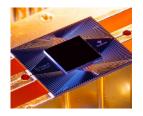
International Conference on Quantum Technologies for High-Energy Physics

Quantum vs classical: assessing quantum advantage

Thomas Ayral Atos Quantum Laboratory

Quantum advantages



Google "supremacy"

... vs "practical" quantum advantage

Sample bitstrings from a *random* circuit

200s (quantum) vs 10,000 years (classical) !!

... with total fidelity 0.2%!

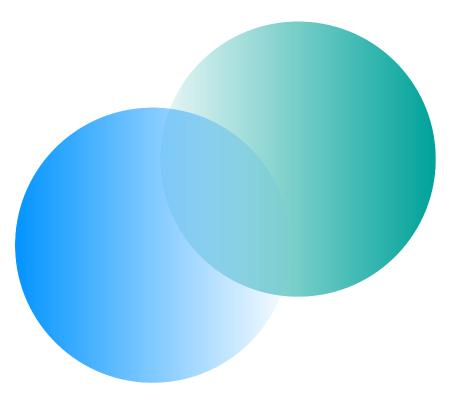
No killer app yet!

How to measure practical advantage?

1. Simulating large circuits with a finite fidelity

2. An application-centric benchmark: the Q-score

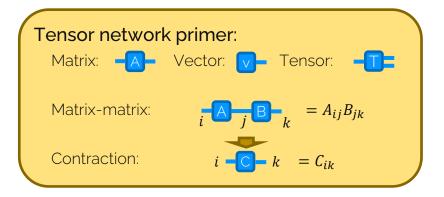
Simulating large circuits with a finite fidelity



Classical simulation of quantum circuits

From a tensor-network perspective

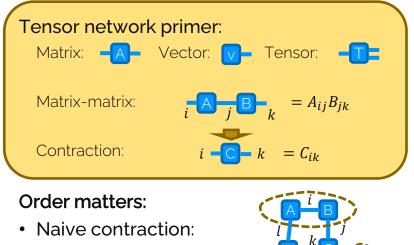
Goal: compute $P_U(x) = |\langle x | \Psi \rangle|^2 = |\langle x | U | 0 \rangle|^2$



Classical simulation of quantum circuits

From a tensor-network perspective

Goal: compute $P_U(x) = |\langle x | \Psi \rangle|^2 = |\langle x | U | 0 \rangle|^2$



 $s = \sum_{ijkl} A_{li} B_{ij} C_{jk} D_{kl}, \, \boldsymbol{O}(N^4)$

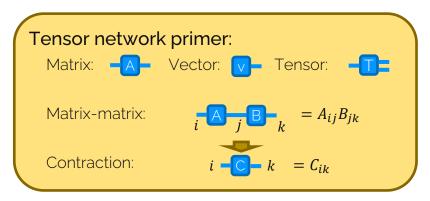
Clever contraction:

 $s = \sum_{l} \left[\sum_{k} \left\{ \sum_{j} \left(\sum_{i} A_{li} B_{ij} \right) C_{jk} \right\} D_{kl} \right], \boldsymbol{O}(N^3)$

Classical simulation of quantum circuits

From a tensor-network perspective

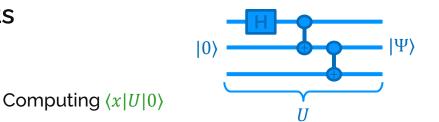
Goal: compute $P_U(x) = |\langle x | \Psi \rangle|^2 = |\langle x | U | 0 \rangle|^2$



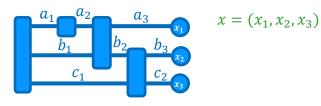
Order matters:

- Naive contraction:
- $s = \sum_{ijkl} A_{li} B_{ij} C_{jk} D_{kl}, \boldsymbol{O}(\boldsymbol{N^4})$
- Clever contraction:

 $s = \sum_{l} \left[\sum_{k} \left\{ \sum_{j} \left(\sum_{i} A_{li} B_{ij} \right) C_{jk} \right\} D_{kl} \right], \boldsymbol{O}(N^3)$



Corresponding tensor network



• Find $\langle x|U|0 \rangle$: contract the tensor network.

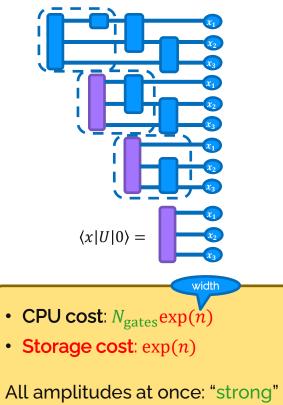
Note: storage cost

- 3 qubits: 2x2x2 = 8
- *n* qubits: 2^{*n*}!

Three main classical simulation methods

... as three contraction strategies!

1. Schrödinger



Three main classical simulation methods

... as three contraction strategies!

1. Schrödinger 2. Feynman (sum over paths) $\langle x|U|0\rangle$ $[\psi_0]_{a_1b_1c_1}[u_1]_{a_1a_2}$ $\sum_{\substack{a_1,a_2,\dots,c_1,c_2 \\ \delta_{a_3x_1}\delta_{b_3x_2}\delta_{c_2x_3}}} [u_2]_{a_2b_1,a_3b_2} [u_3]_{b_2c_1,b_3c_2}$ $\langle x|U|0\rangle =$ paths width depth **CPU**: $\propto N_{\text{paths}} \sim \exp(N_{\text{gates}})$ • CPU cost: $N_{\text{gates}} \exp(n)$ Storage: const. • Storage cost: exp(n)All amplitudes at once: "strong" One amplitude: "closed"

Three main classical simulation methods

... as three contraction strategies!

1. Schrödinger 3. "Tensor network" 2. Feynman (sum over paths) $\langle x|U|0\rangle$ $[\psi_0]_{a_1b_1c_1}[u_1]_{a_1a_2}$ Find (close to) optimal 1. $\sum_{\substack{a_1,a_2,\ldots,c_1,c_2 \\ \delta_{a_3x_1}\delta_{b_3x_2}\delta_{c_2x_3}}} [u_2]_{a_2b_1,a_3b_2} [u_3]_{b_2c_1,b_3c_2}$ contraction strategy (NP hard problem!) 2. Contract (GPUs, TPUs...) $\langle x|U|0\rangle =$ paths min(depth, width) width depth **CPU**: exp(Treewidth) • CPU cost: $N_{\text{gates}} \exp(n)$ **CPU**: $\propto N_{\text{paths}} \sim \exp(N_{\text{gates}})$ • **Storage**: exp(Treewidth) Storage: const. • Storage cost: exp(n)All amplitudes at once: "strong" One amplitude: "closed" One amplitude: "closed"

Markov & Shi '08

Beating the exponential with a finite fidelity Matrix Product States (MPS)

See e.g Schollwöck '11

• Previous attempts:

Surrender fidelity by summing fewer Feynman paths.

Idea: use key quantum property: entanglement

• Trivial case: Product states

 $[\psi_0]_{a_1b_1c_1} = [\psi_0^1]_{a_1} [\psi_0^2]_{b_1} [\psi_0^3]_{c_1}$

Beating the exponential with a finite fidelity

Matrix Product States (MPS)

• Example: an entangled state:

= "Matrix product state".

• Previous attempts:

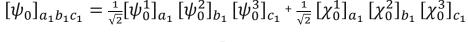
Surrender fidelity by summing fewer Feynman paths.

See e.g Schollwöck '11

- Idea: use key quantum property: entanglement
- Trivial case: Product states

 $[\psi_0]_{a_1b_1c_1} = [\psi_0^1]_{a_1} \, [\psi_0^2]_{b_1} \, [\psi_0^3]_{c_1}$





Beating the exponential with a finite fidelity

Matrix Product States (MPS)

• Example: an entangled state:

• Previous attempts:

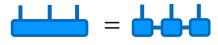
Surrender fidelity by summing fewer Feynman paths.

Idea: use key quantum property: entanglement

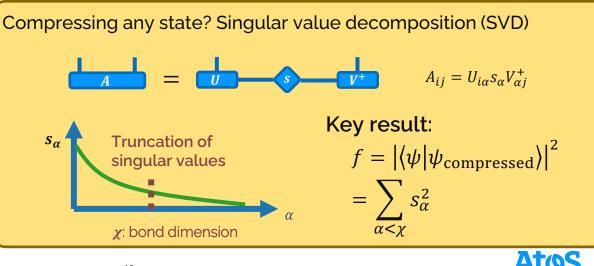
Trivial case: Product states

 $[\psi_0]_{a_1b_1c_1} = [\psi_0^1]_{a_1} [\psi_0^2]_{b_1} [\psi_0^3]_{c_1}$

 $[\psi_0]_{a_1b_1c_1} = \frac{1}{\sqrt{2}} [\psi_0^1]_{a_1} [\psi_0^2]_{b_1} [\psi_0^3]_{c_1} + \frac{1}{\sqrt{2}} [\chi_0^1]_{a_1} [\chi_0^2]_{b_1} [\chi_0^3]_{c_1}$



= "Matrix product state".



See e.g Schollwöck '11

A first step towards reproducing the experiment with "grouped" Matrix Product States

Vidal '04

Zhou, Stoudenmire, Waintal PRX 20

SVD compression J1 SVD compression f_2 \approx

• Final fidelity: $F = f_1 f_2$

Algorithm to compute $\langle x|U|0\rangle$:

• Works... but not enough to reproduce Google

A first step towards reproducing the experiment with "grouped" Matrix Product States

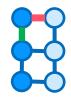
Algorithm to compute $\langle x|U|0\rangle$: Vidal '04 SVD compression SVD compression f_2 \approx

Improvement: Schrödinger + MPS

• "Group tensors together"

Useful for 2D qubit grids:

- Vertical gates are "exact"
- Horizontal gates are "compressed"



• Final fidelity: $F = f_1 f_2$

• Works... but not enough to reproduce Google

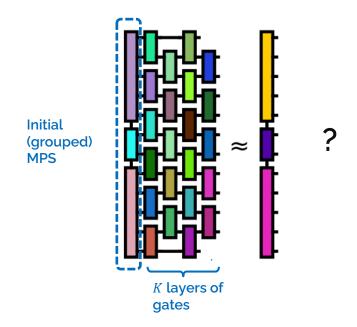
Improves fidelity... but still not enough!

This work: a triply hybrid strategy

MPS + Schrödinger + tensor networks via a Density Matrix Renormalization Group method

Previous approach: apply 1 gate and compress

Here: apply several layers of gates, ... and find "optimal" MPS:



This work: a triply hybrid strategy

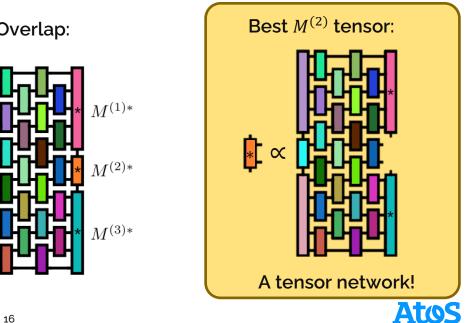
MPS + Schrödinger + tensor networks via a Density Matrix Renormalization Group method

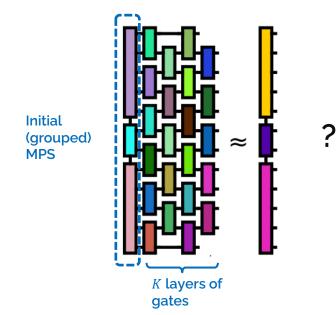
Previous approach: apply 1 gate and compress

Here: apply several layers of gates, ... and find "optimal" MPS:

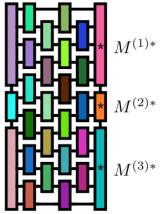
How to find optimal MPS?

- DMRG: find MPS with maximal overlap
- Tensor-by-tensor optimization: n_s "sweeps"



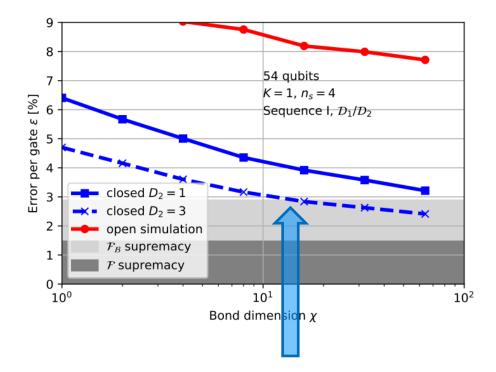


Overlap:



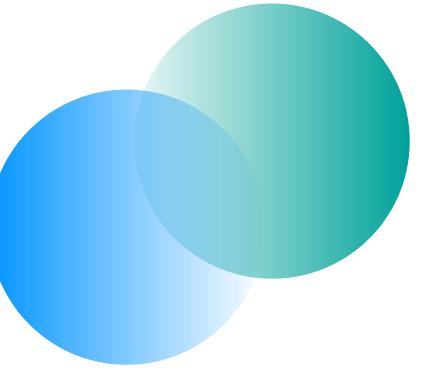
TA, Louvet, Zhou, Lambert, Stoudenmire, Waintal, 2207.05612

Closing the supremacy gap



Better XEB error rate than Google Sycamore

2. An application-centric benchmark: The Q-score



Relevant criteria for a benchmarking protocol A HPC-driven wish list

• Must quantify the "usefulness" of a processor

Solution of a concrete problem

- hard...
- ... for the best classical algorithm

Relevant criteria for a benchmarking protocol A HPC-driven wish list

 Must quantify the "usefulness" of a processor • Must be scalable

Solution of a concrete problem

- hard...
- ... for the best classical algorithm

Computable for systems of 100, 1000, etc "qubits"

Relevant criteria for a benchmarking protocol A HPC-driven wish list

 Must quantify the "usefulness" of a processor • Must be scalable

 Must not be platformspecific

Solution of a concrete problem

Do not unduly favor

- hard...
- ... for the best classical algorithm

Computable for systems of 100, 1000, etc "qubits"

• A platform

- A computation paradigm (gate-based, analog...)
- etc.

Existing characterization protocols

Gate-level

- Gate error rates
- Readout error rates
- Coherence times

Gate tomography

Existing characterization protocols

Gate-level

Circuit-level

- Gate error rates
- Readout error rates
- Coherence times

Gate tomography

Ability to generate "nonclassical" distributions:

- Google: cross-entropy benchmarking
- IBM: quantum volume (random circuits)

Existing characterization protocols

Gate-level

- Gate error rates
- Readout error rates
- Coherence times

Gate tomography

Circuit-level

Ability to generate "nonclassical" distributions:

- Google: cross-entropy benchmarking
- IBM: quantum volume (random circuits)

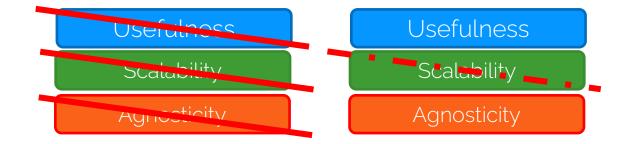
Application-level

Solving linear systems

Dong & Lin (2020)

Computing the GS energy of the 1D Hubbard model

Dallaire-Demers et al (2020)

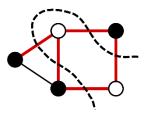


Our proposal: the Q-score protocol

Martiel, TA, Allouche (Transactions in Quantum Engineering, 2102.12973)

Problem to be solved : MaxCut

Find the set of vertices that maximizes the number of outgoing edges



• Hard to approximate (and used in many application domains)

Quantum formulation:

Ising Hamiltonian:

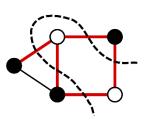
$$H = \sum_{i,j \in E} \sigma_z^{(i)} \sigma_z^{(j)} + const.$$

Our proposal: the Q-score protocol

Martiel, TA, Allouche (Transactions in Quantum Engineering, 2102.12973)

Problem to be solved : MaxCut

Find the set of vertices that maximizes the number of outgoing edges



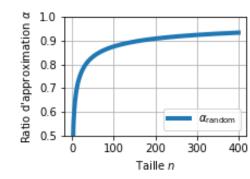
• Hard to approximate (and used in many application domains)

Reference point: classical state-of-the-art

• Average optimal cost:

$$C(S_0) = \frac{n^2}{8} + 0.18n^{3/2}$$

• Random algorithm: $C_{\text{random}}(S) = \frac{n^2}{8}$



• Quantum formulation:

Ising Hamiltonian:

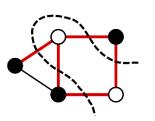
$$H = \sum_{i,j \in E} \sigma_z^{(i)} \sigma_z^{(j)} + const.$$

Our proposal: the Q-score protocol

Martiel, TA, Allouche (Transactions in Quantum Engineering, 2102.12973)

Problem to be solved : MaxCut

Find the set of vertices that maximizes the number of outgoing edges



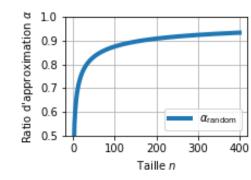
Hard to approximate
 (and used in many application domains)

Reference point: classical state-of-the-art

• Average optimal cost:

$$C(S_0) = \frac{n^2}{8} + 0.18n^{3/2}$$

• Random algorithm: $C_{\text{random}}(S) = \frac{n^2}{8}$



Quantum formulation:

Ising Hamiltonian:

$$H = \sum_{i,j \in E} \sigma_z^{(i)} \sigma_z^{(j)} + const.$$

• "Above random" approximation ratio:

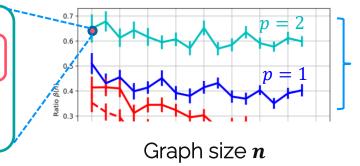
$$\beta(S) = \frac{C(S) - n^2/8}{0.18n^{3/2}}$$

•
$$\beta_{\text{random}}(S) = 0$$

•
$$\beta_{\text{optimal}}(S) = 1$$

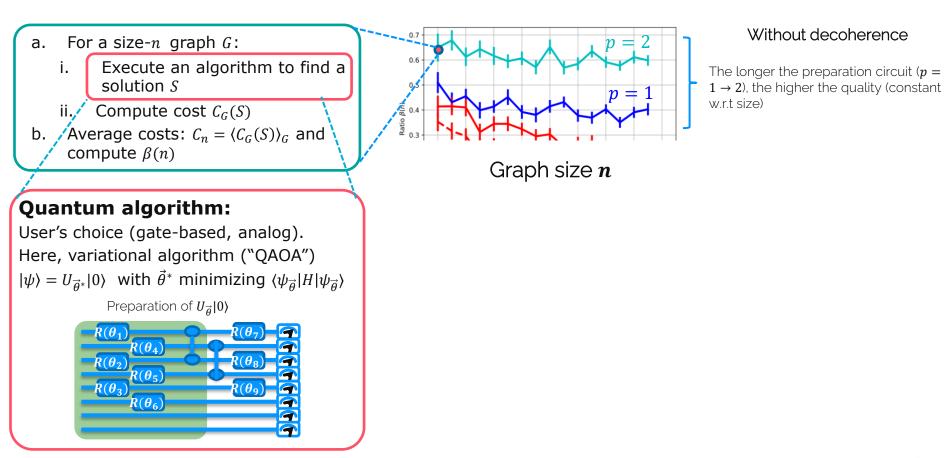
a. For a size-n graph G:

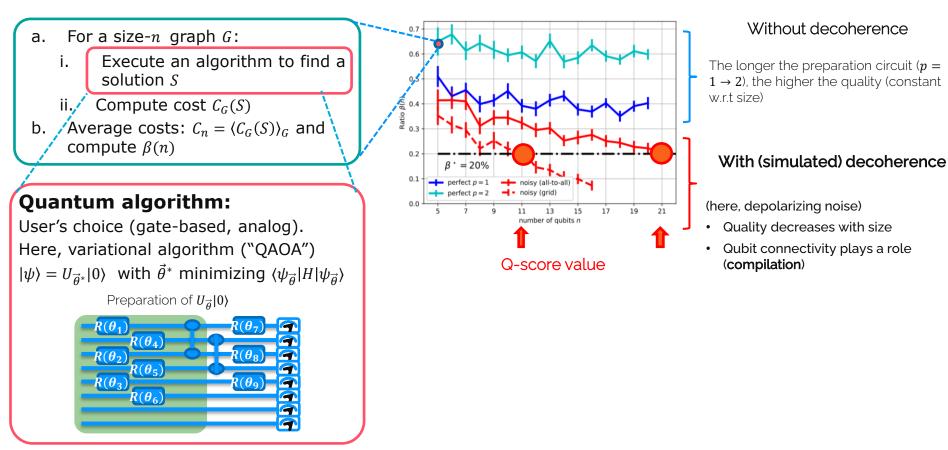
- i. Execute an algorithm to find a solution *S*
- ii. Compute cost $C_G(S)$
- b. Average costs: $C_n = \langle C_G(S) \rangle_G$ and compute $\beta(n)$

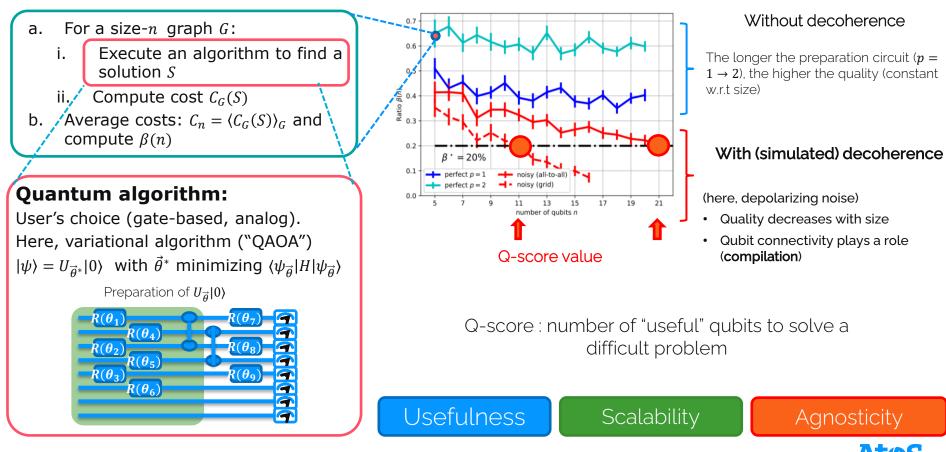


Without decoherence

The longer the preparation circuit ($p = 1 \rightarrow 2$), the higher the quality (constant w.r.t size)



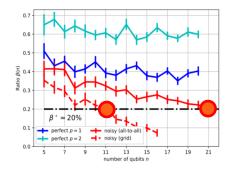


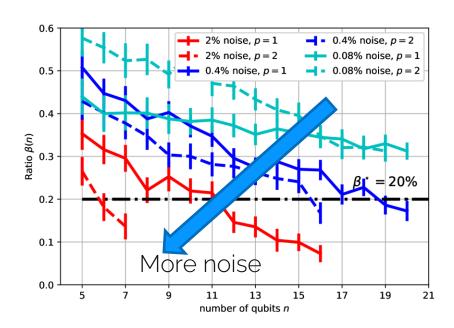


Maximizing the Q-score for NISQ

QAOA example: in principle, more layers: better results. But...

Simon Martiel, TA, Cyril Allouche (arxiv 2102.12973, Transactions in Quantum Engineering)





Conclusions

Part I:

finite fidelity classical simulation

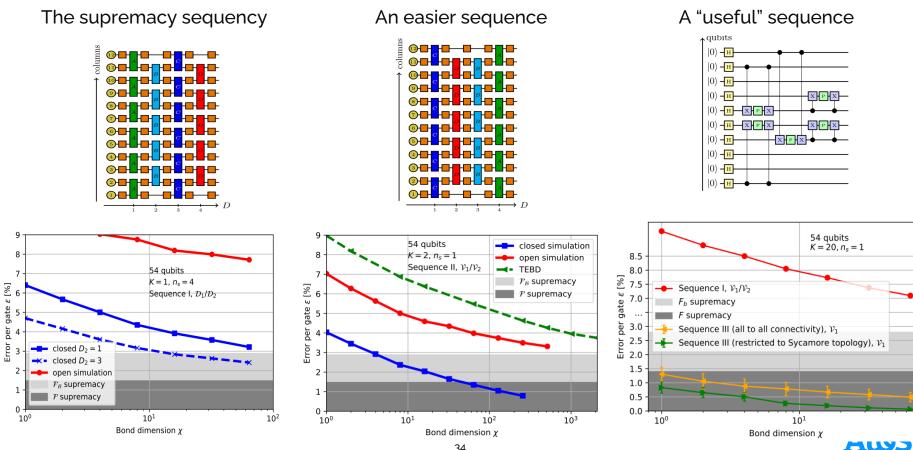
• Key to quantum advantage: increased fidelity!

- Combination of methods can beat finite-fidelity processor
- Scalable!
- Available as a QLM simulator: qat-qpeg

Part II: Q-score

- Application-centric
 - Can change application: why not many-body HEP problem? (qat-fermion lib on QLM)
- Hardware-agnostic
- Scalable
- Recently applied to annealing (D-wave, Rydberg atoms)

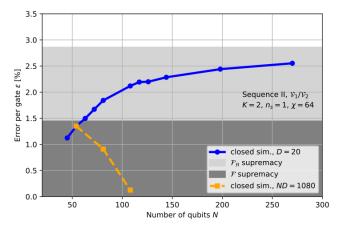
The influence of the type of circuit



A scalable method: what happens when increasing the qubit count?

Fixed depth *D*:

• Error per gate increases... then stagnates:



But more gates, XEB decreases...: must increase N_{samples} to reduce variance.

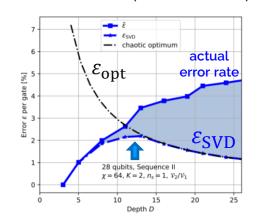
Keep nD fixed (fixed XEB: fixed experimental time!):

• better and better error per gate!

How to understand the stagnation?

Can compute "optimal" error rate after SVD compression:

$$\varepsilon_{\rm opt} = \frac{1}{D} \left(\log 2 - \frac{\log 4\chi}{2N} \right)$$



when ε_{SVD} reaches ε_{opt} [~chaotic limit], actual error rate deviates from ε_{SVD}

Try Q-score yourself

Github repo: <u>https://github.com/myQLM/qscore</u>

```
1 from gat.gscore.benchmark import QScore
2 from gat.plugins import ScipyMinimizePlugin
3 from gat.gpus import get_default_gpu
    Our OPU is composed of:
5 #
6 # - a variational optimizer plugin
7 # - a QLM/myQLM default qpu (either LinAlg or
      pyLinalq)
8
9 QPU = ScipyMinimizePlugin(
      method="COBYLA",
10
      tol=1e-4,
11
      options={"maxiter":
12
     get default gpu()
13
14
15 benchmark = QScore(
      QPU,
16
      size_limit=20, # limiting the instace sizes
17
      to 20
      depth=1,
                       # using an Ansatz depth of 1
18
      output="perfect.csv",
19
      rawdata="perfect.raw"
20
21
22 benchmark.run()
```

... with you own QPU (simulated/actual hardware):

1	from qat.core.qpu import QPUHandler
2	from qat.core import Result
3	
4	
5	class MyQPU(QPUHandler):
6	<pre>def submit_job(self, job):</pre>
7	# Evaluate the job using your QPU
8	# A job constains:
9	# a circuit:
10	circuit = job.circuit
11	<pre># possibly an observable</pre>
12	observable = job.observable
13	<pre># or a list of qubits to sample:</pre>
14	qubits = job.qubits
15	
16	<pre># Results are returned in a `Result`</pre>
	object
17	return result
18	
with myQLM-compatible hardware	

... with myQLM-compatible hardware (myqlm-interop)

