0.08% noise, p=1
T 0.3
0.5 - > ‘wefum 0.4% noise, p=1 = = 0.08% noise, p=2
02 . ._{Q__ .......
011 g perfectp=1 = nnisy(alt;a'm ‘ﬁ"
—f= perfectp=2  =| = noisy (grid) 0.4 4
oo 5 7 9 1 13 15 17 19 21
number of qubits n —_
£
Q.
g 031
-
2
B =20%
02 e —
0.1 A1
0.0 T T T T T T T T
5 7 9 11 13 15 17 19 21

number of qubits n

32
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Conclusions

Key to quantum advantage: increased fidelity!
Combination of methods can beat finite-fidelity processor
Scalable!

Available as a QLM simulator: qat-qpeg

Lity
simulation

* Application-centric

« Can change application: why not many-body HEP problem?
(gat-fermion lib on QLM)

+ Hardware-agnostic
» Scalable
» Recently applied to annealing (D-wave, Rydberg atoms)

2 AtOeS
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Error per gate £ [%]

The influence of the type of circuit

The supremacy sequency

columns

71 54 qubits
K=1,n,=4

6 Sequence |, D1/D;
>l
4 .
b . -
3 | == closed D;=1 .
e — —
=x= closed D; =3 My

2 == open simulation

I 7 supremacy
U 4
100 10t 10?
Bond dimension y

Error per gate € [%]

An easier sequence

columns

9

54 qubits =@= closed simulation
84 K=2,n=1 =@= open simulation
; ~ ~ Sequence I, V1/V; | —q= TEBD

~ ~ Fj supremacy

~
61 ~a I 7 supremacy
NG
5 1 o~
'l\‘_.. ~
4 e e
3 4
2
1
0
10° 10! 102 10
Bond dimension x
34

Error per gate £ [%]

A “useful” sequence

1 —e— Sequencel, vi/v;

qllblT,S
[0) {x}
|0) {x}
|0) {x}
|0) [} X[ 1]
[0) x|r 1] *~—eo
|0) I B S
|0) {x} B ES -
|0) {x}
|0) {x}
|0) {x}
54 qubits
K=20,n;=1

Fy supremacy
N F supremacy
Sequence lll (all to all connectivity), 1
—#— Sequence Il (restricted to Sycamore topology), V1

10!
Bond dimension y



A scalable method: what happens when increasing the qubit count?

Fixed depth D:
» Error per gate increases.. then stagnates:

3.5

3.0

2.5 1

%]

2.04 Sequence I, 1/V;

K=2,ns=1, =64

L == closed sim., D =20
\ Fj supremacy
I 7 supremacy
closed sim., ND = 1080

154

Error per gate € [¥

1.0

0.5

0.0

50 100 150 200 250 300
Number of qubits N

But more gates, XEB decreases..: must increase
Nsamples t0 reduce variance.

Keep nD fixed (fixed XEB: fixed experimental time)):

35

How to understand the stagnation?
Can compute “optimal” error rate after SVD

compression:

1 log 4
(1 , _log4x

opt = 2N
VR
\' _— cls':otlc optimum
1 \ actual
] \ E error rate
5 \ Opt
\-
\

N

w

Error £ per gate [%]
-~

Z e _ESVD
"h"-h...__‘__

28 qubits, Sequence Il

x =64, K=2,n,=1, V2/V,

0 5 10 15 20 25
Depth D

)

when egyp reaches ¢, [~chaotic limitl], actual

error rate deviates from egyp

AtOS



Try Q-score yourself » ... with you own QPU (simulated/actual

hardware):
G|thUb repO: i from gat.core.gpu import QPUHandler
https:.//qithub.com/myQLM/qgscore 2 from qat.core import Result
- s class MyQPU (QPUHandler) :
1 from gat.gscore.benchmark lmport QScore 6 def submit_job(self, job):
2 from gat.plugins import ScipyMinimizePlugin 7 # Evaluate the job using your QPU
from gat.gpus import get_default_ gpu 8 # A job constains:
4 ) # a circuit:
5 # Our QPU is composed of: circuit = job.circuit
# — a variational optimizer plugin # possibly an observable
7 # — a QLM/myQLM default gpu (either LinAlg or 12 observable = job.observable
pyLinalqg) 13 # or a list of qubits to sample:

14 qubits = job.qubits
) QPU = ScipyMinimizePlugin (
method="COBYLA",

get_default_gpu/(

5 benchmark = QScore(

# Results are returned in a ‘Result®
object
17 return result

» ... with myQLM-compatible hardware

¢ QPU,
7 size_1limit=20, # limiting the instace sizes m |m—|ntero
to 20 ( \/q [))
8 depth=1, # using an Ansatz depth of 1 gat.interop.qiskit BackendToQPU
output="perfect.csv", IBMQ
2 rawdata="perfect.raw" MY IBM TOKEN = "..."
) qpu = BackendToQPU(token MY_IBM_TOKEN,

22 benchmark.run/()

36



https://github.com/myQLM/qscore

